
C Expressions, Operators, and
Flow of Control
C Programming and Software Tools
N.C. State Department of Computer Science

Outline

• Expressions

• Operators
– Single operand

– Two operands

– Relational

– Logical

– Assignment

• Statement Separation

• C Operator Precedence and Order of Evaluation

• Flow of Control

CSC230: C and Software Tools © NC State Computer Science Faculty 2

Expressions

• Most statements in a C program are expressions

• Evaluating an expression means doing the
computation according to the definition of the
operations specified

• Results of expression evaluation

– the value returned (and assigned); and/or

– side effects (other changes to variables, or output,
along the way)

CSC230: C and Software Tools © NC State Computer Science Faculty 3

j = k + 3 * m++;

Comparison: C vs. Java Operators
Operator Description Associates

. access class feature

left-to-right
a[] array index

fn() function call

++ -- post-inc/dec

++ -- pre-inc/dec

right-to-left

~ bitwise not

! logical not

- + unary -/+

& * address/dereference

(type) cast

new object allocation

CSC230: C and Software Tools © NC State Computer Science Faculty 4

Operator Description Associates

* / % multiplicative left-to-right

+ - additive left-to-right

<< >> >>> left, right shift left-to-right

< <= > >= relational left-to-right

== != equality/ineq.

left-to-right
instanceof

test object
type

& bitwise and left-to-right

^ bitwise xor left-to-right

| bitwise or left-to-right

&& logical and left-to-right

|| logical or left-to-right

= += -=

*= /= %=

&= ^= |=

<<= >>=

assignment right-to-left

• C operators not found in Java:

– pointer operations (->, &, *)

– sizeof

– sequential evaluation (,)

Not in C

What Are the C Operators?

• There are approximately 50 of them

• Most operators do the same thing in Java and C

• Categories of operators

1. “other”

2. arithmetic

3. logical and relational

4. assignment

5. bit operators

CSC230: C and Software Tools © NC State Computer Science Faculty 5

Other Operators
• Array indexing (x[])

• Function calls (f())

• Address-of (&x) operator, and pointer
dereferencing (*x)
– and effect of other operators on pointers

• Member (of struct) specification
– direct (x.y) and indirect (x->y)

• The sizeof() operator

• casting: (type) operand

CSC230: C and Software Tools © NC State Computer Science Faculty 6

Later

Later

Later

Covered

Covered

Covered

Arithmetic: Ops on a Single Operand
Unary plus (+a): no effect

CSC230: C and Software Tools © NC State Computer Science Faculty 7

a = ++b / c-- ;

Unary minus (-b): change sign of operand

Increment (++) and decrement (--) operators

– operand type must be modifiable (not a constant)

– these operators have side effects!

a = +b;

a = -b;

Single Operand... (cont’d)

CSC230: C and Software Tools © NC State Computer Science Faculty 8

 common source of bugs 

difference between
postfix and prefix

prefix: side effect takes place first, then expression value is
determined

int i = 1, j = 8;

printf(“%d %d\n”, ++i, --j);

printf(“%d %d\n”, i, j);

postfix: expression uses old operand value first, then side
effect takes place

int i = 1, j = 8;

printf(“%d %d\n”, i++, j--);

printf(“%d %d\n”, i, j);

what is output?

what is output?

Arithmetic on Two Operands
• Multiply (*), Quotient (/), Remainder (%), Add

(+), Subtract (-)
– possibility of underflow and overflow during

expression evaluation, or assignment of the results

• Divide by zero
– causes program execution failure if the operands are

integer type

– generates a special value (inf) and continues
execution if the operands are IEEE floating point

CSC230: C and Software Tools © NC State Computer Science Faculty 9

 common source of bugs 

overflow in
computations

 common source of bugs 

divide by zero

Arithmetic on Two Operands

• Modulus operator (%) operands must have type
integer, should both be positive*

• Result of a%b is program exception if b == 0

CSC230: C and Software Tools © NC State Computer Science Faculty 10

printf(“%d”, (37 % 3));

printf(“%d”, (-37 % 3));

results?

* If one operand is negative, result depends on the

 language. To check your language, consult this handy table**

** Wait, let’s just never do that.

Relational and Logical Operators

CSC230: C and Software Tools © NC State Computer Science Faculty 11

Used in evaluation conditions

float f = 9593.264;

if (f)

 ...do something...

