
C Fundamentals and Console I/O

CSC230: C and Software Tools
N.C. State Department of Computer Science

CSC230 - C and Software Tools © NC State University Computer Science Faculty 1

Exercise How-to (1)

• Go to the course web page and click the exercise
form link.

CSC230 - C and Software Tools © NC State University Computer Science Faculty 2

Exercise How-to (2)

• Fill in the GOLD exercise ID.

CSC230 - C and Software Tools © NC State University Computer Science Faculty 3

If you get this, click Google

Drive and login with your NCSU

account, then try again. 02a

Exercise How-to (3)

• If you’re asked to code, code however you see fit, then put the code into
ideone.com and click run. IDEOne will store and run your code for you! When
you’re happy, copy the URL to the google form.

CSC230 - C and Software Tools © NC State University Computer Science Faculty
4

1 2

3

Exercise How-to (4)

• If there’s a non-code
question, answer it in
the space provided.

• Then hit submit.

• Done!

CSC230 - C and Software Tools © NC State University Computer Science Faculty 5

Reminder: Go to course web page for link to exercise form.
Paste code into ideone.com and submit the link.

Exercise 02a

• Write the hello world program now.

6

Hello world warmup

Outline

• C Coding Style

• Executing Java and C Programs

• Platform Independence?

• Just-in-Time Compilation

• C Compilation Steps

• gcc

• C99 and C89

• Console I/O

• Streams

• Character I/O

• printf

CSC230 - C and Software Tools © NC State University Computer Science Faculty 7

C Coding Style (Conventions)
• Universal agreement

1. clarity and consistency important

2. indentation, white space, and comments helpful

3. consistent naming conventions helpful

• See the Style Guidelines for CSC230

CSC230 - C and Software Tools © NC State University Computer Science Faculty 8

Tools (intelligent editors, indent, etc.) will take care of
much formatting for you

Does it Matter?

• Entries from the
International Obfuscated C Code (IOCC)
Contest…

CSC230 - C and Software Tools © NC State University Computer Science Faculty 9

 #include\

 <stdio.h>

 #include <stdlib.h>

 #include <string.h>

 #define w "Hk~HdA=Jk|Jk~LSyL[{M[wMcxNksNss:"

 #define r"Ht@H|@=HdJHtJHdYHtY:HtFHtF=JDBIl"\

 "DJTEJDFIlMIlM:HdMHdM=I|KIlMJTOJDOIlWITY:8Y"

 #define S"IT@I\\@=HdHHtGH|KILJJDIJDH:H|KID"\

 "K=HdQHtPH|TIDRJDRJDQ:JC?JK?=JDRJLRI|UItU:8T"

 #define _(i,j)L[i=2*T[j,O[i=O[j-R[j,T[i=2*\

 R[j-5*T[j+4*O[j-L[j,R[i=3*T[j-R[j-3*O[j+L[j,

 #define t"IS?I\\@=HdGHtGIDJILIJDIItHJTFJDF:8J"

 #define y yy(4),yy(5), yy(6),yy(7)

 #define yy(i)R[i]=T[i],T[i] =O[i],O[i]=L [i]

#define Y _(0], 4])_ (1], 5])_ (2], 6])_ (3], 7])_=1

#define v(i)(((R[i] * _ + T [i]) * _ + O [i]) * _ + L [i]) *2

double b = 32 ,l ,k ,o ,B ,_ ; int Q , s , V , R [8], T[8] ,O [8], L[8] ;

#define q(Q,R) R= *X ++ % 64 *8 ,R |= *X /8 &7 ,Q=*X++%8,Q=Q*64+*X++%64-256,

define p "G\\QG\\P=GLPGTPGdMGdNGtOGlOG" "dSGdRGDPGLPG\\LG\\LHtGHtH:"

define W "Hs?H{?=HdGH|FI\\II\\GJlHJ" "lFL\\DLTCMlAM\\@Ns}Nk|:8G"

define U "EDGEDH=EtCElDH{~H|AJk}" "Jk?LSzL[|M[wMcxNksNst:"

define u "Hs?H|@=HdFHtEI" "\\HI\\FJLHJTD:8H"

