
Lexical Rules and Data Types

CSC230: C and Software Tools
N.C. State Department of Computer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 1

Contents

• Lexical Scanning

• Comments

• Identifiers and Keywords

• C Variables

• Data Types

• Fundamental C Types

• Constants

CSC230: C and Software Tools © NC State Computer Science Faculty 2

Compiling Step #1: Lexical Scanning

• Divides the program into tokens, which are the
smallest meaningful units of a program

• Tokens in C are…

– identifiers (e.g., num_records, cust_name)

– keywords (e.g., while, if, char)

– constants/strings (e.g., 3.1415, “Answer: ”)

– operators (e.g., +, ^, =)

– explicit separators (e.g., (, }, ;)

CSC230: C and Software Tools © NC State Computer Science Faculty 3

Scanning… (cont’d)

• White space (space, tabs/indentation, newlines,
comments) are ignored, except as explicit
separators

CSC230: C and Software Tools © NC State Computer Science Faculty 4

Scanning (cont’d)
• Not so easy: what are the tokens in d=-c+++a;

CSC230: C and Software Tools © NC State Computer Science Faculty 5

d = -c2 + ++a ; ?

d = c2++ + a ; ?

d =- c2++ + a ; ?

d =- c2 + ++a; ?

This is not a precedence issue

– we don’t know or care what the precedence of =, =-,
++, and + is at this point

“Max Munch”
• Scan from left to right, always grabbing the

largest token possible

• Example (again):

1.d =-c2+++a; (“d=“ not a token)

2.d = - c2+++a; (“=-” not a token)

3.d = - c2+++a; (“-c” not a token)

4.d = - c2 +++a; (“c2+” not a token)

5.d = - c2 ++ +a; (“+++” not a token)

6.d = - c2 ++ + a; (“+a” not a token)

7.d = - c2 ++ + a ; (“a;” not a
token)

CSC230: C and Software Tools © NC State Computer Science Faculty 6

Scanning… (cont’d)
• How many tokens, and what are they?

CSC230: C and Software Tools © NC State Computer Science Faculty 7

j =+k2+3;

Comments About Comments

• Block Style:

CSC230: C and Software Tools © NC State Computer Science Faculty 8

 common source of bugs 

attempt to nest comments

a = c - b; /* b must be gt 0 */

d = a * 3;

Great for commenting out whole sections of code,
but look out if the code already has comments!

/* Comment out the next two lines

 a = c - b; /* b must be gt 0 */

 d = a * 3;

*/

terminates

Comments (cont’d)

• To-end-of-line comments are allowed in C99:

CSC230: C and Software Tools © NC State Computer Science Faculty 9

r = 6 * x; // compute radius

d = 2 * r; // now diameter

Identifiers (Names, Labels)

• Consist of letters, ‘_’, and digits

– cannot start with a digit (2_B_or_not_2_B)

• Case sensitive!

– myVar is not the same as myvar

• Unlimited length (advice: stop at 32)
• gnome_memmgt_insert_into_heap_I_modified_thi

s_because_I_can

CSC230: C and Software Tools © NC State Computer Science Faculty 10

Reserved Keywords
• (do not use as identifiers)

• C89:
– auto, break, case, char, const,

continue, default, do, double, else,

enum, extern, float, for, goto, if,

int, long, register, return, short,

signed, sizeof, static, struct,

switch, typedef, union, unsigned,

void, volatile, while

• C99 adds a few more:
– _Bool, _Complex, _Imaginary, inline,

restrict

CSC230: C and Software Tools © NC State Computer Science Faculty 11

C Variables!
• A variable =

a location in memory + its interpretation

• Interpretation of a variable is based on its

1. storage class and

2. data type

• (We will discuss storage classes later…)

– lifetime of the variable

– how variable is (or can be) initialized

– scope (visibility) of the variable

CSC230: C and Software Tools © NC State Computer Science Faculty 12

Data Types

• The data type of a variable defines its interpretation

• Ex: suppose a 32-bit binary value stored in memory is
01000001010000100100001101000100

– if type float, interpreted to be numerical value
781.03521728515625

– if type unsigned int, interpreted to be numerical value
1145258561

– if type char, interpreted to be the ASCII string value ABCD

CSC230: C and Software Tools © NC State Computer Science Faculty 13

Static or Dynamic Types

• In C (and Java), variables are statically typed

– type must be declared when variable is created, and
cannot change thereafter

• Languages with dynamic typing (e.g., PHP,
Python, Perl, Ruby, Javascript, …) are more
flexible

CSC230: C and Software Tools © NC State Computer Science Faculty 14

Fundamental C Types

• (also called built-in, primitive, basic types)

• There are really only 2!

