
Type Conversions

CSC230: C and Software Tools
N.C. State Department of Computer Science

Outline

• Type Conversions

– Explicit

– Overflow and Underflow

– Implicit

• More I/O in C

– scanf and conversions

CSC230: C and Software Tools © NC State Computer Science Faculty 2

Type Conversions
• Data type conversions occur in two ways

– explicitly (e.g., programmer deliberately casts from
one type to another)

– or implicitly (e.g., variables of different types are
combined in a single expression, compiler casts from
one type to another)

CSC230: C and Software Tools © NC State Computer Science Faculty 3

unsigned char a;

int b;

float c;

double d;

…

c = (float) b;

d = a + (b * c);

Explicit

Implicit

Casting (Explicit Conversion)

• Force a type conversion in the way specified

• Syntax: (typename) expression

• Ex.:

• Can the programmer get higher precision results by
explicitly casting?

• A special case:

– means value of expression must not be used in any way

– Q: how could that possibly be useful?

– A: Prevent mistakes! Don’t let users set variables to void values.

CSC230: C and Software Tools © NC State Computer Science Faculty 4

d = (double) c;

(void) expression;

Overflow and Underflow

• Think of number ranges as a circle rather than a line
– Example: signed and unsigned short

• Shorts hold 16 bits on most machine

• Signed Range: -((216) / 2) to (((216) / 2) – 1) or [-32768, 32767]

• Unsigned Range: 0 to (216 – 1) [0, 65535]

CSC230: C and Software Tools © NC State Computer Science Faculty
5

unsigned
short

0 65535

signed
short

-32768 32767
//overflow

signed short x = 32000;

x += 800;

printf(“%d\n”, x);

//underflow

unsigned short y = 15;

y -= 600;

printf(“%d\n”, y);

32000
-32736

64951

15

0

Converting signed to unsigned

• This only makes sense if you are sure the value
stored in the signed operand is positive

CSC230: C and Software Tools © NC State Computer Science Faculty 6

short a;

unsigned short b;

a = -36;

b = (unsigned) a;

a = (signed) b;

Result when output:
b = 65500
a = -36

signed
short

-32768 32767

0

unsigned
short

0 65535

-36

65530

Converting signed to unsigned

• This only makes sense if you are sure the value
stored in the signed operand is positive

• If signed is the shorter operand, extend it

CSC230: C and Software Tools © NC State Computer Science Faculty 7

short a;

unsigned char b;

a = -36;

b = (unsigned char) a;

a = (signed) b;

Result when output:
b = 220
a = 220

short a;

unsigned short b;

a = -36;

b = (unsigned) a;

a = (signed) b;

Result when output:
b = 65500
a = -36

What happened?

Converting

• Extend bits with ones
source is negative,
extend with zeroes if
source is positive.

CSC230: C and Software Tools © NC State Computer Science Faculty

short a;

unsigned char b;

a = -36;

b = (unsigned char) a;

a = (signed) b;

Result when output:
b = 220
a = 220

Variable Decimal Binary

a -36 1111111111011100

b 220 11011100

a 220 0000000011011100

Converting unsigned to signed

• If signed is large enough to store the correct
value, no problems

– otherwise, will definitely be an error (overflow)!

CSC230: C and Software Tools © NC State Computer Science Faculty 9

int a;

unsigned int b;

b = 3000000000;

a = (int) b;

Result when output:
b = 3000000000
a = -1294967296

int a

2,147,483,647

-2,147,483,648

0

-1,294,967,296

0

Reminder: Go to course web page for link to exercise form.
Paste code into ideone.com and submit the link.

Exercise 04a

• Given:
– short a = -1;

– int b = -2;

– unsigned int c = 2147483648;

• State what the results of the following conversions would be if
the variable is printed to the console.
– unsigned short d = (unsigned short) a;

– unsigned int e = (unsigned int) b;

– short f = (short) d;

– int g = (int) e;

– short h = (short) a;

– int i = (int) a;

CSC230: C and Software Tools © NC State Computer Science Faculty

10

Conversions

Answer format:
d=<blah>

e=<blah>

 etc...

Converting Floating to Integer

• Round towards zero (“truncate”) to get the
integer part, and discard the fractional part

– +3.999  3

– -3.999  -3

– obviously some loss of precision can occur here

• Overflow if the integer variable is too small

CSC230: C and Software Tools © NC State Computer Science Faculty 11

float f = 1.0e10;

int i;

i = f;

Result when output:
f = 10000000000.0

i = -2147483648

Converting to Floating

• Integer  Floating

– if value cannot be represented exactly in floating
point, convert to the closest value (either higher or
lower) that can be represented in floating point

• Double precision  Single precision

– if value cannot be represented exactly, convert to
closest value (either higher or lower)

– can overflow or underflow!

