C Expressions, Operators, and
Flow of Control

C Programming and Software Tools

N.C. State Department of Computer Science

Lomputer dcience

Outline

e Expressions

e QOperators
— Single operand
— Two operands
— Relational
— Logical
— Assignment

e Statement Separation
e C Operator Precedence and Order of Evaluation

e Flow of Control

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 2

Expressions

e Most statements in a C program are expressions

e Fvaluating an expression means doing the
computation according to the definition of the
operations specified

e Results of expression evaluation

— the value returned (and assigned); and/or

— side effects (other changes to variables, or output,
along the way

j =k + 3 * mt+;

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 3

Comparison: C vs. Java Operators

Operator Description Associates Operator
access class feature * /% multiplicative | left-to-right
a[l array index + - additive left-to-right
left-to-right
fn() function call <L 20w left, right shift | left-to-right
++ -- post-inc/dec Notin C i < <= > >= relational left-to-right
++ - pre-inc/dec : = U= equality/ineq.
~ bitwise not :) it - test object left-to-right
/ type
! logical not . / G
right-to-left : & bitwise and left-to-right
-+ unary -/+ ;
! A bitwise xor left-to-right
& * address/dereference ! 8
! I bitwise or left-to-right
(type) cast
----------- S && logical and left-to-right
e <"~ ""object allocation ¢ ¢
|| logical or left-to-right
= 4= —-=
e Coperators not found in Java:) a
) assignment right-to-left
* — A= [=
&= |=
<<= >>=

— pointer operations (->, s,
[omputer Science

4

— sizeof
— sequential evaluation (,)

CSC230: C and Software Tools © NC State Computer Science Faculty

What Are the C Operators?

e There are approximately 50 of them
e Most operators do the same thing in Java and C

e (Categories of operators
. “other”

. arithmetic

1
2
3. logical and relational
4. assignment

5

. bit operators

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 5

Other Operators

e Array indexing (x[]) < Later
e Function calls (£()) < Covered

e Address-of (&x) operator, and pointer < Later
dereferencing (*x)

— and effect of other operators on pointers

e Member (of struct) specification < Later
— direct (x. y) and indirect (x->y)
e The sizeof () operator % Covered

e casting: (type) operand < Covered

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 6

Arithmetic: Ops on a Single Operand

Unary plus (+a): no effect

a = +b;

Unary minus (-b) : change sign of operand

a = -b;

Increment (++) and decrement (--) operators
— operand type must be modifiable (not a constant)

— these operators have side effects!

a=++b / c—- ;

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 7

Single Operand... (cont’d)

prefix: side effect takes place first, then expression value is
determined

inti=1, jJ = 8;
printf (“%d $d\n”, ++i, --3);
printf (“%d %d\n”, i, j);

what is output?

postfix: expression uses old operand value first, then side
effect takes place

int i =1, j = 8;
printf (“%d %d\n”, i++, j--); what is output?
printf (“%d $d\n”, i, j);

£ common source of bugs 2

difference between |

postfix and prefix

CSC230: C and Software Tools © NC State Computer Science Faculty

Arithmetic on Two Operands

e Multiply (*), Quotient (/), Remainder (%), Add
(+), Subtract (=)

— possibility of underflow and overflow during
expression evaluation, or assignment of the results

£ common source of bugs

oo overflow in
e Divide by Zero computations
— causes program execution failure if the operands are

Integer type

— generates a special value (inf) and continues
execution if the operands are |IEEE floating point

£ common source of bugs

divide by zero

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 9

Arithmetic on Two Operands

e Modulus operator (%) operands must have type
integer, should both be positive*

printf (“%d”, (37 % 3));

results?

printf (“%d”, (-37 % 3));

e Result of a%b is program exception if b ==

Integer modulo operators in various
programming languages

* If one operand is negative, result depends on the Result has
language. To check your language, consult this handy table** Language Operator the same sign
as
** Wait, let’s just never do that. ActionScript |% Dividend
mod Divisor
Ada

CSC230: C and Software Tools © NC State Computer Science Faculty rem Dividend

Relational and Logical Operators

Used in evaluation conditions

if (expression evaluates to TRUE)
.. .do something...