What is TRUE (in C)?

– 0 means FALSE

– anything else (1, -96, 1.414,‘F’, inf) means TRUE

– ???

if (expression evaluates to TRUE)

 ...do something...

Relational Operators

• Operands must be numbers (integer or floating
point), result type is int

– i.e., cannot use to compare structs, functions, arrays,
etc.

• If relation is true, result is 1, else result is 0

CSC230: C and Software Tools © NC State Computer Science Faculty 12

if (a < b) ...

if (x >= y) ...

if (q == r) ...

Six comparison operators: <, >, ==, !=, >=, <=

float f = 9593.264;

if (f != 0)

 ...do something...

same meaning

as previous slide

Relational Operators (cont’d)

• Most common mistake in C (in my experience)

== is relational comparison for equality

= is assignment!

CSC230: C and Software Tools © NC State Computer Science Faculty 13

if (enemy_launch = confirmed)

 retaliate();

Oops… sorry!

 common source of bugs 

confusion between
= and ==

Example: some strategic defense code…

Logical Operators

CSC230: C and Software Tools © NC State Computer Science Faculty 14

Logical operators allow construction of complex
(compound) conditions

Operands must be (or return) numbers (integer or floating
point), result type is int

int j = ...;

if (! j)

 ... do something ... float f = ..., g = ...;

if (! (f < g))

 ... do something ...

Logical NOT (!) operator

– result: 1 (TRUE) if operand was 0 (FALSE),
otherwise 0

Logical … (cont’d)
• AND (&&):

– evaluate first operand, if 0, result is 0; else,

– evaluate second operand, if 0, result is 0; else,

– result is 1

CSC230: C and Software Tools © NC State Computer Science Faculty 15

if (x && (y > 32))

 ... do something ...

Logical... (cont’d)

• Condition evaluation stops as soon as truth value
is known

– i.e., order of the operands is significant

• Relied on by many programs!

CSC230: C and Software Tools © NC State Computer Science Faculty 16

if ((b != 0) && ((a / b) > 5))

 printf(“quotient greater than 5\n”);

what’s the difference???

if (((a / b) > 5) && (b != 0))

 printf(“quotient greater than 5\n”);

 common source of bugs 

lack of understanding of
significance of order

in conditions

Logical… (cont’d)

• OR (||) operator

– evaluate first operand, if not 0, result is 1;

– otherwise, evaluate second operand, if not 0, result
is 1;

– otherwise, result is 0

• There is no logical XOR in C

– but (a XOR b)  (a && (! b)) || ((! a)
&& b)

CSC230: C and Software Tools © NC State Computer Science Faculty 17

A Strange Idea?

• Mixing relational, bit-wise, and arithmetic
operations into a single expression

CSC230: C and Software Tools © NC State Computer Science Faculty 18

unsigned char g, h;

int a, b;

float e, f;

…

if ((a < b) && (e * f || (g ^ h)))

 …do something here…

 common source of bugs 

mixing of operator
types

in a single expression

int a = -4;

char c = ‘D’;

float e = 0.0, f = 22.2, g;

…

g = (c == ‘D’) + (e || f) * a;

is condition true?

value of g?

Assignment Operators
• a = b assigns the value of b to a

– a must be a reference and must be modifiable (not a
function, not an entire array, etc.)

• Both a and b must be one of the following

– numbers (integer or floating), or

– structs or unions of the same type, or

– pointers to variables of the same type

CSC230: C and Software Tools © NC State Computer Science Faculty 19

float a;

int b = 25;

a = b;

float a[2];

int b[2] = {25, 15};

a = b;

OK Not OK

Assignment Operators (cont’d)
• a op= b

– where op is one of *,/,%,+,-,<<,>>,&,^,|

– “shorthand” for a = a op b

CSC230: C and Software Tools © NC State Computer Science Faculty 20

int i = 30, j = 40, k = 50;

i += j; // same as i = i + j

k %= j; // same as k = k % j

j *= k; // same as j = j * k

Statement Termination and the “,”

• Normally, statements are executed sequentially
and are separated by ;

• Another separator: ‘,’ (e.g., j = k++, i =
k;):

1. evaluate expressions left to right

2. complete all side effects of left expression before
evaluating right expression

3. result is value of the right expression

• More shorthand?

