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Compiling Step #1: Lexical Scanning 

• Divides the program into tokens, which are the 
smallest meaningful units of a program 

• Tokens in C are… 

– identifiers  (e.g., num_records, cust_name) 

– keywords  (e.g., while, if, char) 

– constants/strings  (e.g., 3.1415, “Answer: ”) 

– operators  (e.g., +, ^, =) 

– explicit separators  (e.g., (, }, ;) 
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Scanning… (cont’d) 

• White space (space, tabs/indentation, newlines, 
comments) are ignored, except as explicit 
separators 
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Scanning (cont’d) 
• Not so easy: what are the tokens in d=-c+++a;  
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d  =  -c2  +  ++a  ;  ?   

d  =  c2++  +  a  ;   ? 

d  =-  c2++  +  a ;  ?  

d  =-  c2 + ++a;   ?  

This is not a precedence issue  

– we don’t know or care what the precedence of =, =-, 
++, and + is at this point 



“Max Munch” 
• Scan from left to right, always grabbing the 

largest token possible 

• Example (again): 

1.d  =-c2+++a;  (“d=“ not a token) 

2.d  =  -  c2+++a; (“=-” not a token) 

3.d  =  -  c2+++a; (“-c” not a token) 

4.d  =  -  c2  +++a; (“c2+” not a token) 

5.d  =  -  c2  ++  +a; (“+++” not a token) 

6.d  =  -  c2  ++  +  a; (“+a” not a token) 

7.d  =  -  c2  ++  +  a  ; (“a;” not a 
token) 
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Scanning… (cont’d) 
• How many tokens, and what are they? 
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j =+k2+3; 



Comments About Comments 

• Block Style: 
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 common source of bugs  

attempt to nest comments 

a = c - b;   /* b must be gt 0 */ 

d = a * 3; 

Great for commenting out whole sections of code, 
but look out if the code already has comments! 

   
/* Comment out the next two lines 

 a = c - b;   /* b must be gt 0 */ 

 d = a * 3; 

*/ 

terminates 



Comments (cont’d) 

• To-end-of-line comments are allowed in C99: 
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r = 6 * x;  // compute radius 

d = 2 * r;  // now diameter 



Identifiers (Names, Labels) 

• Consist of letters, ‘_’, and digits 

– cannot start with a digit (2_B_or_not_2_B) 

• Case sensitive! 

– myVar  is not the same as  myvar 

• Unlimited length (advice: stop at 32) 
• gnome_memmgt_insert_into_heap_I_modified_thi

s_because_I_can 
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Reserved Keywords 
• (do not use as identifiers) 

• C89: 
– auto, break, case, char, const, 

continue, default, do, double, else, 

enum, extern, float, for, goto, if, 

int, long, register, return, short, 

signed, sizeof, static, struct, 

switch, typedef, union, unsigned, 

void, volatile, while  

• C99 adds a few more: 
– _Bool, _Complex, _Imaginary, inline, 

restrict 
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C Variables! 
• A variable =  

a location in memory + its interpretation 

• Interpretation of a variable is based on its  

1. storage class and  

2. data type 

• (We will discuss storage classes later…) 

– lifetime of the variable 

– how variable is (or can be) initialized 

– scope (visibility) of the variable 
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Data Types 

• The data type of a variable defines its interpretation 

 

• Ex: suppose a 32-bit binary value stored in memory is 
01000001010000100100001101000100 

– if type float, interpreted to be numerical value 
781.03521728515625 

– if type unsigned int, interpreted to be numerical value 
1145258561 

– if type char, interpreted to be the ASCII string value ABCD 
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Static or Dynamic Types 

• In C (and Java), variables are statically typed 

– type must be declared when variable is created, and 
cannot change thereafter 

• Languages with dynamic typing (e.g., PHP, 
Python, Perl, Ruby, Javascript, …) are more 
flexible 
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Fundamental C Types 

• (also called built-in, primitive, basic types) 

• There are really only 2! 

– integer (includes characters) 

– floating point, or limited precision real number 
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Derived C Types 

• These are composed from the fundamental types 

– arrays 

– functions 

– pointers 

– structs 

– unions 

– these will all be discussed later… 

• Enumerated types: we’ll discuss later… 

• Complex numbers type: we won’t use this semester 
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Specializations of Fundamental 
Types 
• Integers can be… 

– signed or unsigned  (signed by default) 

– really short (char), short, regular (int by 
default), long, really long (long long) 

• Floating point (always signed) can be… 

– regular precision (float) 

– double precision (double) 

– extended precision (long double) 
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(Footnote) 

• The data type of a variable defines its usual 
meaning, but the programmer may interpret it 
differently 