char * x ,*X , (* i)[640],z[3]="4_",

*Z = "4,8O4.8O4G" r U "4M"u S"4R"u t"4S8CHdDH|E=HtAIDAIt@IlAJTCJDCIlKI\\K:8K"U

 "4TDdWDdW=D\\UD\\VF\\FFdHGtCGtEIDBIDDIlBIdDJT@JLC:8D"t"4UGDNG\\L=GDJGLKHL\

FHLGHtEHtE:"p"4ZFDTFLT=G|EGlHITBH|DIlDIdE:HtMH|M=JDBJLDKLAKDALDFKtFKdMK\

\\LJTOJ\\NJTMJTM:8M4aGtFGlG=G|HG|H:G\\IG\\J=G|IG|I:GdKGlL=G|JG|J:4b"W

S"4d"W t t"4g"r w"4iGlIGlK=G|JG|J:4kHl@Ht@=HdDHtCHdPH|P:HdDHdD=It\

BIlDJTEJDFIdNI\\N:8N"w"4lID@IL@=HlIH|FHlPH|NHt^H|^:H|MH|N=J\\D\

J\\GK\\OKTOKDXJtXItZI|YIlWI|V:8^4mHLGH\\G=HLVH\\V:4n" u t t

"4p"W"IT@I\\@=HdHHtGIDKILIJLGJLG:JK?JK?=JDGJLGI|MJDL:8M4\

rHt@H|@=HtDH|BJdLJTH:ITEI\\E=ILPILNNtCNlB:8N4t"W t"4u"

p"4zI[?Il@=HlHH|HIDLILIJDII|HKDAJ|A:JtCJtC=JdLJtJL\

THLdFNk|Nc|\

:8K"; main (

int C,char** A) {for(x=A[1],i=calloc(strlen(x)+2,163840);

C-1;C<3?Q=_= 0,(z[1]=*x++)?((*x++==104?z[1]^=32:--x), X =

strstr(Z,z)) &&(X+=C++):(printf("P2 %d 320 4 ",V=b/2+32),

V*=2,s=Q=0,C =4):C<4?Q-->0?i[(int)((l+=o)+b)][(int)(k+=B)

]=1:_?_-=.5/ 256,o=(v(2)-(l=v(0)))/(Q=16),B=(v(3)-(k=v(1)

))/Q:*X>60?y ,q(L[4],L[5])q(L[6],L[7])*X-61||(++X,y,y,y),

Y:*X>57?++X, y,Y:*X >54?++X,b+=*X++%64*4:--C:printf("%d "

,i[Q][s]+i[Q][s+1]+i[Q+1][s]+i[Q+1][s+1])&&(Q+=2)<V||(Q=

0,s+=2)<640

||(C=1));}

Purpose of
program?

CSC230 - C and Software Tools © NC State University Computer Science Faculty 10

 /* ,*/

 #include <time.h>

 #include/* _ ,o*/ <stdlib.h>

 #define c(C)/* - . */return (C); /* 2004*/

 #include <stdio.h>/*. Moekan "' `\b-' */

 typedef/* */char p;p* u ,w [9

][128] ,*v;typedef int _;_ R,i,N,I,A ,m,o,e

 [9], a[256],k [9], n[256];FILE*f ;_ x (_ K,_ r

 ,_ q){; for(; r< q ; K =((

 0xffffff) &(K>>8))^ n[255 & (K

 ^u[0 + r ++])]);c (K

)} _ E (p*r, p*q){ c(f =

 fopen (r ,q))}_ B(_ q){c(fseek (f, 0

 ,q))}_ D(){c(fclose(f))}_ C(p *q){c(0- puts(q))}_/* /

 */main(_ t,p**z){if(t<4)c(C("<in" "file>" "\40<l" "a" "yout> "

 /*b9213272*/"<outfile>"))u=0;i=I=(E(z[1],"rb")) ?B(2)?0 : (((o =ftell

 (f))>=8)?(u =(p*)malloc(o))?B(0)?0:!fread(u,o,1,f):0:0)?0: D():0 ;if(

 !u)c(C(" bad\40input "));if(E(z[2],"rb")){for(N=-1;256> i;n[i++] =-1)a[

 i]=0; for(i=I=0; i<o&&(R =fgetc(f))>-1;i++)++a[R] ?(R==N)?(++I>7)?(n[

 N]+1)?0:(n [N]=i-7):0: (N=R) |(I=1):0;A =-1;N=o+1;for(i=33;i<127;i++

)(n[i]+ 1&&N>a[i])? N= a [A=i] :0;B(i=I=0);if(A+1)for(N=n[A];

