
Bit Level Operators in C

C Programming and Software Tools
N.C. State Department of Computer Science

Contents

• “Bit Twiddling”

• Bit Operators

• Differences between Logical and Bitwise
Operators

• Shift Operators

• Examples

CSC230: C and Software Tools © NC State Computer Science Faculty 2

Hexadecimal reminder
Hex digit Binary Decimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

A 1010 10

B 1011 11

C 1100 12

D 1101 13

E 1110 14

F 1111 15

CSC230: C and Software Tools © NC State Computer Science Faculty 3

0xDEADBEEF
1101 1110 1010 1101 1011 1110 1110 1111

0x02468ACE
0000 0010 0100 0110 1000 1010 1100 1110

0x13579BDF
0001 0011 0101 0111 1001 1011 1101 1111

“Bit Twiddling”

• C has operators that treat operands simply as
sequences of bits

• Q: Why do bit level operations in C (or any
language)?

• A#1: lets you pack information as efficiently as
possible

• A#2: some processing is faster to implement
with bit-level operations than with arithmetic
operators

CSC230: C and Software Tools © NC State Computer Science Faculty 4

“Bit Twiddling”... (cont’d)

• Ex: image processing

– pack 64 B&W pixel values into a single long long
operand, and process 64 pixels with one instruction

– mask one image with another to create overlays

• Other applications:

– data compression,

– encryption

– error correction

– I/O device control

– ...

CSC230: C and Software Tools © NC State Computer Science Faculty 5

Working in Binary With C?
• There is no standard way to…

– …write a constant in binary

– …input an ASCII-encoded binary string and convert to
an integer

– …output an integer as an ASCII-encoded binary string

• Alternatives?
– Use octal or hexadecimal representation

CSC230: C and Software Tools © NC State Computer Science Faculty 6

printf(“%b”, i);

scanf(“%b”, &i);

i = 01011011;

 common source of bugs

thinking sequence of

1’s and 0’s means base 2

BitOps: Unary

• Bit-wise complement (~)

– operand must be integer type

– result is ones-complement of operand (flip every bit)

– ex:

CSC230: C and Software Tools © NC State Computer Science Faculty 7

 ~0x0d // (binary 00001101)

== 0xf2 // (binary 11110010)

Not the same as Logical NOT (!) or sign change (-)

char i, j1, j2, j3;

i = 0x0d; // binary 00001101

j1 = ~i; // binary 11110010

j2 = -i; // binary 11110011

j3 = !i; // binary 00000000

BitOps: Two Operands

• Operate bit-by-bit on operands to produce a
result operand of the same length

• And (&): result 1 if both inputs 1, 0 otherwise

• Or (|): result 1 if either input 1, 0 otherwise

• Xor (^): result 1 if one input 1, but not both, 0
otherwise

• Operands must be of type integer

CSC230: C and Software Tools © NC State Computer Science Faculty 8

Two Operands... (cont’d)

• Examples

CSC230: C and Software Tools © NC State Computer Science Faculty 9

 0011 1000

& 1101 1110

 0001 1000

 0011 1000

| 1101 1110

 1111 1110

 0011 1000

^ 1101 1110

 1110 0110

Differences: Logical and Bit Ops

CSC230: C and Software Tools © NC State Computer Science Faculty 10

int a, b, c,

 d, e, f;

int i = 30;

int j = 0;

a = i && j;

b = !j;

c = !i;

float x = 30.0;

float y = 0.0;

d = x || y;

e = !y;

f = !x;

int a, b, c,

 d, e, f;

int i = 30;

int j = 0;

a = i & j;

b = ~j;

c = ~i;

float x = 30.0;

float y = 0.0;

d = x | y;

e = ~y;

f = ~x;

Results? Difference? Problems?

 common source of bugs

difference between

logical and bit-level

operators

Shift Operations
• x << y is left (logical) shift of x by y positions

– x and y must both be integers

– x should be unsigned or positive

– 0 <= y <= number of bits in x

– y leftmost bits of x are discarded

– zero fill y bits on the right

CSC230: C and Software Tools © NC State Computer Science Faculty 11

 common source of bugs

logical shifts

on negative

numbers

 01111001 << 3

 11001000

these 3 bits are zero filled

these 3 bits are discarded

ShiftOps... (cont’d)
• x >> y is right (logical) shift of x by y positions

– y rightmost bits of x are discarded

– zero fill y bits on the left

CSC230: C and Software Tools © NC State Computer Science Faculty 12

 common source of bugs

logical shifts

on negative

numbers

 01111001 >> 3

 00001111

these 3 bits are zero filled

these 3 bits are discarded

ShiftOps... (cont’d)

• It is occasionally useful to know that...

– right logical shift of an unsigned number x by y
positions is equivalent to dividing x by 2y

– left logical shift of an unsigned number x by y
positions is equivalent to multiplying x by 2y

CSC230: C and Software Tools © NC State Computer Science Faculty 13

unsigned char j, k, m;

j = 121;

k = j << 3

m = j >> 3;

printf(“%d %d %d\n”, j, k, m);

Other Useful Bit Operations
• Complementing, Anding, Oring, and Xoring bits are all

provided directly by C operators

• What about the following?