• Ex.: a char can represent… 

– an ASCII-encoded character (most common case) 

– an 8-bit integer 

– eight 1-bit flags 

– … 
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Min and Max Integer Values 
•The lengths (in bits) (and the max and min values) 
of these types are platform dependent 

•Common Platform 
(/usr/include/limits.h): 

Type # bits Value 

Min ‘unsigned anything’ n.a. 0 

Min ‘signed char’ 8 -128 

Max ‘signed char’ 8 127 

Max ‘unsigned char’ 8 255 

Min ‘signed short’ 16 -32,768 

Max ‘signed short’ 16 32,767 

Max ‘unsigned short’ 16 65,535 
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Integer Values… (cont’d) 

• Which is big enough to store the daily federal deficit? 

Type # bits Value 

Min ‘signed int’ 32 -2,147,483,648 

Max ‘signed int’ 32 2,147,483,647 

Max ‘unsigned int’ 32 4,294,967,295 

Min/Max ‘signed long’ 64 9,223,372,036,854,775,808 
-9,223,372,036,854,775,807 

Max ‘unsigned long’ 64 18,446,744,073,709,551,615 

Min ‘signed long long’ 64 Same as long 

Max ‘signed long long’ 64 Same as long 

Max ‘unsigned long long’ 64 Same as long 
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Floating Point (Real Numbers) 
• Warning! Platform dependent! Lots of gcc 

options! 

• Terminology 
                        +.793 * 2 -36 
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exponent base of the 

exponent 

magnitude of 

the mantissa 

sign of the 

mantissa 

Size of the exponent (# bits) mainly determines 
the range of numbers that can be represented 

Size of the mantissa (# bits) mainly determines 
the precision of numbers that can be 
represented 



Floating Point (Real Numbers) 

• IEEE floating point standard single precision: 

– 1-bit sign 

– 23-bit (+ 1 implied bit) mantissa  

– 8-bit biased exponent (base 2) 

– 6 decimal digits precision 

• double precision: 

– 1-bit sign  

– 52+1 bit mantissa  

– 11-bit biased exponent (base 2) 

– 15 decimal digits precision 
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32 bit 

64 bit 



Floating Point (cont’d) 
• Min (normalized) positive values (approximate) 

– single precision (float): 2-126 (≈10-38 ) 

– double precision (double): 2-1022 (≈10-308) 

– Q: small enough to measure the diameter of an 
atom, in meters? 

• Max (normalized) positive values (approximate) 

– single precision (float): 2127 (≈1038) 

– double precision (double): 21023 (≈10308) 

– Q: big enough to count the number of atoms in the 
universe? distance to the edge of the observable 
universe, in units of atom diameters? 
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Floating Point (cont’d) 
• long double = 128 bits 

– more bits precision than double, same range  
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Reminder: Arithmetic Problems 

• Types make a difference in computer arithmetic 

– signed vs. unsigned max and min values (integer) 

– overflow (integer and floating point) 

– underflow and limited precision (floating point) 

• More info about floating point:  
see CSC236 or CSC302 
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 common source of bugs  

overflow, limits 

of precision 



What does this do? 

int main()  

{ 

    char i; 

    for (i=0; i<200; i++) { 

        printf("%d\n",i); 

    } 

} 
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0 
1 
2 
3 
... 
125 
126 
127 
-128 
-127 
-126 
... 
-3 
-2 
-1 
0 
1 
2 
3 
... 
125 
126 
127 
-128 
-127 
-126 
... 



Why? 

int main()  

{ 

    char i; 

    for (i=0; i<200; i++) { 

        printf("%4d %s\n",i,  
                byte_to_binary(i)); 

    } 

} 
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   0 00000000 
   1 00000001 
   2 00000010 
   3 00000011 
... 
 125 01111101 
 126 01111110 
 127 01111111 
-128 10000000 
-127 10000001 
-126 10000010 
... 
  -3 11111101 
  -2 11111110 
  -1 11111111 
   0 00000000 
   1 00000001 
   2 00000010 
   3 00000011 
... 
 125 01111101 
 126 01111110 
 127 01111111 
-128 10000000 
-127 10000001 
-126 10000010 
... 



How to fix? 

int main()  

{ 

    unsigned char i; 

    for (i=0; i<200; i++) { 

        printf("%4d %s\n",i,  
           byte_to_binary(i)); 

    } 

} 
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   0 00000000 
   1 00000001 
   2 00000010 
   3 00000011 
... 
 197 11000101 
 198 11000110 
 199 11000111 

What word can go here? 



How to fix? 

int main()  

{ 

    int i; 

    for (i=0; i<200; i++) { 

        printf("%4d %s\n",i,  
           byte_to_binary(i)); 

    } 

} 
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   0 00000000 
   1 00000001 
   2 00000010 
   3 00000011 
... 
 197 11000101 
 198 11000110 
 199 11000111 

What data type can go here? 