What is TRUE (in C)?
— 0 means FALSE
— anythingelse (1, -96,1.414, ‘F’ , inf) means TRUE

— 77

float £ = 9593.264;
if (£)
...do something...

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 11

Relational Operators

Six comparison operators: <, >, ==, 1=, >=, <=

if (a < b)
if (x >= y)
if (g == r)

e Operands must be numbers (integer or floating
point), result type is int

— i.e., cannot use to compare structs, functions, arrays,
etc.

o |f relation is true, resultis 1, else resultis 0

same meaning

float £ = 9593.264; as previous slide
if (£ '= 0)
...do something...

CSC230: C and Software Tools © NC State Computer Science Faculty 12

[omputer Science

Relational Operators (cont’d) I

e Most common mistake in C (in my experience)
== is relational comparison for equality

- aSSignment! -

Example: some strategic defense code...

if (enemy launch = confirmed)
retaliate () ;

Oops... sorry!

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 13

Logical Operators

Logical operators allow construction of complex
(compound) conditions

Operands must be (or return) numbers (integer or floating
point), result type is int

Logical NOT (!) operator

— result: 1 (TRUE) if operand was O (FALSE),
otherwise 0

int J = ...;
if (! 3)
do something ...

float £ = ..., g= ...;
if (! (£<qg))

do something ...
= e

CSC230: C and Software Tools © NC State Computer Science Faculty

Logical ... (cont’d)

e AND (&&):
— evaluate first operand, if 0, result is 0; else,
— evaluate second operand, if 0, result is 0; else,
—resultis 1

if (x && (y > 32))
do something ...

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 15

Logical... (cont’d)

e Condition evaluation stops as soon as truth value
is known

— i.e., order of the operands is significant

£ common source of bugs 2

e Relied on by many prOgramS! lack of understanding of

significance of order
in conditions

if ((b '=0) && ((a / b) > 5))
printf (“quotient greater than 5\n”);

what's the difference???

if (((a / b) > 5) && (b '= 0))
printf (“quotient greater than 5\n”);
Wyt i

CSC230: C and Software Tools © NC State Computer Science Faculty 16

Logical... (cont’d)

e OR(| |) operator
— evaluate first operand, if not O, result is 1;

— otherwise, evaluate second operand, if not 0, result
Is 1;

— otherwise, resultis 0

e There is no logical XOR in C

— but(aXORb)=> (a && (! b)) || ((' a)
§& b)

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 17

A Strange ldea?

e Mixing relational, bit-wise, and arithmetic
operations into a single expression

unsigned char g, h;
int a, b;
float e, £;

if ((a<b) & (e * £ || (g * h))) is condition true?
..do something here..

int a = -4;
%.coCnmonsc.)furceofbug;?é char c = \DI C value of g’?
MiXing or operator
P float e = 0.0, £ = 22.2, g;

in a single expression

;=(C== ‘D) + (e || £) * a;

CSC230: C and Software Tools © NC State Computer Science Faculty 18

Assignment Operators
*a = b assignsthevalueof b to a

— a must be a reference and must be modifiable (not a
function, not an entire array, etc.)

e Both a and b must be one of the following

— numbers (integer or floating), or
— structs or unions of the same type, or
— pointers to variables of the same type

OK Not OK
float a; float a[2];
int b = 25; int b[2] = {25, 15};
a = b T i

CSC230: C and Software Tools © NC State Computer Science Faculty 19

Assignment Operators (cont’d)

a op= b
— where opis one of *,/,%,+,-,<<,>>,&,%,
— “shorthand” fora = a op b

int i = 30, jJ = 40, k = 50
i +=3j; // same as i i

e ..

1 J
k %= j; // same as k =k % jJ
j *= k; // same as j = j * k

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 20

Statement Termination and the “,”

e Normally, statements are executed sequentially
and are separated by ;

e Anotherseparator: ‘', (e.g.,J = k++, i =
k;):
1. evaluate expressions left to right

2. complete all side effects of left expression before
evaluating right expression

3. result is value of the right expression

e More shorthand?

