
Make!

CSC230: C and Software Tools © NC State University Computer Science Faculty
1

CSC230: C and Software Tools
N.C. State Department of Computer Science

Some examples adapted from http://mrbook.org/tutorials/make/

How have we been compiling?

• Using the compiler directly with one source file:
gcc -Wall -std=c99 -o coolapp coolapp.c

• Problems:

– All that typing

– What if your app has more than one source file?
(covered later)

– If you need libraries, optimization, etc….more typing.

– Danger!!
 gcc -o coolapp.c coolapp.c → Destroys your code!

CSC230: C and Software Tools © NC State University Computer Science Faculty 2

A solution descends!

CSC230: C and Software Tools © NC State University Computer Science Faculty 3

What ‘make’ does

• When you run “make”, it looks for a file called
“Makefile”, and executes it

• Can use an alternate Makefile:
 make -f Makefile2

• Makefiles tell ‘make’ how to build your app

CSC230: C and Software Tools © NC State University Computer Science Faculty 4

What’s in a Makefile?

• The basic Makefile is composed of:
 target: dependencies
 [tab] system-command

• A dumb Makefile of our earlier example:
 all:
 gcc -Wall -std=c99 -o coolapp coolapp.c

• Note:
– Make runs the first target by default (“all” here)

– There were no dependencies,
so it just runs the command

CSC230: C and Software Tools © NC State University Computer Science Faculty 5

$ make
gcc -Wall -std=c99 -o coolapp coolapp.c

Three things that make ‘make’ cool

• Thing 1: Make only makes if it has to

• Thing 2: Variables add flexibility

• Thing 3: Program compilation can be broken up
 (To be covered later)

• Bonus thing: Makefiles are required to get full
credit in your homework!

CSC230: C and Software Tools © NC State University Computer Science Faculty 6

Thing 1: Make only makes if it has to

• Better example:

• It knew that coolapp didn’t need to be recompiled, because
coolapp.c didn’t change!
– If the timestamp on the target is newer than all the dependencies,

then skip this command

• Saves work, saves time!
– Large builds can take HOURS!!!

CSC230: C and Software Tools © NC State University Computer Science Faculty 7

coolapp: coolapp.c
 gcc -Wall -std=c99 -o coolapp coolapp.c

$ make
gcc -Wall -std=c99 -o coolapp coolapp.c
$ make
make: `coolapp' is up to date.

Thing 2: Variables add flexibility

• Simple Makefile template*:

CSC230: C and Software Tools © NC State University Computer Science Faculty 8

Makefile for coolapp by Tyler Bletsch
CC=gcc
FLAGS=-Wall –std=c99
SRC=coolapp.c
EXE=coolapp

all: $(EXE)

clean:
 rm $(EXE)

$(EXE): $(SRC)
 $(CC) $(FLAGS) –o $@ $^

* You’ll outgrow this one when we get to multi-file apps.

Variable CC represents our compiler

Compiler flags

List of source files (just one here)

The executable we’re building

Default rule: make the executable

Optional but commonly used target:
used to delete the build when

“make clean” is typed.

To make the EXE, compile all
these SRC files with this CC

compiler using these FLAGS.

“The target” “The dependencies”

Thing 2: Variables add flexibility

• Simple Makefile template*:

CSC230: C and Software Tools © NC State University Computer Science Faculty 9

Makefile for coolapp by Tyler Bletsch
CC=gcc
FLAGS=-Wall –std=c99
SRC=coolapp.c
EXE=coolapp

all: $(EXE)

clean:
 rm $(EXE)

$(EXE): $(SRC)
 $(CC) $(FLAGS) –o $@ $<

$ make
gcc -Wall -std=c99 -o coolapp coolapp.c
$ make
make: Nothing to be done for `all'.
$ make clean
rm coolapp
$ make
gcc -Wall -std=c99 -o coolapp coolapp.c
$

* You’ll outgrow this one when we get to multi-file apps.

Thing 3: Breaking up compilation

• We’ll get to multi-file programs later. If you’re
curious, the content is at the end of this deck.

CSC230: C and Software Tools © NC State University Computer Science Faculty 10

Automatic variables

Var Meaning Example value

$@ The file name of the target of the rule. target

$< The name of the first prerequisite. dep1

$?
The names of all the prerequisites that are newer than
the target, with spaces between them.

dep3 dep4

$^
The names of all the prerequisites, with spaces between
them.

dep1 dep2 dep3 dep4

CSC230: C and Software Tools © NC State University Computer Science Faculty 11

target: dep1 dep2 dep3 dep4

newer older

Suffix rules

• It’s common to convert one file type to another.