Constants with ‘const’ 

• Don’t want a value to change? Throw a const 
on there. 

 const int BUFFER_SIZE = 1024; 

 const double PI = 3.141592653589793238; 

 const char delimiter = ‘,’; 

• Character constants in single quotes: ′a′, ′b′ 

– value stored is the numeric value of the character in 
ASCII 

 

CSC230: C and Software Tools © NC State Computer Science Faculty 30 



Constants with #define 

#define <CONSTANT_NAME> <value> 

• Means “literally replace CONSTANT_NAME with value every time 
you see it in my file”. 

• Can be very dumb.  What does this program do? 
#define SLOPE -2 

#define Y_INTERCEPT 1 

 

int main()  

{ 

    float x = 1; 

    // find the y coordinate of this line 

    float y = x  SLOPE + Y_INTERCEPT; 

    printf("Coords: (%f,%f)\n",x,y); 

} 
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Correct answer: 
  Coords: (1.000000,-1.000000) 

Actual output:  
  Coords: (1.000000,0.000000) 

Missing * operator 



const vs. #define 

• The ‘const’ keyword does other stuff we’ll learn 
later when it comes to arrays/pointers. 

• Things can get complicated when it comes to 
using ‘const’ to declare constants between files; 
#define doesn’t have these issues. 

 

• Result: Just use #define. 
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ASCII 

• ASCII is a specific 8-bit encoding of Western 
characters (punctuation, digits, upper and lower 
case characters) 

• Only the first 128 values (decimal 0-127,  
octal 000-177) are standardized 

• The interpretation of the remaining 128 values 
(decimal 128-255, octal 200-377) are not 
standardized, i.e., they are  
application/platform-specific 

CSC230: C and Software Tools © NC State Computer Science Faculty 33 

American Standard Code for Information Interchange 



Standardized ASCII (0-127) 
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One Interpretation of 128-255 
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(This allowed totally sweet ASCII art 
in the 90s) 

Sources: 

• http://roy-sac.deviantart.com/art/Cardinal-NFO-File-ASCII-35664604  

• http://roy-sac.deviantart.com/art/Siege-ISO-nfo-ASCII-Logo-35940815  

• http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803 
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Useful Character Constant 
Escape Sequences 
• \0      Null character 
• \‘      Single quote 
• \“      Double quote 
• \\      Backslash 
• \n      Newline 
• \t      Horizontal tab 
• \nnn  Octal value of character (ex: ‘a’ == 
‘\141’) 

• \xnn  Hexadecimal value of character (== 
‘\x61’) 
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Converting ASCII digits to Integers 

• You can read ASCII characters and do arithmetic 
on them, but results not what you expect! 

• Program: read a number, print it out 
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 common source of bugs  

difference between 

ASCII-encoded 

strings 

and numbers 

int c;  

c = getchar();    // read one ascii character 

printf(“%d\n”, c);// interpret c as an integer 

                  // and print as ASCII 

                  // (decimal) string 

Result 

– user types:    1 

– program prints:    49    Why?? 



Converting ASCII to Numbers 
• Converting ASCII-encoded digit to an integer, the 

right way: 

•   
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unsigned char c; 

c = (unsigned char) getchar(); 

unsigned int n; 

n = c - ‘0’;  

printf(“%d\n”, n); 

c = (char) (n + ‘0’);  

Converting integer to ASCII: 

How would we convert an ASCII string (“12”) to 
an integer, and vice versa??? 

Demo… 



(“Wide” Characters) 

• For encoding character sets other than ASCII 

• Type: wchar_t 

• Ex. of specifying a wide character constant: 
L’å’ 

• We’ll look at support for this later 
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String Literals 
• Strings are arrays of characters 

– terminated (automatically, by the compiler) with 
NULL 

– we’ll discuss more later… 

• Specifying a string:  ″abcdefg” 

– cannot contain double quote or span multiple lines 
(use \” or \n if quote or newline should be in the 
string) 

– strings of wide characters:  L”å∫ç∂ƒ” 

• Warning:  ″a”  is not the same as  ’a’ ! 
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Multi-line string literals 

• Just put quoted string literals one after another; 
they get glued together automatically. 

int main()  

{ 

    printf("Usage:\n" 

           "  coolapp [options] <filename>\n" 

           "\n" 

           "Copyright 2014 Tyler Bletsch\n"); 

 