 I< 8&& (R =fgetc(f))> -1&& i <o ;i++)(i<N||i>N+7)?(R==A)?((*w[I

] =u [i])?1:(*w[I]= 46))?(a [I++]=i):0:0:0;D();}if(I<1)c(C(

 " bad\40la" "yout "))for(i =0;256>(R= i);n[i++]=R)for(A=8;

 A >0;A --) R = ((R&1)==0) ?(unsigned int)R>>(01):((unsigned

 /*kero Q' ,KSS */)R>> 1)^ 0xedb88320;m=a[I-1];a[I

]=(m <N)?(m= N+8): ++ m;for(i=00;i<I;e[i++]=0){

 v=w [i]+1;for(R =33;127 >R;R++)if(R-47&&R-92

 && R-(_)* w[i])*(v++)= (p)R;*v=0;}for(sprintf

 /*'_ G*/ (*w+1, "%0" "8x",x(R=time(i=0),m,o)^~

 0) ;i< 8;++ i)u [N+ i]=*(*w+i+1);for(*k=x(~

 0,i=0 ,*a);i>- 1;){for (A=i;A<I;A++){u[+a [A]

]=w[A][e[A]] ; k [A+1]=x (k[A],a[A],a[A+1]

);}if (R==k[I]) c((E(z[3],"wb+"))?fwrite(

 /* */ u,o,1,f)?D ()|C(" \n OK."):0 :C(

 " \n WriteError")) for (i =+I-

 1 ;i >-1?!w[i][++ e[+ i]]:0;

) for(A=+i--; A<I;e[A++]

 =0); (i <I-4)?putchar

 ((_) 46) | fflush

 /*' ,*/ (stdout

): 0& 0;}c(C

 (" \n fail")

) /* dP' /

 dP pd '

 ' zc

 */

 } CSC230 - C and Software Tools © NC State University Computer Science Faculty 11

“Rinia is a tool for embedding
CRCs in text files”

Ex.: Some GNOME Project Guidelines

• “Programmers should strive to write good code

so that it is easy to understand and modify by
others

• Important qualities of good code

– clarity

– consistency

– extensibility

– correctness”

CSC230 - C and Software Tools © NC State University Computer Science Faculty 12

Example… (cont’d)

• “It is important to follow a good naming convention for

the symbols in your programs

– Function names should be of the form
module_submodule_operation, for example,
gnome_canvas_set_scroll_region

– Symbols should have descriptive names: do not use
cntusr(), use count_active_users() instead

– Function names are lowercase, with underscores to separate
words, like this:

gnome_canvas_set_scroll_region()”

CSC230 - C and Software Tools © NC State University Computer Science Faculty 13

Example… (cont’d)

• “Macros and enumerations are uppercase, with

underscores to separate words, like this:
GNOMEUIINFO_SUBTREE() for a macro

• Typedefs and structure names are mixed upper
and lowercase, like this: GnomeCanvasItem,
GnomeIconList

• Very short and terse names should only be used
for the local variables of functions; never call a
global variable x; use a longer name that tells
what it does”

CSC230 - C and Software Tools © NC State University Computer Science Faculty 14

Another Ex.: Some Linux Guidelines

• “Tabs are 8 characters, and indentations too

• Put the opening brace last on the line, and put the closing brace
first, thusly:

 if (x is true) {

 we do y

 }

• Functions have the opening brace at the beginning of the next
line, thus:

 int function(int x)

 {

 body of function

 }”
CSC230 - C and Software Tools © NC State University Computer Science Faculty 15

Our Guidelines! (These Matter!)

• File level comments
– Author(s) name and unity id(s)

– Brief purpose of program or module within program

• Function comments
– Function’s purpose

– Inputs (global or parameters)

– Outputs (return values and side effects)

– Pre-conditions

– Post-conditions (including side effects)

CSC230 - C and Software Tools © NC State University Computer Science Faculty 16

Our Guidelines! (These Matter!)

