Bit Level Operators in C

C Programming and Software Tools

N.C. State Department of Computer Science

[omputer Science

NC STATE UNIVERSITY

Contents

“Bit Twiddling”
Bit Operators

Operators
Shift Operators
Examples

CSC230: C and Software Tools © NC State Computer Science Faculty

Differences between Logical and Bitwise

[omputer Science
2

“Bit Twiddling”

e C has operators that treat operands simply as
sequences of bits

e Q: Why do bit level operations in C (or any
language)?

e A#1: lets you pack information as efficiently as
possible

e A#2: some processing is faster to implement
with bit-level operations than with arithmetic
operators

€SC230: € and Software Tools © NC State Computer Science Faculty S NC STATE UNIVERSITY

“Bit Twiddling”... (cont’d)

e EXx: image processing
— pack 64 B&W pixel values into a single long long
operand, and process 64 pixels with one instruction
— mask one image with another to create overlays

e Other applications:
— data compression,
— encryption
— error correction
— 1/O device control

€5C230: C and Software Tools © NC State Computer Science Faculty PRl NC STATE UNIVERSITY

Working in Binary With C?

e There is no standard way to...

£ common source of bugs £

— ...write a_constant in binary thinking sequence of

- I's and 0's means base 2
i = 01011011;

— ...input armASCll-encoded binary string and convert to
an integer

scarﬁ‘g‘l@”,/&i);

- ...outpuI@ intege%an ASCll-encoded binary string

printfEub”, i);
e Alternatives? :
[omputer Science

— Use octal or hgxadeumal representation™™"

(CSC230: C and Software Tools © NC State Computer Science Faculty

BitOps: One Operand

¢ Bit-wise complement (~)
— operand must be integer type
— result is ones-complement of operand (flip every bit)

- ex ~0x0d // (binary 00001101)
== OxF2 // (binary 11110010)

Not the same as Logical NOT (!) or sign change (-)

char 1, j1, jJ2, j3;
1 = 0x0d; // binary 00001101

J1l = ~1i; // binary 11110010
J2 = -1i; // binary 11110011 .
33 = 'i; // binary 00000000 pumsugmg

€5C230: C and Software Tools © NC State Computer Science Faculty Pl NC STATE UNIVERSITY

BitOps: Two Operands

e Operate bit-by-bit on operands to produce a
result operand of the same length

e And (&): result 1 if both inputs 1, 0 otherwise
e Or (]): result 1 if either input 1, 0 otherwise
e Xor (™): result 1 if one input 1, but not both, 0

otherwise

e Operands must be of type integer

[omputer Science
€SC230: C and Software Tools © NC State Computer Science Faculty 7
Two Operands... (cont’d)
e Examples
00 111 000 00 111 000 00 111 000
& | "
11 011 110 11 011 110 11 011 110
00 011 000 11 111 110 11 100 110
[omputer Science

€5C230: C and Software Tools © NC State Computer Science Faculty

PRl NC STATE UNIVERSITY

Differences: Logical and Bit Ops

Results? Difference? Problems?

int a, b, c, int a, b, c,
d, e, F; d, e, T;

int 1 = 30; t 1 = 30;
int j = 0; tj=0;

- 3 3 - £ common source of bugs £ - 3 1 -
ﬁ _ :-%& 1- difference between _ _I__& 1-

- 'J_’ logical and bit-level - -!’
c = Ii; operators = -
float x = 30.0; float x = 30.0;
float y = 0.0; float y = 0.0;
d=x11vy: d=x1Yy;
e = Iy; e = ~y, E
f = lX; s Facult = X, v |

Shift Operations
e X << Vs left (logical) shift of X by y positions

- X and y mUSt bOth be IntegerS £ common source of bugs £
. . logical shifts
— X should be unsigned or positive Oﬂ negative

numbers

— 0 <=y <= number of bits in X
— VY leftmost bits of X are discarded
— zero fill y bits on the right

these 3 bits are discarded

01111001 << 3

____Z% ________

Y (omputer Sci
these 3 bits are zero filled l]l'ﬂ[]llil!l E]E"EE
€5C230: C and Software Tools © NC State Computer Science Faculty 10

ShiftOps... (cont’d)

e X >> Visright (logical) shift of X by y positions
— Y rightmost bits of X are discarded
— zero fill y bits on the left

£ common source of bugs £

logical shifts

on negative
numbers

these 3 bits are discarded

-
01111001 >> 3

00001111
Y (omputer Sci
these 3 bits are zero filled umpmm [:]E"[:E
€SC230: C and Software Tools © NC State Computer Science Faculty 11

ShiftOps... (cont’d)

e |t is occasionally useful to know that...

— right logical shift of an unsigned number x by y
positions is equivalent to dividing x by 2Y

— left logical shift of an unsigned number x by y
positions is equivalent to multiplying x by 2Y

unsigned char j, k, m;

Jj = 121;

k =jJ << 3

m= 3 >> 3;

printf(“%d %d %d\n”, j, k, m);

[omputer Science

€5C230: C and Software Tools © NC State Computer Science Faculty PR NC STATE UNIVERSITY

Other Useful Bit Operations

e Complementing, Anding, Oring, and Xoring bits are all
provided directly by C operators
e What about the following?

clearing all or selected bits to Q’s, or setting all or selected bits
tol’s

testing if all or selected bits are 0’s, or 1's

counting the number of bits that are 0’s, or that are 1's

copying all or selected bits from x toy

copying a bit or bits from position i of x to position j of y

€SC230: € and Software Tools © NC State Computer Science Faculty R NC STATE UNIVERSITY

Clearing Bits to O’s

e Using C operators:
— & with 0 will clear, & with 1 means “no change”

® So, create a mask with 0’s where you want to
clear, and 1’s everywhere else

If input is... | And mask is... | Then input &
mask =

0 (no change)
0 (no change)
0 (clear)

1 (no change)

€5C230: C and Software Tools © NC State Computer Science Faculty PRl NC STATE UNIVERSITY

0 0
0 1
1 0
1 1

Clearing... (cont’d)

e How would you clear (to O) all the bitsin a

char?