– “Convert” can mean “compile”…

• Example:
Compile any requested .c file to human-readable assembly code (.s file)

.c.s:

 gcc -S $< -o $@

Compile any requested .c file to "object code" (compiled but not linked, .o file)

.c.o:

 gcc -c $< -o $@

CSC230: C and Software Tools © NC State University Computer Science Faculty 12

$ make x.s
gcc -S x.c -o x.s
$ make x.o
gcc -c x.c -o x.o

Make is for more than just C

• I use make to prepare the PDFs of these slides!

CSC230: C and Software Tools © NC State University Computer Science Faculty 13

SRCS=$(wildcard *.pptx)

PDFS=$(SRCS:.pptx=.pdf)

all: $(PDFS)

.pptx.pdf:
 cscript ppt2pdf.vbs $<

.SUFFIXES : .pptx .pdf

Advanced command that expands wildcards
(also considered bad practice for C

programs). Don’t use for your homework.

Turn “x.pptx y.pptx …” to “x.pdf y.pdf …”

Build all the PDFs for these PPTX’s

A recipe to convert a .pptx file to .pdf
using an incredibly ugly Vbscript I found

Tell make that “pptx” and “pdf” are
extensions it can handle with an

extension-based rule like the above.

JUST TELL ME WHAT I NEED TO DO TO
GET CREDIT ON THE HOMEWORK

• Take this Makefile template and replace the
stuff in red. Build your app by typing “make”.

CSC230: C and Software Tools © NC State University Computer Science Faculty 14

Makefile for PROJECT-NAME by AUTHOR
CC=gcc
FLAGS=-Wall -std=c99
SRC=MY-SOURCE-FILE.c
EXE=MY-EXECUTABLE

all: $(EXE)

clean:
 rm $(EXE)

$(EXE): $(SRC)
 $(CC) $(FLAGS) –o $@ $^

WHAT IF THE HOMEWORK HAS
MULTIPLE EXECUTABLES?

• Then do this:

CSC230: C and Software Tools © NC State University Computer Science Faculty 15

Makefile for PROJECT-NAME by AUTHOR
CC=gcc
FLAGS=-Wall -std=c99
SRC1=MY-SOURCE-FILE1.c
EXE1=MY-EXECUTABLE1
SRC2=MY-SOURCE-FILE2.c
EXE2=MY-EXECUTABLE2
SRC3=MY-SOURCE-FILE3.c
EXE3=MY-EXECUTABLE3
add/delete SRC/EXE pairs as needed

all: $(EXE1) $(EXE2) $(EXE3)

clean:
 rm $(EXE1) $(EXE2) $(EXE3)

$(EXE1): $(SRC1)
 $(CC) $(FLAGS) -o $@ $^

$(EXE2): $(SRC2)
 $(CC) $(FLAGS) -o $@ $^

$(EXE3): $(SRC3)
 $(CC) $(FLAGS) -o $@ $^

add/delete rules as needed

Reminder: Go to course web page for link to exercise form.
Paste code into ideone.com and submit the link.

Exercise 07a

• Write a hello-world program “hello.c”

• Write a Makefile for it

• Build it by typing “make”

• Submit just the Makefile.

– Set the code type in IDEOne to “Text”.

CSC230: C and Software Tools © NC State University Computer Science Faculty

16

Makefiles

BACKUP

CSC230: C and Software Tools © NC State University Computer Science Faculty 17

Thing 3: Breaking up compilation

• More advanced Makefile template:

CSC230: C and Software Tools © NC State University Computer Science Faculty 18

Advanced Makefile for coolapp by Tyler Bletsch
CC=gcc
CFLAGS=-c -Wall -std=c99
LDFLAGS=
SRC=main.c support.c
OBJ=$(SRC:.c=.o)
EXE=coolapp

all: $(EXE)

clean:
 rm -f $(OBJ) $(EXE)

$(EXE): $(OBJ)
 $(CC) $(LDFLAGS) $(OBJ) -o $@

.cpp.o:
 $(CC) $(CFLAGS) $< -o $@

$ make clean
rm -f main.o support.o coolapp
$ make
gcc -c -Wall -std=c99 -c -o main.o main.c
gcc -c -Wall -std=c99 -c -o support.o support.c
gcc main.o support.o -o coolapp
$ make
make: Nothing to be done for `all'.
$ vim support.c
$ make
gcc -c -Wall -std=c99 -c -o support.o support.c
gcc main.o support.o -o coolapp