• Global Variables

– Describe purpose

• Magic Numbers

– Use #define except for obvious numbers (-1, 0, 1, 2)

• Unless those numbers have a specific named purpose or
are an exit code!!!

CSC230 - C and Software Tools © NC State University Computer Science Faculty 17

Our Guidelines! (These Matter!)

• Indentation

– All indentation must be spaces (except for Makefiles)

– The number of spaces for indentation must be
consistent

• 2 to 4 spaces

– Indent:

• Statements in a function

• Statements in a control structure

• Statements in a block { }

CSC230 - C and Software Tools © NC State University Computer Science Faculty 18

Our Guidelines! (These Matter!)

• Curly Braces

– Functions – opening curly brace on next line

– Everything else – opening curly brace at end of
control structure

• Statements

– 1 statement per line

CSC230 - C and Software Tools © NC State University Computer Science Faculty 19

Executing Java Programs

1.Java source code is compiled into platform-
independent intermediate form (bytecode)

2. This intermediate code is interpreted by the
Java Virtual Machine (JVM)

CSC230 - C and Software Tools © NC State University Computer Science Faculty 20

Java Source

javac.exe

Java
byte-code

Java
Virtual

Machine
Java

Compiler

java.exe

Heap .java .class

Java
Application

Input
Data

Program
output

Executing C Programs

1. HLL source code is compiled into the
instruction set of the target computer

2. This code is loaded and executed directly by
the host

CSC230 - C and Software Tools © NC State University Computer Science Faculty 21

C

source

code

.c

C

application

Compiler /

Linker

Program

output

Input

Data

gcc.exe

Loader

(part of

the OS)

executable

application

.exe

app.exe

Platform Independence?

• Compiled

– parts of the compiler (front end) are platform-
independent

– parts of the compiler (back end) are specific to the
platform on which the program will be executed

• Interpreted

– the Java compiler is platform-independent

– the JVM is platform-specific

CSC230 - C and Software Tools © NC State University Computer Science Faculty 22

“Just-in-Time” Compiling

• Idea: compile a method to machine code just
before first use

– and reuse that machine code each time the method
is invoked

• Benefits of interpreted + speed of compiled

CSC230 - C and Software Tools © NC State University Computer Science Faculty 23

JVM, Again

CSC230 - C and Software Tools © NC State University Computer Science Faculty 24

Java Source

javac.exe

Java

byte-code

Java

Virtual

Machine

machine code byte-code

Java

Compiler

java.exe

Heap

.java .class

JIT

Compiler

Java

Application

Input

Data

Program

output

Comparison

• Another (major) benefit of interpreted
languages: dynamic typing of variables

– not supported in Java, however

CSC230 - C and Software Tools © NC State University Computer Science Faculty 25

Property

Execution Speed

Error messages, debugging support

Platform Independence / Portability

Better Compiled,
or Interpreted?

?

 ?

 ?

Steps in Compiling C Programs

• Source Code

CSC230 - C and Software Tools © NC State University Computer Science Faculty 26

Expanded Source Code

Parse Tree

#define N 3

a=c+b*N;

Tokens

a=c+b*3;

a = c + b * 3 ;

preprocessing

lexical analysis

parsing

code generation

expression-statement

expression ;

unary-expression

assignment-operator assignment-expression identifier

a = … …

Steps… (cont’d)

CSC230 - C and Software Tools © NC State University Computer Science Faculty 27

Assembly Language

Object Code

Executable Code

mov ebx, b

imul ebx, ebx, 3

mov ecx, c

001110010111

0011100101110110101…

code generation

assembling

linking
+ other
Object Code

Using the gcc Compiler
• gcc is a high-quality, open source compiler

available for most platforms

• At the command prompt, type

 gcc -Wall -std=c99 <pgm.c>

where <pgm.c> is the C program source file

• Creates an executable a.out.

• -std=c99 specifies that C99 standard
features are allowed

• -Wall turns on all the important warning
messages

CSC230 - C and Software Tools © NC State University Computer Science Faculty 28

Compiler… (cont’d)
• GNOME (and me): “Make sure your code

compiles with absolutely no warnings from the
compiler. These help you catch stupid bugs.”