} 
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Review: Binary 
• Advice: memorize the following (need for 236 

anyway…) 
– 20 = 1 
– 21 = 2 
– 22 = 4 
– 23 = 8 
– 24 = 16 
– 25 = 32 
– 26 = 64 
– 27 = 128 
– 28 = 256 
– 29 = 512 
– 210 = 1024 
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Review: decimal to binary 
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? Quotient Remain-
der 

457  2 = 228 1 

228  2 = 114 0 

114  2 = 57 0 

57  2 = 28 1 

28  2 = 14 0 

14  2 = 7 0 

7  2 = 3 1 

3  2 = 1 1 

1  2 = 0 1 111001001 



Practice: binary to/from hex 

• 01011011001000112 --> 

• 0101  1011  0010  00112 -
-> 

•    5      B       2       316 
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Binary Hex 

0000 0 

0001 1 

0010 2 

0011 3 

0100 4 

0101 5 

0110 6 

0111 7 

1000 8 

1001 9 

1010 A 

1011 B 

1100 C 

1101 D 

1110 E 

1111 F 

    1       F     4       B16 --> 

0001  1111  0100  10112 --> 

00011111010010112 



Integer Constants 
• Specifying:  

<optionalsign> <stringofdecimaldigits> 
– ex: 7940, +7940, -36 

• If prefixed by 0, interpreted as base 8 constant 

– only 0-7 allowed as digits 

• If prefixed by 0x, interpreted as base 16 constant 

– 0-9, a-f allowed as digits 

• Ex.: what’s decimal value of 03, 0x03, 3 ?  
of 53, 053, and 0x53 ? 
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Integer Constants (cont’d) 

• If suffixed by u, type is unsigned int, and 
value must be positive 

– ex: 123u 

• If suffixed by L, type is long int 

– ex: 456L 
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Floating Point Constants 

• Specifying:  
<optionalsign> integerpart . fractionpart 
– either integer part or fractional part can be missing 

– all good:  22.22, +2., -.22 

– warning:  2 is integer constant,  2. is floating point 

• Followed (optionally) by exponent (expressed in 
base 10) 
– specifying:  
e <optionalsign> <integerconstant> 

– ex.: 23.45e-67 means 23.45 * 10-67 
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Floating Point… (cont’d) 

• Default type is double 

– suffixed by f: force type to be float 

– suffixed by L: long double (extended precision) 

• More about floating point numbers, precision, and range, later… 
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A dumb thing that C will let you do, 
but you shouldn’t do it 
• The following is legal C code: 

unsigned x; 

• What’s the data size? 

– Yeah, I don’t know either 

– Apparently it’s like an int?   

– Let’s just never do this 

• Always put the type specifier: 
unsigned int x; 
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tl;dr 
Integer Type Size (on x86!) Normal use Signed range  

(on x86) 

Unsigned range  
(on x86) 

char 8 bit (1 byte) ASCII character 
or small integer 

-128..127 0..255 

short 16 bit (2 byte) Smallish integer -32768..32767 0..65535 

int 32 bit (4 byte) Normal integer -2147483648.. 
2147483647 

0..4294967295  

long 64 bit (8 byte) Big integer -263+1 .. 263-1 
-9,223,372,036,854,775,808.. 
9,223,372,036,854,775,807 

0.. 264-1 
18,446,744,073,709,551,615 

long long 64 bit (8 byte) Big integer -9,223,372,036,854,775,808.. 
9,223,372,036,854,775,807 

18,446,744,073,709,551,615 
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Decimal Type Size (on x86!) Normal use Decimal digits 
of precision 

float 32 bit (4 byte) Lousy decimal 6 

double 64 bit (8 byte) Good decimal 15 



Reminder: Go to course web page for link to exercise form. 
Paste code into ideone.com and submit the link. 

Exercise 03a 

• Write a program that prints ASCII characters  
32-127.   

• Steps to help you along: 

– Write a loop to print integers 32..127. 

– Write a printf statement that prints a single 
character. 

– Combine them. 
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ASCII table 



BACKUP 
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Implied Types of Constants 

• Default type for integer constants: shortest type 
compatible with value, starting with  
signed int -> unsigned int -> … 

• Default type for floating point constants: 
double 
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Base Conversions to/from Binary 

• 2*82 + 5*81 + 6* 80 == decimal 174 == 

 

• octal 256 ==  

 

• binary 10 101 110 == 

 

• 27 + 25 + 23 + 22 + 21 == 

 

• 128 + 32 + 8 + 4 + 2 == decimal 174 
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…and be able to do the following 

…and likewise with hex 



Review: binary to/from octal 

• 001110002 --> 

• 00 111 0002 --> 

• 0    7    08 
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3568 --> 

11 101 1102 --> 

111011102 

Binary Octal 

000 0 

001 1 

010 2 

011 3 

100 4 

101 5 

110 6 

111 7 


