Makel

CSC230: C and Software Tools

N.C. State Department of Computer Science

Some examples adapted from http://mrbook.org/tutorials/make/

Lomputer dcience

CSC230: C and Software Tools © NC State University Computer Science Faculty

How have we been compiling?

e Using the compiler directly with one source file:
gcc -wWall -std=c99 -o coolapp coolapp.c

e Problems:
— All that typing

— What if your app has more than one source file?
(covered later)

— If you need libraries, optimization, etc....more typing.

— Danger!!
gcc -o coolapp.c coolapp.c —> Destroys your code!

[omputer Science

CSC230: C and Software Tools © NC State University Computer Science Faculty 2

A solution descends!

CSC230: C and Software Tools © NC State University Computer Science Faculty

What ‘make’ does

e When you run “make”, it looks for a file called
“Makefile”, and executes it

e Can use an alternate Makefile:
make -f Makefile?2

e Makefiles tell ‘make’ how to build your app

[omputer Science

CSC230: C and Software Tools © NC State University Computer Science Faculty 4

What’s in a Makefile?

e The basic Makefile is composed of:
target: dependencies
[tab] system-command

e A dumb Makefile of our earlier example:

all:
gcc -wall -std=c99 -0 coolapp coolapp.c

$ make
gcc -wall -std=c99 -o coolapp coolapp.c

e Note:
— Make runs the first target by default (“all” here)

— There were no dependencies,
so it just runs the command

[omputer Science

CSC230: C and Software Tools © NC State University Computer Science Faculty 5

Three things that make ‘make’ cool

e Thing 1: Make only makes if it has to
e Thing 2: Variables add flexibility
e Thing 3

e Bonus thing: Makefiles are required to get full
credit in your homework!

[omputer Science

CSC230: C and Software Tools © NC State University Computer Science Faculty 6

Thing 1: Make only makes if it has to

e Better example:

coolapp: coolapp.c
gcc -wall -std=c99 -0 coolapp coolapp.c

$ make

gcc -wall -std=c99 -o coolapp coolapp.c
$ make

make: "coolapp' is up to date.

e |t knew that coolapp didn’t need to be recompiled, because
coolapp.c didn’t change!

— If the timestamp on the target is newer than all the dependencies,
then skip this command

e Saves work, saves time!
— Large builds can take HOURS!!!

[omputer Science

CSC230: C and Software Tools © NC State University Computer Science Faculty 7

Thing 2: Variables add flexibility

e Simple Makefile template*:

Makefile for coolapp by Tyler Bletsch
CC=gcc Variable CC represents our compiler
FLAGS=-wWall -std=c99

SRC=coolapp.c
EXE=co0] app List of source files (just one here)

Compiler flags

The executable we’re building

all: $(EXE) Default rule: make the executable
Optional but commonly used target:
clean: usetfll to delete tfle. build when
rm $(EXE) make clean” is typed.
To make the EXE, compile all
$(EXE): $(SRO) these SRC files with this CC

$(cc) $(FLAGS) -0 $@ $A compiler using these FLAGS.

“The target” “The dependencies”

* You'll outgrow this one when we get to multi-file apps.

[omputer Science

CSC230: C and Software Tools © NC State University Computer Science Faculty 8

Thing 2: Variables add flexibility

e Simple Makefile template*:

Makefile for coolapp by Tyler Bletsch
CC=gcc
FLAGS=-wall -std=c99

SRC=coolapp.c

EXE=coolapp DG

gcc -wall -std=c99 -o coolapp coolapp.c
$ make

make: Nothing to be done for "all'.
all: $CEXE) $ make clean

rm coolapp

clean: $ make
rm $ (EXE) gcc -wall -std=c99 -o coolapp coolapp.c

$

$(EXE): $(SRC)
$(cc) $(FLAGS) -o %@ $<

* You'll outgrow this one when we get to multi-file apps.

[omputer Science

CSC230: C and Software Tools © NC State University Computer Science Faculty 9

Thing 3: Breaking up compilation

e We'll get to multi-file programs later. If you're
curious, the content is at the end of this deck.

[omputer Science

CSC230: C and Software Tools © NC State University Computer Science Faculty 10

Automatic variables

older newer

\

target: depl dep2 dep3 depd

$@ The file name of the target of the rule.

$< The name of the first prerequisite.

The names of all the prerequisites that are newer than
the target, with spaces between them.

$?

The names of all the prerequisites, with spaces between
them.

$/\

CSC230: C and Software Tools © NC State University Computer Science Faculty

target
depl
dep3 dep4

depl dep2 dep3 dep4

[omputer Science
11

Suffix rules

e |[t's common to convert one file type to another.