– integer (includes characters)

– floating point, or limited precision real number

CSC230: C and Software Tools © NC State Computer Science Faculty 15

Derived C Types

• These are composed from the fundamental types

– arrays

– functions

– pointers

– structs

– unions

– these will all be discussed later…

• Enumerated types: we’ll discuss later…

• Complex numbers type: we won’t use this semester

CSC230: C and Software Tools © NC State Computer Science Faculty 16

Specializations of Fundamental
Types
• Integers can be…

– signed or unsigned (signed by default)

– really short (char), short, regular (int by
default), long, really long (long long)

• Floating point (always signed) can be…

– regular precision (float)

– double precision (double)

– extended precision (long double)

CSC230: C and Software Tools © NC State Computer Science Faculty 17

(Footnote)

• The data type of a variable defines its usual
meaning, but the programmer may interpret it
differently

• Ex.: a char can represent…

– an ASCII-encoded character (most common case)

– an 8-bit integer

– eight 1-bit flags

– …

CSC230: C and Software Tools © NC State Computer Science Faculty 18

Min and Max Integer Values
•The lengths (in bits) (and the max and min values)
of these types are platform dependent

•Common Platform
(/usr/include/limits.h):

Type # bits Value

Min ‘unsigned anything’ n.a. 0

Min ‘signed char’ 8 -128

Max ‘signed char’ 8 127

Max ‘unsigned char’ 8 255

Min ‘signed short’ 16 -32,768

Max ‘signed short’ 16 32,767

Max ‘unsigned short’ 16 65,535

CSC230: C and Software Tools © NC State Computer
Science Faculty

19

Integer Values… (cont’d)

• Which is big enough to store the daily federal deficit?

Type # bits Value

Min ‘signed int’ 32 -2,147,483,648

Max ‘signed int’ 32 2,147,483,647

Max ‘unsigned int’ 32 4,294,967,295

Min/Max ‘signed long’ 64 9,223,372,036,854,775,808
-9,223,372,036,854,775,807

Max ‘unsigned long’ 64 18,446,744,073,709,551,615

Min ‘signed long long’ 64 Same as long

Max ‘signed long long’ 64 Same as long

Max ‘unsigned long long’ 64 Same as long

CSC230: C and Software Tools © NC State Computer Science Faculty
20

Floating Point (Real Numbers)
• Warning! Platform dependent! Lots of gcc

options!

• Terminology
 +.793 * 2 -36

CSC230: C and Software Tools © NC State Computer Science Faculty 21

exponent base of the

exponent

magnitude of

the mantissa

sign of the

mantissa

Size of the exponent (# bits) mainly determines
the range of numbers that can be represented

Size of the mantissa (# bits) mainly determines
the precision of numbers that can be
represented

Floating Point (Real Numbers)

• IEEE floating point standard single precision:

– 1-bit sign

– 23-bit (+ 1 implied bit) mantissa

– 8-bit biased exponent (base 2)

– 6 decimal digits precision

• double precision:

– 1-bit sign

– 52+1 bit mantissa

– 11-bit biased exponent (base 2)

– 15 decimal digits precision
CSC230: C and Software Tools © NC State Computer Science Faculty 22

32 bit

64 bit

Floating Point (cont’d)
• Min (normalized) positive values (approximate)

– single precision (float): 2-126 (≈10-38)

– double precision (double): 2-1022 (≈10-308)

– Q: small enough to measure the diameter of an
atom, in meters?

• Max (normalized) positive values (approximate)

– single precision (float): 2127 (≈1038)

– double precision (double): 21023 (≈10308)

– Q: big enough to count the number of atoms in the
universe? distance to the edge of the observable
universe, in units of atom diameters?