CSC230: C and Software Tools © NC State Computer Science Faculty 21

Constant Expressions

• Constant-valued expressions are used in…

– case statement labels

– array bounds

– bit-field lengths

– values of enumeration constants

– initializers of static variables

CSC230: C and Software Tools © NC State Computer Science Faculty 22

static int a = 35 + (16 % (4 | 1));

all evaluated at

compile time,

not run time

(static: variable’s value is initialized only once, no matter how many times the
block in which it is defined is executed)

Constant Expressions… (cont’d)

• Cannot contain assignments, increment or
decrement operators, function calls, …

– see a C reference manual for all the restrictions

– basically: nothing that has to be evaluated at run-
time

CSC230: C and Software Tools © NC State Computer Science Faculty 23

static int b = a++ - sum();

error

C Operator Precedence

Tokens Operator Class Prec. Associates

a[k] subscripting postfix

16

left-to-right

f(...) function call postfix left-to-right

. direct selection postfix left-to-right

-> indirect selection postfix left to right

++ -- increment, decrement postfix left-to-right

++ -- increment, decrement prefix

15

right-to-left

sizeof size unary right-to-left

~ bit-wise complement unary right-to-left

! logical NOT unary right-to-left

- + negation, plus unary right-to-left

& address of unary right-to-left

* Indirection (dereference) unary right-to-left

CSC230: C and Software Tools © NC State Computer Science Faculty 24

C Operator Precedence (cont’d)
(type) casts unary 14 right-to-left

* / % multiplicative binary 13 left-to-right

+ - additive binary 12 left-to-right

<< >> left, right shift binary 11 left-to-right

< <= > >= relational binary 10 left-to-right

== != equality/ineq. binary 9 left-to-right

& bitwise and binary 8 left-to-right

^ bitwise xor binary 7 left-to-right

| bitwise or binary 6 left-to-right

&& logical AND binary 5 left-to-right

|| logical OR binary 4 left-to-right

?: conditional ternary 3 right-to-left

= += -=
*= /= %=
&= ^= |=
<<= >>=

assignment binary 2 right-to-left

, sequential eval. binary 1 left-to-right 25

Precedence rules of thumb

• Increment/decrement are ultra sticky

• Unary operators are very sticky

• Math is math, and it’s pretty sticky

• Comparisons are not very sticky

• Bitwise and logic are very unsticky

• Assignment is positively repellant

• Anything else? Not sure? USE PARENTHESES!!!!
– Parentheses never hurt!!!

CSC230: C and Software Tools © NC State Computer Science Faculty 26

x++

--y

!x

&y

x*2

y+3

x==0

y<5

x^y

a&&b

x=0

y=12

Order of Evaluation in Compound Expressions

• Which operator has higher precedence?

• If two operators have equal precedence, are
operations evaluated left-to-right or right-to-
left?

• Ex:

CSC230: C and Software Tools © NC State Computer Science Faculty 27

a += b = q - ++ r / s && ! t == u ;

what gets executed first, second, ...?

One solution: use parentheses to force a specific order

t = (u + v) * w;

Order of Evaluation in
Compound Expressions
• Common mistake: overlooking precedence and

associativity (l-to-r or r-to-l)

CSC230: C and Software Tools © NC State Computer Science Faculty 28

 common source of bugs 

failure to use parentheses
to enforce precedence

t = u+v * w;

Advice: either...

– force order of evaluation when in doubt by using parentheses

– or (even better) write one large expression as sequence of
several smaller expressions

Evaluating Expressions… (cont’d)
• Instead of…

CSC230: C and Software Tools © NC State Computer Science Faculty 30

a+=b=q-++r/(s^!t==u);

Or…

a+=(b=(q-((++r)/(s^((!t)==u)))));

Better:

tmp1 = s ^ ((!t) == u);

tmp2 = (++r) / tmp1;

b = q - tmp2;

a += b;

 common source of bugs 

expressions that
are too complex

Reminder: Go to course web page for link to exercise form.
Paste code into ideone.com and submit the link.

