C Expressions, Operators, and
Flow of Control

C Programming and Software Tools

N.C. State Department of Computer Science

Lomputer dcience



Outline

e Expressions

e QOperators
— Single operand
— Two operands
— Relational
— Logical
— Assignment

e Statement Separation
e C Operator Precedence and Order of Evaluation

e Flow of Control

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 2



Expressions

e Most statements in a C program are expressions

e Fvaluating an expression means doing the
computation according to the definition of the
operations specified

e Results of expression evaluation

— the value returned (and assigned); and/or

— side effects (other changes to variables, or output,
along the way

j =k + 3 * mt+;
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Comparison: C vs. Java Operators

Operator Description Associates Operator
access class feature * /% multiplicative | left-to-right
a[l array index + - additive left-to-right
left-to-right
fn() function call <L 20w left, right shift | left-to-right
++ -- post-inc/dec Notin C i < <= > >= relational left-to-right
++ - pre-inc/dec : = U= equality/ineq.
~ bitwise not : ) it - test object left-to-right
/ type
! logical not . / G
right-to-left : & bitwise and left-to-right
-+ unary -/+ ;
! A bitwise xor left-to-right
& * address/dereference ! 8
! I bitwise or left-to-right
(type) cast
----------- S && logical and left-to-right
e <"~ ""object allocation ¢ ¢
|| logical or left-to-right
= 4= —-=
e Coperators not found in Java: ) a
) assignment right-to-left
* — A= [=
&= |=
<<= >>=

— pointer operations (->, s,
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— sizeof
— sequential evaluation (,)
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What Are the C Operators?

e There are approximately 50 of them
e Most operators do the same thing in Java and C

e (Categories of operators
. “other”

. arithmetic

1
2
3. logical and relational
4. assignment

5

. bit operators
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Other Operators

e Array indexing (x[]) < Later
e Function calls (£()) < Covered

e Address-of (&x) operator, and pointer < Later
dereferencing ( *x)

— and effect of other operators on pointers

e Member (of struct) specification < Later
— direct (x. y) and indirect (x->y )
e The sizeof () operator % Covered

e casting: (type) operand < Covered
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Arithmetic: Ops on a Single Operand

Unary plus (+a): no effect

a = +b;

Unary minus (-b) : change sign of operand

a = -b;

Increment (++) and decrement (--) operators
— operand type must be modifiable (not a constant)

— these operators have side effects!

a=++b / c—- ;
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Single Operand... (cont’d)

prefix: side effect takes place first, then expression value is
determined

inti=1, jJ = 8;
printf (“%d $d\n”, ++i, --3);
printf (“%d %d\n”, i, j);

what is output?

postfix: expression uses old operand value first, then side
effect takes place

int i =1, j = 8;
printf (“%d %d\n”, i++, j--); what is output?
printf (“%d $d\n”, i, j);

£ common source of bugs 2

difference between |

postfix and prefix
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Arithmetic on Two Operands

e Multiply (*), Quotient (/), Remainder (%), Add
(+), Subtract (=)

— possibility of underflow and overflow during
expression evaluation, or assignment of the results

£ common source of bugs

oo overflow in
e Divide by Zero computations
— causes program execution failure if the operands are

Integer type

— generates a special value (inf) and continues
execution if the operands are |IEEE floating point

£ common source of bugs

divide by zero
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Arithmetic on Two Operands

e Modulus operator (%) operands must have type
integer, should both be positive*

printf (“%d”, (37 % 3));

results?

printf (“%d”, (-37 % 3));

e Result of a%b is program exception if b ==

Integer modulo operators in various
programming languages

* If one operand is negative, result depends on the Result has
language. To check your language, consult this handy table** Language  Operator the same sign
as
** Wait, let’s just never do that. ActionScript |% Dividend
mod Divisor
Ada
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Relational and Logical Operators

Used in evaluation conditions

if (expression evaluates to TRUE)
.. .do something...

What is TRUE (in C)?
— 0 means FALSE
— anythingelse (1, -96,1.414, ‘F’ , inf) means TRUE

— 77

float £ = 9593.264;
if (£)
...do something...
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Relational Operators

Six comparison operators: <, >, ==, 1=, >=, <=

if (a < b)
if (x >= y)
if (g == r)

e Operands must be numbers (integer or floating
point), result type is int

— i.e., cannot use to compare structs, functions, arrays,
etc.

o |f relation is true, resultis 1, else resultis 0

same meaning

float £ = 9593.264; as previous slide
if (£ '= 0)
...do something...
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Relational Operators (cont’d) I

e Most common mistake in C (in my experience)
== is relational comparison for equality

- aSSignment! -

Example: some strategic defense code...

if (enemy launch = confirmed)
retaliate () ;

Oops... sorry!
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Logical Operators

Logical operators allow construction of complex
(compound) conditions

Operands must be (or return) numbers (integer or floating
point), result type is int

Logical NOT (!) operator

— result: 1 (TRUE) if operand was O (FALSE),
otherwise 0

int J = ...;
if (! 3)
do something ...

float £ = ..., g= ...;
if (! (£<qg) )

do something ...
= e
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Logical ... (cont’d)

e AND (&&):
— evaluate first operand, if 0, result is 0; else,
— evaluate second operand, if 0, result is 0; else,
—resultis 1

if (x && (y > 32))
do something ...