= 0x00;
a=a4é&

unsigned char m

m;

a: 00 111 011

e How would you clear the right two bits

(without changing the other bits)?

a=aé&m;

unsigned char m = 0374;

(CSC230: C and Software Tools © NC State Computer Science Facu

Ity

a: 00 111 011

Setting Bits to

1's

e Using C operators:
— | with 1 will set, | with 0 means “no change”

® So, create a mask with 1’s where you want to
set, and 0’s everywhere else

If input is... | And mask is... | Then input |
mask =

0 0 0 (no change)
0 1 1 (set)

1 0 1 (no change)

1 1 1 (no change)

(€SC230: C and Software Tools © NC State Computer Science Facu

Ity

Lomputer dcience
T NC STATE UNNVERSITY |

Setting... (cont’d)

e How would you set (to 1) all the bits in a char ?

a: 00 111 110

unsigned char m = 0377; I_
a=al m m: 11 111 111

a: 11 111 111

e How would you set the right two bits without
changing the other bits?

a: 00 111 110

|
unsigned char m = 0003; m- 00 000 011

a=a| m |

a: 00 111 111

(CSC230: C and Software Tools © NC State Computer Science Faculty

Complementing (Inverting) Bits
e Using C operators:

— N with 1 will complement, A with 0 means “no
change”

® So, create a mask with 1’s where you want to

complement, and 0’s everywhere else

If input is... | And mask is... | Then input *
mask =

0 (no change)
1 (complement)
1 (no change)
O (complement

€5C230: C and Software Tools © NC State Computer Science Faculty LR NC STATE UNIVERSITY

0] 0
0] 1
1 0
1 1

Complementing... (cont’d)

e How would you complement (invert) all the bits
ina char ?

unsigned char m = 0377;

a=a”™m;

a = ~a; //al

so works

a: 00 111 110
N

m: 11 111 111

a: 11 000 001

e How would you complement the right two bits

without changing the other bits?

unsigned char m = 0003;

a=a”™m;

(CSC230: C and Software Tools © NC State Computer Science Faculty

a: 00 111 110
N

m: 00 000 011

a: 00 111 101

Testing Bi

ts for 1’s

e Using C operators:
1. & with 1 will where you want to test, & with 0

elsewher

2. then check if result == mask

e

e So, create a mask with 1’s where you want to
test, and O0’s everywhere else

If input | And mask is... Then input & mask =
is...
0 0 0 (matches mask)
0] 1 0 (won't match mask)
1 0 0 (matches mask)
1 1 1 (matches mask)

10

Test... (cont’d)

e How would you test (if == 1) all the bitsin a

char ? a: 00 111 110

unsigned char m = 0377; &_
if ((a & m) — m) m: 11 111 111
00 111 110

e How would you test if the right two bits == 17

a: 00 111 110
unsigned char m = 0003; &
if ((@&m) ==m m: 00 000 011
€SC230: C and Software Tools © NC State Computer Science Faculty NOt equal to m 9 00 000 010

Counting the Bits That Are 1’s

e Using C operators:
1. you already know how to test if a specific bit ==
2. do this for each bit, one at a time
3. each time the bit == 1, add 1 to a counter

e A movable mask

— (0001 << i) creates a mask with a 1 in the ith
position from the right, and 0 everywhere else

€5C230: C and Software Tools © NC State Computer Science Faculty PRIl NC STATE UNIVERSITY

11

Test... (cont’d)

e How would you count the number of bits == 1 in
an unsigned char?

unsigned char m;

unsigned iInt cnt = O;

for (i = 0; 1 < 8; i++) {
m = 0001 << 1i;
it (@ &m) ==m)

cnt += 1;
}
[omputer Science
€5C230: C and Software Tools © NC State Computer Science Faculty 23
Testing Bits for 0’s
e Using C operators:
— (you try it)
e How would you test (if == 0) all the bits in a
char?

277

e How would you test if the two right bits == 07?
?27?

€5C230: C and Software Tools © NC State Computer Science Faculty PYRll NC STATE UNIVERSITY

12

Copying Selected Bits (from b to a)

e Using C operators:
— clear all the bits in a you do want to replace
— clear all the bits in b you don’t want to copy
— | awith b to get result

a: 00 111 110 b: 10 100 101
& &
m: 11 111 100 m: 00 000 011
00 111 100 00 000 001
|
[omputer Science

Exercise

1. Show the code to set the middle 4 bits ofato 1
(without changing the other bits)

2. What is the value (in binary) of b after executing

b = 0354;
m = 0115;
b=Db "™ m;

3. Show the code to copy the middle 4 bits of cto d
(without changing the other bits); what is d (in
binary) afterwards:

unsigned char ¢ = 0326, d = 0154; lence
??7?

13