CSC230: C and Software Tools © NC State Computer Science Faculty 12

Implicit Conversions

• For “mixed type” expressions, e.g.,

• The compiler does “the usual arithmetic
conversions” before evaluating the expression

• char’s and short’s are always converted to
ints (or unsigned ints) before evaluating
expressions

CSC230: C and Software Tools © NC State Computer Science Faculty 13

d = a + (b * c);

double
float

unsigned char

short int

The “Usual Conversions”
For Arithmetic Operations

• In a nutshell: when combining values of two
numbers…

– if either is floating point, convert the other to
floating point, and

– convert less precise to more precise

• Order is significant in the following table!

CSC230: C and Software Tools © NC State Computer Science Faculty 14

The “Usual…” (cont’d)

CSC230: C and Software Tools © NC State Computer Science Faculty 15

Rule

If either operand is… And other
operand is…

Then convert other
operand to…

#1 long double Anything long double Else…

#2 double Anything double Else…

#3 float Anything float Else…

#4 unsigned long int Anything unsigned long int Else…

#5 long int unsigned int unsigned long int Else…

#6 long int Anything else long int Else…

#7 unsigned int Anything unsigned int Else…

#8 (both operands have type
int, no action needed)

Example

• d = a + (b * c);

CSC230: C and Software Tools © NC State Computer Science Faculty 16

double
float

unsigned char

short int

before evaluating expression:
 convert b to unsigned int and c to int
before multiplying:
 convert c to unsigned int (rule #7)
before adding:
 convert result of multiplying to float (rule #3)
when assigning:
 convert result of addition to double (rule #2)

The scanf() function

• getchar() is crude way to read input

• scanf() is a much more convenient library
function for formatted input

– converts numbers to/from ASCII

– skips “white space” automatically

• Def: int scanf(const char * fmt, …)

– variable number of arguments

• fmt specifies how input must be converted

CSC230: C and Software Tools © NC State Computer Science Faculty 17

Examples

CSC230: C and Software Tools © NC State Computer Science Faculty 18

char c, d;

float f, g;

int i, j;

int result;

result = scanf(“%c %c”, &c, &d);

…check result to see if returned value 2…

result = scanf(“%d %f %f”, &i, &f, &g);

…check result to see if returned value 3…

result = scanf(“%d”, &i);

…check result to see if returned value 1…

Parts of the Format Specifier

1.% (mandatory)

2. Minimum input field width (optional, number
of characters to scan)

3. type of format conversion (mandatory)

CSC230: C and Software Tools © NC State Computer Science Faculty 19

Some Types of Conversions

Convert input to Type… Specifier

char %c

unsigned int %u (in decimal)
%o (in octal)
%x, %X (in hex)
%lx, %lu, etc. for long

signed int %d, %i (in decimal)
%ld for long

float %f
(%lf for double)

float %e, %E (use scientific notation)
(%le for double)

(string) %s

CSC230: C and Software Tools © NC State Computer Science Faculty 20

Input Arguments to scanf()

• Must be passed using “call by reference”, so that
scanf() can overwrite their value

– pass a pointer to the argument using & operator

• Ex.:

CSC230: C and Software Tools © NC State Computer Science Faculty 21

char c;

int j;

double num;

int result;

result =

 scanf(“%c %d %lf”, &c, &j, &num);

 common source of bugs 

failure to use &

before arguments

to scanf

Advice on scanf()
• Experiment with it and make sure you understand how

it works, how format specifier affects results
– The textbook is an excellent resource on different input

strings are processed

• Always check return value to see if you read the number
of values you were expecting
– If statements soon…

CSC230: C and Software Tools © NC State Computer Science Faculty 22

char x, y;

int j;

scanf(“%c%c%d”, &x, &y, &j);

Results with input

– 12345678912345678?

– 1 2 345678912345 1234?

Example: sum numbers on stdin
#include <stdio.h>

#include <stdlib.h>

int main()

{

 printf("Input numbers...\n");

 int num_read;

 double value_read;

 double sum=0;

 while (1) {

 num_read = scanf("%lf", &value_read);

 if (num_read == 0) {

 break;

 }

 sum = sum + value_read;

 }

 printf("Sum: %f\n",sum);

 return EXIT_SUCCESS;

}

CSC230: C and Software Tools © NC State Computer Science Faculty 23

Input numbers...

3.14159

20

x

Sum: 23.141590

#include <stdio.h>

#include <stdlib.h>

int main()

{

 printf("Input numbers...\n");

 double value_read, sum=0;

 while (scanf("%lf", &value_read)) {

 sum += value_read;

 }

 printf("Sum: %f\n",sum);

 return EXIT_SUCCESS;

}

sum.c (simple) sum2.c (shorter)

Reminder: Go to course web page for link to exercise form.
Paste code into ideone.com and submit the link.

Exercise 04b

• Write a program that uses scanf to read 3
integers from stdin, then print them in reverse
order.

CSC230: C and Software Tools © NC State Computer Science Faculty

24

Using scanf

$ gcc reverse3.c && ./a.out

3

4

6

6

4

3

Any Questions?

CSC230 - C and Software Tools © NC State University Computer Science Faculty 25