[omputer Science
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Logical... (cont’d)

e Condition evaluation stops as soon as truth value
is known

— i.e., order of the operands is significant

£ common source of bugs 2

e Relied on by many prOgramS! lack of understanding of

significance of order
in conditions

if ((b '=0) && ((a / b) > 5))
printf (“quotient greater than 5\n”);

what's the difference???

if (((a / b) > 5) && (b '= 0))
printf (“quotient greater than 5\n”);
Wyt i
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Logical... (cont’d)

e OR(| |) operator
— evaluate first operand, if not O, result is 1;

— otherwise, evaluate second operand, if not 0, result
Is 1;

— otherwise, resultis 0

e There is no logical XOR in C

— but(aXORb)=> (a && (! b)) || ((' a)
§& b)
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A Strange ldea?

e Mixing relational, bit-wise, and arithmetic
operations into a single expression

unsigned char g, h;
int a, b;
float e, £;

if ((a<b) & (e * £ || (g * h))) is condition true?
..do something here..

int a = -4;
%.coCnmonsc.)furceofbug;?é char c = \DI C value of g’?
MiXing or operator
P float e = 0.0, £ = 22.2, g;

in a single expression

;=(C== ‘D) + (e || £) * a;
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Assignment Operators
*a = b assignsthevalueof b to a

— a must be a reference and must be modifiable (not a
function, not an entire array, etc.)

e Both a and b must be one of the following

— numbers (integer or floating), or
— structs or unions of the same type, or
— pointers to variables of the same type

OK Not OK
float a; float a[2];
int b = 25; int b[2] = {25, 15};
a = b T i
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Assignment Operators (cont’d)

a op= b
— where opis one of *,/,%,+,-,<<,>>,&,%,
— “shorthand” fora = a op b

int i = 30, jJ = 40, k = 50
i +=3j; // same as i i

e ..

1 J
k %= j; // same as k =k % jJ
j *= k; // same as j = j * k
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Statement Termination and the “,”

e Normally, statements are executed sequentially
and are separated by ;

e Anotherseparator: ‘', (e.g.,J = k++, i =
k;):
1. evaluate expressions left to right

2. complete all side effects of left expression before
evaluating right expression

3. result is value of the right expression

e More shorthand?
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Constant Expressions

e Constant-valued expressions are used in...
— case statement labels )

— array bounds
y all evaluated at

— bit-field lengths > compile time,
— values of enumeration constants not run time

— initializers of static variables D

35 + (16 3 (4 | 1)),

static int a

(static: variable’s value is initialized only once, no matter how many times the
block in which it is defined is executed)
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CSC230: C and Software Tools © NC State Computer Science Faculty 22



Constant Expressions... (cont’d)

e Cannot contain assignments, increment or
decrement operators, function calls, ...

— see a C reference manual for all the restrictions

— basically: nothing that has to be evaluated at run-
time

static int b = a++ - sum() ;

2/ error
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C Operator Precedence

Tokens Operator Class Prec. Associates
alk] subscripting postfix left-to-right
f(...) function call postfix left-to-right
direct selection postfix 16 left-to-right
-> indirect selection postfix left to right
++ -- increment, decrement postfix left-to-right
++ -- increment, decrement prefix right-to-left
sizeof size unary right-to-left
~ bit-wise complement unary right-to-left
! logical NOT unary 15 right-to-left
- + negation, plus unary right-to-left
& address of unary right-to-left
% Indirection (dereference) unary right-to-left
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C Operator Precedence (cont’d)
(type) casts unary 14 right-to-left
/% multiplicative binary 13 left-to-right
+ - additive binary 12 left-to-right
<< >> left, right shift binary 11 left-to-right
< <= > >= relational binary 10 left-to-right
== |= equality/ineq. binary 9 left-to-right
& bitwise and binary 8 left-to-right
A bitwise xor binary 7 left-to-right
| bitwise or binary 6 left-to-right
&& logical AND binary 5 left-to-right
|| logical OR binary 4 left-to-right
. conditional ternary 3 right-to-left
= 4= -=
*= /= %= . . :
= As = assignment binary 2 right-to-left
<K= >>=
, sequential eval. | binary 1 left-to-right




Precedence rules of thumb

e Increment/decrement are ultra sticky 3

e Unary operators are very sticky 0
e Math is math, and it’s pretty sticky $
e Comparisons are not very sticky

e Bitwise and logic are very unsticky @

e Assignment is positively repellant a5

e Anything else? Not sure? USE PARENTHESES!!!!