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 21

Constant Expressions

e Constant-valued expressions are used in...
— case statement labels)

— array bounds
y all evaluated at

— bit-field lengths > compile time,
— values of enumeration constants not run time

— initializers of static variables D

35 + (16 3 (4 | 1)),

static int a

(static: variable’s value is initialized only once, no matter how many times the
block in which it is defined is executed)

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 22

Constant Expressions... (cont’d)

e Cannot contain assignments, increment or
decrement operators, function calls, ...

— see a C reference manual for all the restrictions

— basically: nothing that has to be evaluated at run-
time

static int b = a++ - sum() ;

2/ error

CSC230: C and Software Tools © NC State Computer Science Faculty 23

[omputer Science

C Operator Precedence

Tokens Operator Class Prec. Associates
alk] subscripting postfix left-to-right
f(...) function call postfix left-to-right
direct selection postfix 16 left-to-right
-> indirect selection postfix left to right
++ -- increment, decrement postfix left-to-right
++ -- increment, decrement prefix right-to-left
sizeof size unary right-to-left
~ bit-wise complement unary right-to-left
! logical NOT unary 15 right-to-left
- + negation, plus unary right-to-left
& address of unary right-to-left
% Indirection (dereference) unary right-to-left

CSC230: C and Software Tools © NC State Computer Science Faculty 24

C Operator Precedence (cont’d)
(type) casts unary 14 right-to-left
/% multiplicative binary 13 left-to-right
+ - additive binary 12 left-to-right
<< >> left, right shift binary 11 left-to-right
< <= > >= relational binary 10 left-to-right
== |= equality/ineq. binary 9 left-to-right
& bitwise and binary 8 left-to-right
A bitwise xor binary 7 left-to-right
| bitwise or binary 6 left-to-right
&& logical AND binary 5 left-to-right
|| logical OR binary 4 left-to-right
. conditional ternary 3 right-to-left
= 4= -=
*= /= %= . . :
= As = assignment binary 2 right-to-left
<K= >>=
, sequential eval. | binary 1 left-to-right

Precedence rules of thumb

e Increment/decrement are ultra sticky 3

e Unary operators are very sticky 0
e Math is math, and it’s pretty sticky $
e Comparisons are not very sticky

e Bitwise and logic are very unsticky @

e Assignment is positively repellant a5

e Anything else? Not sure? USE PARENTHESES!!!!

— Parentheses never hurt!!!

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 26

Order of Evaluation in Compound Expressions

e Which operator has higher precedence?

e If two operators have equal precedence, are
operations evaluated left-to-right or right-to-
left?

e Ex:

a+=b=qg-++r / s & ! t == ;

what gets executed first, second, ...?

One solution: use parentheses to force a specific order

t= (u+v) * w;

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 27

Order of Evaluation in
Compound Expressions

e Common mistake: overlooking precedence and
associativity (I-to-r or r-to-l)

t = ut+tv * w;

Advice: either...
— force order of evaluation when in doubt by using parentheses

— or (even better) write one large expression as sequence of
several smaller expressions

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 28

Evaluating Expressions... (cont’d)

® Instead Of £ common source of bugs &
expressions that
a+=b=q—++r/ (SA ' t==u) : are too complex

Or...
at+=(b=(g-((++r) / (s*(('t)==u)))));

Better:

tmpl = s * ((!'t) == u);
tmp2 = (++r) / tmpl;

b =qg - tmp2;

a += b;

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 30

Exercise 05a

Operators

. What does the following output?

2. What is the value of a after executing the
following, and is the condition TRUE or FALSE?
int a =32, b=5, ¢c =8, d=4, e = 12;
if (a = ((b>c) || (e / d)) + 6)
...do something...