Exercise 05a

1. What does the following output?

2. What is the value of a after executing the
following, and is the condition TRUE or FALSE?

CSC230: C and Software Tools © NC State Computer Science Faculty

31

Operators

int a = 32, b = 5;

printf(“%d %d\n”, a--, ++b);

printf(“%d %d\n”, --a, --b);

int a = 32, b = 5, c = 8, d = 4, e = 12;

if (a -= ((b > c) || (e / d)) + 6)

 ...do something...

Flow of control

• Flow-of-control statements in C
– if-then-else

– while and do-while

– for

– continue and break

– switch-case

– goto

– conditional operator (?:)

• Same set in java, except for goto

– Which is bad anyway
(unless you’re a super kernel hacker, then go nuts)

CSC230: C and Software Tools © NC State Computer Science Faculty 32

The C Conditional Operator

• A terse way to write if-then-else statements

• This is equivalent to (shorthand for)

CSC230: C and Software Tools © NC State Computer Science Faculty 33

c = (a > b) ? d : e;

if (a > b)

 c = d;

else

 c = e;

 common source of bugs 

complex conditional
statements

Combining Assignment and
Condition Checking

CSC230: C and Software Tools © NC State Computer Science Faculty 34

Why write this…

…when you can write this instead?

c = getchar();

while (c != ‘\n’) {

 …do something…

 c = getchar();

}

while ((c = getchar()) != ‘\n’) {

 …do something…

}

does the same thing!

for
• The value of the counter after the loop is exited

is valid and can be tested or used

– C99: you can declare your counter in the for loop

• Some parts of the expression can be missing;
default to null statement

CSC230: C and Software Tools © NC State Computer Science Faculty 35

for (i = 0; i < 10; i++)

 b *= 2;

printf(“b was doubled %d times\n”, i);

for (; i < 10; i++)

 b *= 2;

no initialization, i’s value determined

before the loop is executed

break Statement
• Terminates execution of closest enclosing for,
while, do, or switch statement

CSC230: C and Software Tools © NC State Computer Science Faculty 36

b = 0;

for (i = 0; i < 10; i++) {

 for (j = 0; j < 5; j++) {

 if (a[i][j] > 100)

 break;

 b += a[j];

 }

 printf(“b = %d\n”, b);

}

Unlike Java, there is no labeled break
See: http://download.oracle.com/javase/tutorial/java/nutsandbolts/branch.html
for example of a labeled break in Java.

which loop(s)

does this exit?

http://download.oracle.com/javase/tutorial/java/nutsandbolts/branch.html

continue Statement

• For bypassing 1 iteration of the innermost loop

– but not exiting the loop altogether

• Example

CSC230: C and Software Tools © NC State Computer Science Faculty 37

b = 0;

for (i = 0; i < 10; i++) {

 for (j = 0; j < 5; j++) {

 if (a[i][j] > 100)

 continue;

 b += a[i][j];

 }

 printf(“b = %d\n”, b);

}

The goto

• Add symbolic labels (thisisalabel:)to
arbitrary points in your program

• goto <label>; transfers control to that
point

CSC230: C and Software Tools © NC State Computer Science Faculty 38

goto… (cont’d)

• General consensus: avoid using goto’s

CSC230: C and Software Tools © NC State Computer Science Faculty 39

label6: …code here…

 if (something) goto label4;

label3: …code here…

 if (something) goto label2;

label4: ….code here…

 if (something) goto label3;

label2: …code here…

 if (something) goto label5;

…

goto… (cont’d)
• Common exception: use for

global exits
(program
termination)

CSC230: C and Software Tools © NC State Computer Science Faculty 40

for (…)

 for (…)

 for (…) {

 …

 if (disaster)

 goto whoops;

 }

…

whoops:

 /* clean up the mess here

 and abort execution */

Reminder: Go to course web page for link to exercise form.
Paste code into ideone.com and submit the link.

Exercise 05b

1. What are d and g equal to after...

CSC230: C and Software Tools © NC State Computer Science Faculty

41

Control flow

int d=11, g=12;

int e=13, f=14;

int h=15;

int a = 2, b = 3;

int x = 40, y = 30;

if (a < b)

{

 d = e;

if (x > y)

 g = h;

}

else

 d = f;

unsigned int a;...

if ((a > 1) && (a <= 3))

 printf(“process now\n”);

else if (a == 5)

 printf(“defer til later\n”);

else if (a < 7)

 ;

else

 printf(“invalid code\n”);

2. Write an equivalent switch statement

