Type Conversions

CSC230: C and Software Tools

N.C. State Department of Computer Science

[omputer Science
Outline
e Type Conversions
— Explicit
— Overflow and Underflow
— Implicit
e Morel/OinC
—scant and conversions
[omputer Science

€5C230: C and Software Tools © NC State Computer Science Faculty PRl NC STATE UNIVERSITY

Type Conversions
e Data type conversions occur in two ways

explicitly (e.g., programmer deliberately casts from
one type to another)

— or implicitly+eg., variables of different types are
combined in a single expression, compiler casts fro
one type to another)

unsigned char a;
int b;

float c;

double d;

c = (float) b;
€SC230: C and Software Tools © NC State Ct d = a + (b * C) ;

[omputer Science
Sl NG STATE UNVERSITY |

Casting (Explicit Conversion)

e Force a type conversion in the way specified
e Syntax: (typename) expression
e Ex.: d = (double) c;

e Q: Can the programmer get better quality
results by explicitly casting?

e Aspecial case: |(void) expression;

— means value of expression must not be used in any
way

— Q: how could that possibly be useful?

€5C230: C and Software Tools © NC State Computer Science Faculty PRl NC STATE UNIVERSITY

Overflow and Underflow

e Think of number ranges as a circle rat

— Example: signed and unsigned sho
e Shorts hold 16 bits on most machine

¢ Unsigned Range: 0 to (216 —1) [0, 65535]
32767-32768

//overflow

signed short x = 32000;
X += 800;
printf(“%d\n”, x);

//underflow

unsigned short y = 15;
y -= 600;
printf(“%d\n”, y);

 Signed Range: -((2%) / 2) to (((2%°) / 2) — 1) or [-32768, 32767]

her than a line
rt

65535 0

15

64951

unsigned
short

Converting signed to u

e This only makes sense if you are

nsigned

sure the value

stored in the signed operand is positive
e If signed is the shorter operand, extend it
int a; int a;
unsigned b; unsigned short b;
a = -36; a = -36;
b = (unsigned) a; b = (unsigned short) a;
a = (int) b; a = (int) b;
Result when output: Result when outpuft:
b = 4294967260 b = 65500
a = -36 a = 65500

€5C230: C and Software Tools © NC State Computer Science Faculty

UIIPUIGT ULIGIHILG
What happened???*"™ ey

int a;

Converting unsigned short b;
a = -36;
e If signed # is negative, ° - g‘:gi;gg?d short) a;
go counter-clockwise ’
_ b = 65500
— Counting O a = 65500
655350

2,147,483 ,647-2 147,483,648

-36 -> 65,536 — 3¢/= 65,550

unsigned
short b

CSC230: Cand Software T3

Converting unsigned to signhed

e If signed is large enough to store the correct
value, no problems
— otherwise, will definitely be an error (overflow)!

int a; 2,147,483,647-2,147 483,648
unsigned int b;

b
a

3000000000;
(int) b;

Nt 24 59k 967 296

Result when outpuft:
b = 3000000000
a = -1294967296

€5C230: C and Software Tools © NC State Computer Science Faculty

plfer dcience
Bl NC STATE UNIVERSITY

Converting Floating to Integer

* Round towards zero (“truncate”) to get the
integer part, and discard the fractional part
—+3.999 > 3
--3.999 > -3

— obviously some loss of precision can occur here

e Overflow if the integer variable is too small

float £ = 1.0e10;
int i;
i = T

Result when output:

f = 100000000000 [omputer Science
€5C230: C and software Tools © NGRS _2147483648 9

Floating to Integer... (cont’d)

e Example

int i;
float g;
g = 123456780000000012345678.0;

i = (int) g }

7?7?77
Result:
1 = -2147483648
g = 123456780268340198244352.00000
Lomputer dcience

€5C230: C and Software Tools © NC State Computer Science Faculty IR NC STATE UNIVERSITY

Converting to Floating

e Integer — Floating

— if value cannot be represented exactly in floating
point, convert to the closest value (either higher or
lower) that can be represented in floating point

e Double precision — Single precision

— if value cannot be represented exactly, convert to
closest value (either higher or lower)

— can overflow or underflow!