CSC230 - C and Software Tools © NC State University Computer Science Faculty 29

Some Useful gcc Options

CSC230 - C and Software Tools © NC State University Computer Science Faculty 30

-o file Put output in file named file

-std=c99 Support C99 language features

-Wall Enable all warnings

-c Compile the source code but do not link (i.e.,
produce only the object file (.o))

-E Preprocess the source code only (i.e., expand
macros, but do not compile the source code) –
prints to console

--version Display version number of gcc

-g Produce information necessary to debug using
gdb

gcc Options… (cont’d)

CSC230 - C and Software Tools © NC State University Computer Science Faculty 31

-O, -O1 Various optimization levels

-D name Define name as a macro with value 1 (used for
conditional compilation)

-llib Search named library when linking
(That’s a lower case L, as in “library”)

-Idir Add directory dir to the head of the list of
directories to search for header files
(That’s an upper case i, as in “include”)

-Ldir Add directory dir to the list of directories to
search for libraries containing object files
(specified using the -l option)

A Word About C99

• The generations of C

– K&R C

– C89 (or C90)

– C99

• We will use C99 in this course

– for the most part, C99 adds to / clarifies earlier
versions, does not invalidate earlier code

CSC230 - C and Software Tools © NC State University Computer Science Faculty 32

ISO standards

(Some) Differences C89C99
1. Comments allowed to be C++ style (//)
2._Bool macro is available
3. Additional library functions, and a few new

header files
4. Variable length arrays
5. Variable declarations can appear anywhere in

the code block
6. Variable declarations in for loops
7. Support for non-ASCII character sets (“wide”

characters)

CSC230 - C and Software Tools © NC State University Computer Science Faculty 33

Grey = generally supported in gcc C89 anyway
unless compiler is in strict mode

(Some) Differences… (cont’d)
8. New long long integer data type
9. Functions must declare a return value
10.Macros may have variable number of

arguments, denoted by ellipsis (…)
11.Functions may be inlined
12.Restricted pointers (prevent aliasing)

CSC230 - C and Software Tools © NC State University Computer Science Faculty 34

Grey = generally supported in gcc C89 anyway
unless compiler is in strict mode

C99… (cont’d)

• gcc 4.4.6 supports most of C99, but you may not
be able to use…
– wide characters

– complex numbers

– extended integer types (long long)

CSC230 - C and Software Tools © NC State University Computer Science Faculty 35

Console I/O in C

• I/O is provided by standard library functions

– available on all platforms

• To use, your program must have

• …and it doesn’t hurt to also have

• These are preprocessor statements; the .h files define function

types, parameters, and constants from the standard library

CSC230: C and Software Tools © NC State Computer Science Faculty 36

#include <stdio.h>

#include <stdlib.h>

“Standard IO”

“Standard library”

Not “studio”!!

Streams
• A stream is a file or a device from which data is

read, and/or to which data is written

• By default, every C program automatically has 3
open streams, called

– the standard input

– the standard output

– the standard error

• If you do not override them…

– standard input = the keyboard

– standard output & error = the terminal window

CSC230: C and Software Tools © NC State Computer Science Faculty 37

Streams… (cont’d)
• Note: the EOF character on your keyboard is

either ctrl-d (Unix, Linux, Mac OS X) or
ctrl-z (Windows)

• You can redirect the standard input from a file,
e.g.,

• You can redirect the standard output to a file,
e.g.,

CSC230: C and Software Tools © NC State Computer Science Faculty 38

pgm99 < infile.txt

pgm99 > outfile.txt

Reading One Character from Standard Input

• Definition (from stdio.h):
int getchar(void)

CSC230: C and Software Tools © NC State Computer Science Faculty 39

int c;

c = getchar();

if (c == EOF)

 …

Notes

– EOF defined in stdio.h

– declaring c as type char and then comparing to EOF may fail


Writing One Character to Standard Output

CSC230: C and Software Tools © NC State Computer Science Faculty 40

Definition (from stdio.h):

int putchar(int c)

char c;

int b;

…

b = putchar((int) c);

if (b == EOF)

 …

Program echochar.c

CSC230: C and Software Tools © NC State Computer Science Faculty 41

#include <stdio.h>

int main (void)

{

 int c;

 c = getchar();

 while (c != '\n') {

 putchar(c);

 c = getchar();

 }

 putchar('\n');

 return 0;

}

Example: echochar.c

• Keyboard input vs. input from a file

– use editor to type the input in a file called in.txt

– then run echochar with input redirected from the
file

 % ./echochar < in.txt

• No changes to the program!