— “Convert” can mean “compile”...

e Example:

Compile any requested .c file to human-readable assembly code (.s file)
.C.S:

gcc -S $< -0 %@

Compile any requested .c file to "object code" (compiled but not linked, .o file)
.C.0:

gcc -c $< -0 %@

$ make x.s
gcc -S X.C -0 X.S
$ make x.o
gcc -Cc X.C -0 X.O0

[omputer Science

CSC230: C and Software Tools © NC State University Computer Science Faculty 12

Make is for more than just C

e | use make to prepare the PDFs of these slides!

Advanced command that expands wildcards
(also considered bad practice for C
programs). Don’t use for your homework.
SRCS=$(wildcard *.pptx)
Turn “x.pptx y.pptx ...” to “x.pdf y.pdf ...”

PDFS=$ (SRCS: .pptx=.pdf)
Build all the PDFs for these PPTX’s

all: $(PDFS)

A recipe to convert a .pptx file to .pdf
-pptX. pdf : using an incredibly ugly Vbscript | found

cscript ppt2pdf.vbs $<

Tell make that “pptx” and “pdf” are
extensions it can handle with an

extension-based rule like the above.

.SUFFIXES : .pptx .pdf

[omputer Science

CSC230: C and Software Tools © NC State University Computer Science Faculty 13

JUST TELL ME WHAT | NEED TO DO TO
GET CREDIT ON THE HOMEWORK

e Take this Makefile template and replace the
stuff in red. Build your app by typing “make”.

Makefile for PROJECT-NAME by AUTHOR
CC=gcc

FLAGS=-wall -std=c99
SRC=MY-SOURCE-FILE.C
EXE=MY-EXECUTABLE

all: $(EXE)

clean:
rm $(EXE)

$(EXE): $(SRC)
$(cc) $(FLAGS) -o $@ $A

[omputer Science

CSC230: C and Software Tools © NC State University Computer Science Faculty 14

WHAT IF THE HOMEWORK HAS
MULTIPLE EXECUTABLES?

e Then do this:

Makefile for PROJECT-NAME by AUTHOR
CC=gcc

FLAGS=-wall -std=c99
SRC1=MY-SOURCE-FILEl.cC
EXE1l=MY-EXECUTABLE1
SRC2=MY-SOURCE-FILEZ2.C
EXE2=MY-EXECUTABLE?
SRC3=MY-SOURCE-FILE3.cC
EXE3=MY-EXECUTABLE3

add/delete SRC/EXE pairs as needed

all: $C(EXE1) $(EXE2) $(EXE3)

clean:
rm $(EXEL) $(EXE2) $(EXE3)

$(EXE1): $(SRC1)
$(cc) $(FLAGS) -0 $%$@ $A

$(EXE2): $(SRC2)
$(cc) $(FLAGS) -0 $%$@ $A

$(EXE3): $(SRC3)
$(cc) $(FLAGS) -0 $%$@ $A

add/delete rules as needed [ﬂmpmg[Scig]]Eg

CSC230: C and Software Tools © NC State University Computer Science Faculty 15

Exercise 07a

Makefiles

e Write a hello-world program “hello.c”

e \Write a Makefile for it

e Build it by typing “make”

e Submit just the Makefile.
— Set the code type in IDEOne to “Text”.

CSC230: C and Software Tools © NC State University Computer Science Faculty

Reminder: Go to course web page for link to exercise form. [[]mplm![SCiE]]EE
Paste code into ideone.com and submit the link. 16 R

BACKUP

[omputer Science

CSC230: C and Software Tools © NC State University Computer Science Faculty 17

Thing 3: Breaking up compilation

e More advanced Makefile template:

Advanced Makefile for coolapp by Tyler Bletsch

CC=gcc

CFLAGS=-c -wall -std=c99 $ make clean

LDFLAGS= rm -f main.o support.o coolapp

SRC=main.c support.c $ make

0BJ=$(SRC: .c=.0) gcc -c -wall -std=c99 -c -o main.o main.c

gcc -c -wWall -std=c99 -c -o support.o support.c
gcc main.o support.o -o coolapp

$ make

make: Nothing to be done for "all'.

$ vim support.c

EXE=coolapp

all: $(EXE) $ make
gcc -c -wall -std=c99 -c -0 support.o support.c
clean: gcc main.o support.o -o coolapp

rm -f $(oB1) $(EXE)

$(EXE): $(0BI)
$(cc) $(LDFLAGS) $(oBJ) -0 %@

.Cpp.o:
$(cc) $(CFLAGS) $< -0 %@

[omputer Science

CSC230: C and Software Tools © NC State University Computer Science Faculty 18