€SC230: € and Software Tools © NC State Computer Science Faculty IR NC STATE UNIVERSITY

Implicit Conversions

e For “mixed type” expressions, e.g.,

d=a+ (b * c{
double/ / \ short int
float unsigned char
e The compiler does “the usual arithmetic

conversions” before evaluating the expression

e char’s and short’s are always converted to
Ints (orunsigned Ints) before evaluating
expressions

€5C230: C and Software Tools © NC State Computer Science Faculty PR NC STATE UNIVERSITY

The “Usual Conversions”
For Arithmetic Operations

¢ In a nutshell: when combining values of two
numbers...

— if either is floating point, convert the other to
floating point, and

— convert less precise to more precise

e Order is significant in the following table!

€SC230: € and Software Tools © NC State Computer Science Faculty JER NC STATE UNIVERSITY

The “Usual...” (cont’d)

#1 long double Anything long double Else...
#2 |double Anything double Else...
#3 |float Anything float Else...
#4 |unsigned long |Anything unsigned long int |Else...
int
#5 long int unsigned l unsigned long Else...
int int

#6 |long int Anything else | long int Else...
#7 |unsigned int | Anything unsigned int Else...
#8 (both operands have

type int, no action

reeded) [gmputer Scionce

€5C230: C and Software Tools © NC State Computer Science Faculty IV NC STATE UNIVERSITY

Example

double short int
float unsigned char

I’

ed =a + (6 * 63;

before evaluating expression:
convert b to unsigned int
before multiplying:
convert ¢ to unsigned int (rule #7)
before adding:
convert result of multiplying fo float (rule #3)
when assigning:
convert result of addition to double (rule #2)

€SC230: € and Software Tools © NC State Computer Science Faculty LR NC STATE UNIVERSITY

The scanf() function

e getchar () is crude way to read input

e scanft () is a much more convenient library
function for formatted input
— converts numbers to/from ASCII
— skips “white space” automatically

e Def: Int scanf(const char * fmt, .)
— variable number of arguments

e fmt specifies how input must be converted

E i S .
€ and Software Tools © NC State
Computer Science Faculty

Examples

char c, d;
float f, g;
int i, j;

int result;

result = scanf(“%c %c”, &c, &d);
..check result to see if returned value 2..

result = scanf(“%d %f %f”’, &i, &F, &Q);
..check result to see if returned value 3..

result = scanf(“%d”, &i);

..check result to see if returned value 1..
LﬂIll[lllIl!I JCIence

mmmwm“fm@mmmwg

NC s
Computer Science Facul

Parts of the Format Specifier

1.% (mandatory)

2. Minimum input field width (optional, number
of characters to scan)

3. type of format conversion (mandatory)

E i S .
€ and Software Tools © NC State
Computer Science Faculty

Some Types of Conversions

Convert input to Specifier
Type...
char %c

unsigned int

%u (in decimal)

%o (in octal)

%X, %X (in hex)

(%lu, %lo, %lx for long)

signed int

%d, %i (in decimal)
(%1d, %1 for long)

float %f
float %e, %E (use scientific notation)
(string) %s

€5€230: € and Software Tools © NC State Computer Science Facul

19 C STATE UNIVERSITY

Input Arguments to scanf()

e Must be passed using “call by reference”, so that
scant() can overwrite their value

— pass a pointer to the argument using & operator

double num;
int result;

result =

scanf(“%c %d %lf”’, &c, &j, &num);

* Ex.:
Chal" C ; £ common source of bugs £
int j; failure to use &

before arguments
to scanf

€5€230: C and Software Tools © NC State
Computer Science Faculty

10

Advice on scanft()

e Experiment with it and make sure you understand how
it works, how format specifier affects results
— The text book is an excellent resource on different input

strings are processed

e Always check return value to see if you read the number

of values you were expecting

— |If statements soon...

char x, y;

int j;

scanf(“%cu%chd”, &x, &y, &j);

Results with input
—12345678912345678? .

[omputer Science

—1 2 345678912345 1234?