CSC230: C and Software Tools © NC State Computer Science Faculty 42

Demo…

The printf() function
• putchar() is too cumbersome to use for

extensive, formatted output

• printf() is a much more convenient library
function for formatted output, with built-in
conversions of input parameters to printable
form

• Def: int printf(const char *
format, …)
– variable number of arguments

• format specifies how input arguments must be
converted/formatted for output

CSC230: C and Software Tools © NC State Computer Science Faculty 43

Parts of format

1. % (mandatory)

2. 0 or more flags (infrequently used)

3. Minimum output field width (pad with spaces)
(useful for making things line up)

4. .Precision (minimum number of digits to right
of decimal point)
(optional, default is 6 digits)

5. type of format conversion (mandatory)

CSC230: C and Software Tools © NC State Computer Science Faculty 44

Precision Matters

• printf the number 33.3:

CSC230: C and Software Tools © NC State Computer Science Faculty 45

Format
Specifier

Output

%7.1f 33.3

%14.10f 33.3000000000

%.20f 33.29999999999999715783

Some Types of Conversions

Print as Type… Specifier

char %c

unsigned int

%u (in decimal)
%o (in octal)
%x, %X (in hex)
(%lu, %lo, %lx for long)

signed int
%d, %i (in decimal)
(%ld, %li for long)

float %f

float %e, %E (use scientific notation)

(string) %s
CSC230: C and Software Tools © NC State Computer
Science Faculty

46

Example
• Program

CSC230: C and Software Tools © NC State Computer Science Faculty 47

char c = ‘a’;

int i = 9999;

float f = 3.1415926535897932;

printf(“c = %c (%o in octal)\n”, c, c);

printf(“i = %6d (%x in hex)\n”, i, i);

printf(“f = %8.5f (%e in sci. notation)\n”,

 f, f);

c = a (141 in octal)

i = 9999 (270f in hex)

f = 3.14159 (3.141593e+00 in sci. notation)

Output:

Reminder

• Base 16 (“hex”):

• 2F316 = 2 * 162 + 15 * 161 + 3 = 75510

• Base 8 (“octal”):

• 4638 = 4 * 82 + 6 * 81 + 3 = 30710

CSC230: C and Software Tools © NC State Computer Science Faculty 48

Reminder: Go to course web page for link to exercise form.
Paste code into ideone.com and submit the link.

Exercise 02b

• Write a program that

– Reads 3 characters from standard input (all on one line, no
spaces)

– Outputs the characters in reverse order to standard output

• Make sure it compiles cleanly with the –Wall
–std=c99 options

• Make sure it is formatted cleanly and consistently

• Submit through Google Form

CSC230 - C and Software Tools © NC State University Computer Science Faculty

49

Basic I/O

Any Questions?

CSC230 - C and Software Tools © NC State University Computer Science Faculty 50

BACKUP

CSC230 - C and Software Tools © NC State University Computer Science Faculty 51

Formatting with indent

• Many editors and IDEs (emacs, vim, Eclipse,
Visual Studio, …) automatically do formatting
while you write your code

• Another option: use a standalone tool for
formatting, e.g., indent

• Warning: remove tabs from your source code
before using indent

CSC230 - C and Software Tools © NC State University Computer Science Faculty 52

Example: Code Before indent

• A mess!

CSC230 - C and Software Tools © NC State University Computer Science Faculty 53

Example: Using indent

• Lots of options, customize to your preference

– put these options in a file named .indent.pro,
in your home directory

• Default indent does NOT meet all of our style
guidelines!

CSC230 - C and Software Tools © NC State University Computer Science Faculty 54

indent prog.c

Example:
after
indent

• Much better!

CSC230 - C and Software Tools © NC State University Computer Science Faculty 55