CSC230: C and Software Tools © NC State Computer Science Faculty 23

Floating Point (cont’d)
• long double = 128 bits

– more bits precision than double, same range

CSC230: C and Software Tools © NC State Computer Science Faculty 24

Reminder: Arithmetic Problems

• Types make a difference in computer arithmetic

– signed vs. unsigned max and min values (integer)

– overflow (integer and floating point)

– underflow and limited precision (floating point)

• More info about floating point:
see CSC236 or CSC302

CSC230: C and Software Tools © NC State Computer Science Faculty 25

 common source of bugs 

overflow, limits

of precision

What does this do?

int main()

{

 char i;

 for (i=0; i<200; i++) {

 printf("%d\n",i);

 }

}

CSC230: C and Software Tools © NC State Computer Science Faculty 26

0
1
2
3
...
125
126
127
-128
-127
-126
...
-3
-2
-1
0
1
2
3
...
125
126
127
-128
-127
-126
...

Why?

int main()

{

 char i;

 for (i=0; i<200; i++) {

 printf("%4d %s\n",i,
 byte_to_binary(i));

 }

}

CSC230: C and Software Tools © NC State Computer Science Faculty 27

 0 00000000
 1 00000001
 2 00000010
 3 00000011
...
 125 01111101
 126 01111110
 127 01111111
-128 10000000
-127 10000001
-126 10000010
...
 -3 11111101
 -2 11111110
 -1 11111111
 0 00000000
 1 00000001
 2 00000010
 3 00000011
...
 125 01111101
 126 01111110
 127 01111111
-128 10000000
-127 10000001
-126 10000010
...

How to fix?

int main()

{

 unsigned char i;

 for (i=0; i<200; i++) {

 printf("%4d %s\n",i,
 byte_to_binary(i));

 }

}

CSC230: C and Software Tools © NC State Computer Science Faculty 28

 0 00000000
 1 00000001
 2 00000010
 3 00000011
...
 197 11000101
 198 11000110
 199 11000111

What word can go here?

How to fix?

int main()

{

 int i;

 for (i=0; i<200; i++) {

 printf("%4d %s\n",i,
 byte_to_binary(i));

 }

}

CSC230: C and Software Tools © NC State Computer Science Faculty 29

 0 00000000
 1 00000001
 2 00000010
 3 00000011
...
 197 11000101
 198 11000110
 199 11000111

What data type can go here?

Constants with ‘const’

• Don’t want a value to change? Throw a const
on there.

 const int BUFFER_SIZE = 1024;

 const double PI = 3.141592653589793238;

 const char delimiter = ‘,’;

• Character constants in single quotes: ′a′, ′b′

– value stored is the numeric value of the character in
ASCII

CSC230: C and Software Tools © NC State Computer Science Faculty 30

Constants with #define

#define <CONSTANT_NAME> <value>

• Means “literally replace CONSTANT_NAME with value every time
you see it in my file”.

• Can be very dumb. What does this program do?
#define SLOPE -2

#define Y_INTERCEPT 1

int main()

{

 float x = 1;

 // find the y coordinate of this line

 float y = x SLOPE + Y_INTERCEPT;

 printf("Coords: (%f,%f)\n",x,y);

}

CSC230: C and Software Tools © NC State Computer Science Faculty 31

Correct answer:
 Coords: (1.000000,-1.000000)

Actual output:
 Coords: (1.000000,0.000000)

Missing * operator

const vs. #define

• The ‘const’ keyword does other stuff we’ll learn
later when it comes to arrays/pointers.

• Things can get complicated when it comes to
using ‘const’ to declare constants between files;
#define doesn’t have these issues.

• Result: Just use #define.

CSC230: C and Software Tools © NC State Computer Science Faculty 32

ASCII

• ASCII is a specific 8-bit encoding of Western
characters (punctuation, digits, upper and lower
case characters)

• Only the first 128 values (decimal 0-127,
octal 000-177) are standardized

• The interpretation of the remaining 128 values
(decimal 128-255, octal 200-377) are not
standardized, i.e., they are
application/platform-specific

CSC230: C and Software Tools © NC State Computer Science Faculty 33

American Standard Code for Information Interchange

Standardized ASCII (0-127)

CSC230: C and Software Tools © NC State Computer Science Faculty 34

One Interpretation of 128-255

CSC230: C and Software Tools © NC State Computer Science Faculty 35

(This allowed totally sweet ASCII art
in the 90s)

Sources:

• http://roy-sac.deviantart.com/art/Cardinal-NFO-File-ASCII-35664604

• http://roy-sac.deviantart.com/art/Siege-ISO-nfo-ASCII-Logo-35940815

• http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803

CSC230: C and Software Tools © NC State Computer Science Faculty 36

http://roy-sac.deviantart.com/art/Cardinal-NFO-File-ASCII-35664604
http://roy-sac.deviantart.com/art/Cardinal-NFO-File-ASCII-35664604
http://roy-sac.deviantart.com/art/Cardinal-NFO-File-ASCII-35664604
http://roy-sac.deviantart.com/art/Cardinal-NFO-File-ASCII-35664604
http://roy-sac.deviantart.com/art/Cardinal-NFO-File-ASCII-35664604
http://roy-sac.deviantart.com/art/Cardinal-NFO-File-ASCII-35664604
http://roy-sac.deviantart.com/art/Cardinal-NFO-File-ASCII-35664604
http://roy-sac.deviantart.com/art/Cardinal-NFO-File-ASCII-35664604
http://roy-sac.deviantart.com/art/Cardinal-NFO-File-ASCII-35664604
http://roy-sac.deviantart.com/art/Cardinal-NFO-File-ASCII-35664604
http://roy-sac.deviantart.com/art/Cardinal-NFO-File-ASCII-35664604
http://roy-sac.deviantart.com/art/Cardinal-NFO-File-ASCII-35664604
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803

Useful Character Constant
Escape Sequences
• \0 Null character
• \‘ Single quote
• \“ Double quote
• \\ Backslash
• \n Newline
• \t Horizontal tab
• \nnn Octal value of character (ex: ‘a’ ==
‘\141’)

• \xnn Hexadecimal value of character (==
‘\x61’)

CSC230: C and Software Tools © NC State Computer Science Faculty 37

Converting ASCII digits to Integers

• You can read ASCII characters and do arithmetic
on them, but results not what you expect!

• Program: read a number, print it out

CSC230: C and Software Tools © NC State Computer Science Faculty 38

 common source of bugs 

difference between

ASCII-encoded

strings

and numbers

int c;

c = getchar(); // read one ascii character

printf(“%d\n”, c);// interpret c as an integer

 // and print as ASCII

 // (decimal) string

Result

– user types: 1

– program prints: 49 Why??

Converting ASCII to Numbers
• Converting ASCII-encoded digit to an integer, the

right way:

•

CSC230: C and Software Tools © NC State Computer Science Faculty 39

unsigned char c;

c = (unsigned char) getchar();

unsigned int n;

n = c - ‘0’;

printf(“%d\n”, n);

c = (char) (n + ‘0’);

Converting integer to ASCII:

How would we convert an ASCII string (“12”) to
an integer, and vice versa???

Demo…

(“Wide” Characters)

• For encoding character sets other than ASCII

• Type: wchar_t

• Ex. of specifying a wide character constant:
L’å’

• We’ll look at support for this later

CSC230: C and Software Tools © NC State Computer Science Faculty 40

String Literals
• Strings are arrays of characters

– terminated (automatically, by the compiler) with
NULL

– we’ll discuss more later…

• Specifying a string: ″abcdefg”

– cannot contain double quote or span multiple lines
(use \” or \n if quote or newline should be in the
string)

– strings of wide characters: L”å∫ç∂ƒ”

• Warning: ″a” is not the same as ’a’ !

CSC230: C and Software Tools © NC State Computer Science Faculty 41

Multi-line string literals

• Just put quoted string literals one after another;
they get glued together automatically.

int main()

{

 printf("Usage:\n"

 " coolapp [options] <filename>\n"

 "\n"

 "Copyright 2014 Tyler Bletsch\n");

}

CSC230: C and Software Tools © NC State Computer Science Faculty 42

Review: Binary
• Advice: memorize the following (need for 236

anyway…)
– 20 = 1
– 21 = 2
– 22 = 4
– 23 = 8
– 24 = 16
– 25 = 32
– 26 = 64
– 27 = 128
– 28 = 256
– 29 = 512
– 210 = 1024

CSC230: C and Software Tools © NC State Computer Science Faculty 43

Review: decimal to binary

CSC230: C and Software Tools © NC State Computer Science Faculty

44

? Quotient Remain-
der

457  2 = 228 1

228  2 = 114 0

114  2 = 57 0

57  2 = 28 1

28  2 = 14 0

14  2 = 7 0

7  2 = 3 1

3  2 = 1 1

1  2 = 0 1 111001001

Practice: binary to/from hex

• 01011011001000112 -->

• 0101 1011 0010 00112 -
->

• 5 B 2 316

CSC230: C and Software Tools © NC State Computer Science Faculty 45

Binary Hex

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

 1 F 4 B16 -->

0001 1111 0100 10112 -->

00011111010010112

Integer Constants
• Specifying:

<optionalsign> <stringofdecimaldigits>
– ex: 7940, +7940, -36

• If prefixed by 0, interpreted as base 8 constant

– only 0-7 allowed as digits

• If prefixed by 0x, interpreted as base 16 constant

– 0-9, a-f allowed as digits

• Ex.: what’s decimal value of 03, 0x03, 3 ?
of 53, 053, and 0x53 ?

CSC230: C and Software Tools © NC State Computer Science Faculty 46

Integer Constants (cont’d)

• If suffixed by u, type is unsigned int, and
value must be positive

– ex: 123u

• If suffixed by L, type is long int

– ex: 456L

CSC230: C and Software Tools © NC State Computer Science Faculty 47

Floating Point Constants

• Specifying:
<optionalsign> integerpart . fractionpart
– either integer part or fractional part can be missing

– all good: 22.22, +2., -.22

– warning: 2 is integer constant, 2. is floating point

• Followed (optionally) by exponent (expressed in
base 10)
– specifying:
e <optionalsign> <integerconstant>

– ex.: 23.45e-67 means 23.45 * 10-67

CSC230: C and Software Tools © NC State Computer Science Faculty 48

Floating Point… (cont’d)

• Default type is double

– suffixed by f: force type to be float

– suffixed by L: long double (extended precision)

• More about floating point numbers, precision, and range, later…

CSC230: C and Software Tools © NC State Computer Science Faculty 49

A dumb thing that C will let you do,
but you shouldn’t do it
• The following is legal C code:

unsigned x;

• What’s the data size?

– Yeah, I don’t know either

– Apparently it’s like an int?

– Let’s just never do this

• Always put the type specifier:
unsigned int x;

CSC230: C and Software Tools © NC State Computer Science Faculty 50

tl;dr
Integer Type Size (on x86!) Normal use Signed range

(on x86)

Unsigned range
(on x86)

char 8 bit (1 byte) ASCII character
or small integer

-128..127 0..255

short 16 bit (2 byte) Smallish integer -32768..32767 0..65535

int 32 bit (4 byte) Normal integer -2147483648..
2147483647

0..4294967295

long 64 bit (8 byte) Big integer -263+1 .. 263-1
-9,223,372,036,854,775,808..
9,223,372,036,854,775,807

0.. 264-1
18,446,744,073,709,551,615

long long 64 bit (8 byte) Big integer -9,223,372,036,854,775,808..
9,223,372,036,854,775,807

18,446,744,073,709,551,615

CSC230: C and Software Tools © NC State Computer Science Faculty 51

Decimal Type Size (on x86!) Normal use Decimal digits
of precision

float 32 bit (4 byte) Lousy decimal 6

double 64 bit (8 byte) Good decimal 15

Reminder: Go to course web page for link to exercise form.
Paste code into ideone.com and submit the link.

Exercise 03a

• Write a program that prints ASCII characters
32-127.

• Steps to help you along:

– Write a loop to print integers 32..127.

– Write a printf statement that prints a single
character.

– Combine them.

CSC230: C and Software Tools © NC State Computer Science Faculty

52

ASCII table

BACKUP

CSC230: C and Software Tools © NC State Computer Science Faculty 53

Implied Types of Constants

• Default type for integer constants: shortest type
compatible with value, starting with
signed int -> unsigned int -> …

• Default type for floating point constants:
double

CSC230: C and Software Tools © NC State Computer Science Faculty 54

Base Conversions to/from Binary

• 2*82 + 5*81 + 6* 80 == decimal 174 ==

• octal 256 ==

• binary 10 101 110 ==

• 27 + 25 + 23 + 22 + 21 ==

• 128 + 32 + 8 + 4 + 2 == decimal 174

CSC230: C and Software Tools © NC State Computer Science Faculty 55

…and be able to do the following

…and likewise with hex

Review: binary to/from octal

• 001110002 -->

• 00 111 0002 -->

• 0 7 08

CSC230: C and Software Tools © NC State Computer Science Faculty 56

3568 -->

11 101 1102 -->

111011102

Binary Octal

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