– clearing all or selected bits to 0’s, or setting all or selected bits
to 1’s

– testing if all or selected bits are 0’s, or 1’s

– counting the number of bits that are 0’s, or that are 1’s

– copying all or selected bits from x to y

– copying a bit or bits from position i of x to position j of y

CSC230: C and Software Tools © NC State Computer Science Faculty 14

Clearing Bits to 0’s

• Using C operators:

– & with 0 will clear, & with 1 means “no change”

• So, create a mask with 0’s where you want to
clear, and 1’s everywhere else

CSC230: C and Software Tools © NC State Computer Science Faculty 15

If input is... And mask is... Then input &
mask =

0 0 0 (no change)

0 1 0 (no change)

1 0 0 (clear)

1 1 1 (no change)

Clearing... (cont’d)
• How would you clear (to 0) all the bits in a
char?

• How would you clear the right two bits
(without changing the other bits)?

CSC230: C and Software Tools © NC State Computer Science Faculty 16

unsigned char m = 0x00;

a = a & m;

unsigned char m = 0xFC;

a = a & m;

 a: 0011 1011

& m: 1111 1100

 a: 0011 1000

 a: 0011 1011

& m: 0000 0000

 a: 0000 0000

Setting Bits to 1’s
• Using C operators:

– | with 1 will set, | with 0 means “no change”

• So, create a mask with 1’s where you want to
set, and 0’s everywhere else

CSC230: C and Software Tools © NC State Computer Science Faculty 17

If input is... And mask is... Then input |
mask =

0 0 0 (no change)

0 1 1 (set)

1 0 1 (no change)

1 1 1 (no change)

Setting... (cont’d)
• How would you set (to 1) all the bits in a char ?

• How would you set the right two bits without
changing the other bits?

CSC230: C and Software Tools © NC State Computer Science Faculty 18

unsigned char m = 0xFF;

a = a | m;

 a: 0011 1110

| m: 1111 1111

 a: 1111 1111

unsigned char m = 0x03;

a = a | m;

 a: 0011 1110

| m: 0000 0011

 a: 0011 1111

Complementing (Inverting) Bits
• Using C operators:

– ^ with 1 will complement, ^ with 0 means “no
change”

• So, create a mask with 1’s where you want to
complement, and 0’s everywhere else

CSC230: C and Software Tools © NC State Computer Science Faculty 19

If input is... And mask is... Then input ^
mask =

0 0 0 (no change)

0 1 1 (complement)

1 0 1 (no change)

1 1 0 (complement)

Complementing... (cont’d)
• How would you complement (invert) all the bits

in a char ?

• How would you complement the right two bits
without changing the other bits?

CSC230: C and Software Tools © NC State Computer Science Faculty 20

unsigned char m = 0xFF;

a = a ^ m;

a = ~a; //also works

 a: 0011 1110

^ m: 1111 1111

 a: 1100 0001

unsigned char m = 0x03;

a = a ^ m;

 a: 0011 1110

^ m: 0000 0011

 a: 0011 1101

Testing Bits for 1’s
• Using C operators:

1. & with 1 will where you want to test, & with 0
elsewhere

2. then check if result == mask

• So, create a mask with 1’s where you want to
test, and 0’s everywhere else

CSC230: C and Software Tools © NC State Computer Science Faculty 21

If input is... And mask is... Then input & mask =

0 0 0 (matches mask)

0 1 0 (won’t match mask)

1 0 0 (matches mask)

1 1 1 (matches mask)

Test... (cont’d)
• How would you test (if == 1) all the bits in a
char ?

• How would you test if the right two bits == 1?

CSC230: C and Software Tools © NC State Computer Science Faculty 22

unsigned char m = 0xFF;

if ((a & m) == m)

 ...

 a: 0011 1110

& m: 1111 1111

 0011 1110

unsigned char m = 0x03;

if ((a & m) == m)

 ...

 a: 0011 1110

& m: 0000 0011

 0000 0010 Not equal to m

Counting the Bits That Are 1’s

• Using C operators:

1. you already know how to test if a specific bit == 1

2. do this for each bit, one at a time

3. each time the bit == 1, add 1 to a counter

• A movable mask

– (1 << i) creates a mask with a 1 in the ith position
from the right, and 0 everywhere else

CSC230: C and Software Tools © NC State Computer Science Faculty 23

Test... (cont’d)

• How would you count the number of bits == 1 in
an unsigned char?

CSC230: C and Software Tools © NC State Computer Science Faculty 24

unsigned char m;

unsigned int cnt = 0;

for (i = 0; i < 8; i++) {

 m = 1 << i;

 if ((a & m) == m)

 cnt += 1;

}

Testing Bits for 0’s

• Using C operators:

– (you try it)

• How would you test (if == 0) all the bits in a
char?

• How would you test if the two right bits == 0?

CSC230: C and Software Tools © NC State Computer Science Faculty 25

???

???

Copying Selected Bits (from b to a)
• Using C operators:

– clear all the bits in a you do want to replace

– clear all the bits in b you don’t want to copy

– OR a with b to get result

CSC230: C and Software Tools © NC State Computer Science Faculty 26

 a: 0011 1110

&~m: 1111 1100

 0011 1100

 b: 1010 0101

& m: 0000 0011

 0000 0001

 0011 1100

| 0000 0001

 0011 1101

Reminder: Go to course web page for link to exercise form.
Paste code into ideone.com and submit the link.

Exercise 06a

• Show the code to set the middle 4 bits of
char a to 1 (without changing the other bits)

• Show the code to copy the middle 4 bits of c to d
(without changing the other bits).
What is d (in binary) afterwards?

• What is the value (in binary and hex) of b after
executing:

copyright 2009 Douglas S Reeves

27

Bitwise operators

b = 0x1D;

m = 0xB7;

b = b ^ m;

unsigned char c = 0xd6, d = 0x6c;