— Parentheses never hurt!!!

[omputer Science
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Order of Evaluation in Compound Expressions

e Which operator has higher precedence?

e If two operators have equal precedence, are
operations evaluated left-to-right or right-to-
left?

e Ex:

a+=b=qg-++r / s & ! t == ;

what gets executed first, second, ...?

One solution: use parentheses to force a specific order

t= (u+v) * w;
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Order of Evaluation in
Compound Expressions

e Common mistake: overlooking precedence and
associativity (I-to-r or r-to-l)

t = ut+tv * w;

Advice: either...
— force order of evaluation when in doubt by using parentheses

— or (even better) write one large expression as sequence of
several smaller expressions
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Evaluating Expressions... (cont’d)

® Instead Of £ common source of bugs &
expressions that
a+=b=q—++r/ (SA ' t==u) : are too complex

Or...
at+=(b=(g-((++r) / (s*(('t)==u)))));

Better:

tmpl = s * ( (!'t) == u);
tmp2 = (++r) / tmpl;

b =qg - tmp2;

a += b;
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Exercise 05a

Operators

. What does the following output?

2. What is the value of a after executing the
following, and is the condition TRUE or FALSE?
int a =32, b=5, ¢c =8, d=4, e = 12;
if (a = ((b>c) || (e / d)) + 6)
...do something...
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Flow of control

e Flow-of-control statements in C
—1f-then-else
—~while and do-while
— for
— continue and break
— switch-case
—goto

—conditional operator (?:)

e Same set in java, except for goto
— Which is bad anyway

(unless you’re a super kernel hacker, then go nuts)

f
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The C Conditional Operator

e Aterse way to write if-then-else statements
c = (a>b) 2d : e;

e This is equivalent to (shorthand for)

if (a > b) £ common source of bugs %
= d: complex conditional
c = ¢S statements
else
c = e;

f
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Combining Assignment and
Condition Checking

Why write this...

c = getchar()
while (¢ !'= ‘\n’) { ~— does the same thing!
..do something..
c = getchar()

...when you can write this instead?

while ( (¢ = getchar()) '= ‘\n’ ) {
..do something..
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for
e The value of the counter after the loop is exited
is valid and can be tested or used

— C99: you can declare your counter in the for loop

for (i =0; i < 10; i++ )
b *= 2;
printf (“b was doubled %$d times\n”, i);

* Some parts of the expression can be missing;

default to null statement
no initialization, i’'s value determined
before the loop is executed

for (“; i < 10; i++ )
b *= 2:
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break Statement
e Terminates execution of closest enclosing for,

while, do, or switch statement

b =20;
for (1 = 0; 1 < 10; i++ ) {
for (J = 0; jJ < 5; Jj++) {

1 f ] ] 100
which loop(s) B Rl :

. . b k;
does this exit? e _
b += a[j];
}
printf (*b = %d\n”, Db);

}
Unlike Java, there is no labeled break

See: http://download.oracle.com/javase/tutorial/java/nutsandbolts/branch.html
for example of a labeled break in Java.

'
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http://download.oracle.com/javase/tutorial/java/nutsandbolts/branch.html

continue Statement

e For bypassing 1 iteration of the innermost loop

— but not exiting the loop altogether

e Example b =0;
for (1 = 0; 1 < 10; i++ ) {

for (J = 0; jJ < 5; J++) {
if (a[i][3j] > 100)
continue;
b += a[1][]]’

}
printf (*b = %d\n”, Db);

[omputer Science
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The goto

e Add symbolic labels (thisisalabel :)to
arbitrary points in your program

« goto <label>; transfers control to that
point
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goto.. (cont'd)

e General consensus: avoid using goto’s

-

label6: ..code here..
if (something) goto label4;
label3: ..code here..
lf,,————‘it (something) goto label2;
labeld: ...code here.. 43553
g/”'— if (something) goto label3;
label2: ..code here..
if (something) goto labqli;

bl
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goto.. (cont'd)

e Common exception: use for

global exits
(program for (..)
termination) for (..)

for (..) {

i1f (disaster)
goto whoops;

whoops:
/* clean up the mess here

and abort execution */




Exercise 05b

Control flow

What are d and g equal to after... 2. Write an equivalent switch statement

int d=11, g=12; unsigned int a;...
int e=13, £f=14; if ((a > 1) && (a2 <= 3))
int h=15; printf (“process now\n”) ;
inta=2 b= 3: else if (a == 5)
_ ! oA printf (“defer til later\n”);
RS ST 40, y = 30; else if (a < 7)
if (a < b) .
{ else
d = e; printf (“invalid code\n”);
if (x > y)
g = h;
}
else
d = £;
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