CSC230: C and Software Tools © NC State Computer Science Faculty

Reminder: Go to course web page for link to exercise form. [,'[]mpllh![SEiEﬂEE
Paste code into ideone.com and submit the link. 31 e

Flow of control

e Flow-of-control statements in C
—1f-then-else
—~while and do-while
— for
— continue and break
— switch-case
—goto

—conditional operator (?:)

e Same set in java, except for goto
— Which is bad anyway

(unless you’re a super kernel hacker, then go nuts)

f
[omputer Science
CSC230: C and Software Tools © NC State Computer Science Faculty 3 2 NC STATE UNIVERSITY

The C Conditional Operator

e Aterse way to write if-then-else statements
c = (a>b) 2d : e;

e This is equivalent to (shorthand for)

if (a > b) £ common source of bugs %
= d: complex conditional
c = ¢S statements
else
c = e;

f
[omputer Science
CSC230: C and Software Tools © NC State Computer Science Faculty 33 NC STATE UNIVERSITY

Combining Assignment and
Condition Checking

Why write this...

c = getchar()
while (¢ !'= ‘\n’) { ~— does the same thing!
..do something..
c = getchar()

...when you can write this instead?

while ((¢ = getchar()) '= ‘\n’) {
..do something..

wmputer Science

for
e The value of the counter after the loop is exited
is valid and can be tested or used

— C99: you can declare your counter in the for loop

for (i =0; i < 10; i++)
b *= 2;
printf (“b was doubled %$d times\n”, i);

* Some parts of the expression can be missing;

default to null statement
no initialization, i’'s value determined
before the loop is executed

for (“; i < 10; i++)
b *= 2:

CSC230: C and Software Tools © NC State Computer Science Faculty 35

[omputer Science

break Statement
e Terminates execution of closest enclosing for,

while, do, or switch statement

b =20;
for (1 = 0; 1 < 10; i++) {
for (J = 0; jJ < 5; Jj++) {

1 f]] 100
which loop(s) B Rl :

. . b k;
does this exit? e _
b += a[j];
}
printf (*b = %d\n”, Db);

}
Unlike Java, there is no labeled break

See: http://download.oracle.com/javase/tutorial/java/nutsandbolts/branch.html
for example of a labeled break in Java.

'
[omputer Science
CSC230: C and Software Tools © NC State Computer Science Faculty 36 NC STATE UNIVERSITY

http://download.oracle.com/javase/tutorial/java/nutsandbolts/branch.html

continue Statement

e For bypassing 1 iteration of the innermost loop

— but not exiting the loop altogether

e Example b =0;
for (1 = 0; 1 < 10; i++) {

for (J = 0; jJ < 5; J++) {
if (a[i][3j] > 100)
continue;
b += a[1][]]’

}
printf (*b = %d\n”, Db);

[omputer Science

37

The goto

e Add symbolic labels (thisisalabel :)to
arbitrary points in your program

« goto <label>; transfers control to that
point

[omputer Science
38 NC STATE UNIVERSITY

goto.. (cont'd)

e General consensus: avoid using goto’s

-

label6: ..code here..
if (something) goto label4;
label3: ..code here..
lf,,————‘it (something) goto label2;
labeld: ...code here.. 43553
g/”'— if (something) goto label3;
label2: ..code here..
if (something) goto labqli;

bl

39

clence

goto.. (cont'd)

e Common exception: use for

global exits
(program for (..)
termination) for (..)

for (..) {

i1f (disaster)
goto whoops;

whoops:
/* clean up the mess here

and abort execution */

Exercise 05b

Control flow

What are d and g equal to after... 2. Write an equivalent switch statement

int d=11, g=12; unsigned int a;...
int e=13, £f=14; if ((a > 1) && (a2 <= 3))
int h=15; printf (“process now\n”) ;
inta=2 b= 3: else if (a == 5)
_ ! oA printf (“defer til later\n”);
RS ST 40, y = 30; else if (a < 7)
if (a < b) .
{ else
d = e; printf (“invalid code\n”);
if (x > y)
g = h;
}
else
d = £;

CSC230: C and Software Tools © NC State Computer Science Faculty

Reminder: Go to course web page for link to exercise form. [:[]mpllh![SEiEﬂEE
Paste code into ideone.com and submit the link. 41

