
Version Control
C Programming and Software Tools
N.C. State Department of Computer Science

TODO: Add exercises to this deck

- Tyler 2015-07-27

Version Control Systems

• Functions

– convenient, secure access by many people to a
shared project

– easy to backup to a remote server

– flexible reversion to a previous version

– conflict control between multiple developers of a
project

• What are some version control systems?

– subversion – centralized

– Git and GitHub – decentralized

CSC230: C and Software Tools © NC State Computer Science Faculty 2

What is Git?

• Decentralized version control
– Developed by Linus Torvalds

– Help with Linux development

– Easier to manage volunteer code contributions

• A codebase is in a repository
– Not a client-server model like SVN

• Code is moved between repositories by pulling
and pushing

• All repos are created equal

CSC230: C and Software Tools © NC State Computer Science Faculty 3

What is GitHub?

• GitHub is a service that hosts Git repos in the
cloud

– Just like a local repo

• Additional features:

– Wikis

– Bug tracking

CSC230: C and Software Tools © NC State Computer Science Faculty 4

Working with GitHub

• We will be using github.ncsu.edu

– Same ideas can be used on github.com

• We will be providing repos that MUST be used
for CSC230

• You can create your own repos for other
projects and classes

– Makes sure that repo names couldn’t be possible
unity ids!

– Course works MUST be in private repos

CSC230: C and Software Tools © NC State Computer Science Faculty 5

Start Working…

• Go to github.ncsu.edu and copy the HTTPS clone
URL

CSC230: C and Software Tools © NC State Computer Science Faculty 6

Clone the Repo

CSC230: C and Software Tools © NC State Computer Science Faculty 7

$ unset SSH_ASKPASS

$ git clone https://<unity_id>@github.ncsu.edu/<org_name>/<repo_name>.git

Turn off really stupid graphical password prompt

that NCSU defaults to for some reason

Git Workflow
• Create, edit, delete your files like a normal

• If you have created new files locally that should
be added to the repository, run
$ git add .

– The add command will associate all new files with
the repo

• Commit the files to your repo
$ git commit –am “A meaningful commit

message”

– Only commits the code to your local repo!

CSC230: C and Software Tools © NC State Computer Science Faculty 8

Git Workflow – Between Repos

• Code is pushed from a local repo to a remote
repo

– If you want to move your local changes to GitHub,
you must push your code

– This pushes the code to the repo that you cloned

– Will be used for homework submission

 $ git push

CSC230: C and Software Tools © NC State Computer Science Faculty 9

Verify Your Changes!

CSC230: C and Software Tools © NC State Computer Science Faculty 10

Git Workflow – Between Repos

• Code is pulled from a remote repo to a local
repo

– If you are working on multiple machines, you can use
the remote repo as an archive

– If you are collaborating with multiple people, the
remote repo becomes the collaborative space

– Always pull the latest from the remote repo before
making new changes

 $ git pull

CSC230: C and Software Tools © NC State Computer Science Faculty 11

Common Mistakes

• Committing without pushing

– You have two repos – a local repo AND a remote one

– Commit to the local repo

– Push to the remote repo (GitHub)

• Always check your repo on the website to make
sure the files you want are there!

CSC230: C and Software Tools © NC State Computer Science Faculty 12

Organizing Your Repo

• All future homework submissions will be though
NCSU’s GitHub and your provided GitHub repo

• We use Jenkins to automatically pull, compile,
and test your programs!

– You will have an estimate of a portion of your
homework grade BEFORE the deadline!

• You will create a folder for each homework

– We will provide the naming conventions so that your
repo will work with Jenkins

CSC230: C and Software Tools © NC State Computer Science Faculty 13

Preparing for HW3

• As part of HW2, you are expected to log into
GitHub

– It’s 10 VERY easy points!

– Actually go log in now!

• If we are unable to search for you in GitHub, you
won’t earn the 10 points on HW3 and you won’t
be ready for future homeworks

CSC230: C and Software Tools © NC State Computer Science Faculty 14

BACKUP

CSC230: C and Software Tools © NC State Computer Science Faculty 15

SVN Clients

• There are many SVN clients

– Command line
• SVN

– GUI
• SmartSVN

– IDE plug-ins
• Eclipse: Subversive

• Visual Studio: VisualSVN

– File system integrations
• Windows: TortoiseSVN, Smart SVN

See: http://en.wikipedia.org/wiki/Comparison_of_Subversion_clients

CSC230: C and Software Tools © NC State Computer Science Faculty 16

Repositories

• A repository is where the backup (master)
copies of all files are kept

• Imaginary server for this discussion:
subversion.ncsu.edu

• Must have user account on server to create a
repository, using the command svnadmin

• Clients maintain local (working, individual)
copies of files on the server

CSC230: C and Software Tools © NC State Computer Science Faculty 17

Starting a Project

• Create a temporary directory (e.g.,
/home/bill/myproj), with subdirectories…

– branches (initially empty)

– trunk (has files you want to be part of the project)

– tags (names of releases or milestones)

• Import these files into the svn repository

CSC230: C and Software Tools © NC State Computer Science Faculty 18

% svn import /home/bill/myproj 

 svn://subversion.ncsu.edu/repos1

Adding /home/bill/myproj/trunk

…more svn output…

Committed revision 1.

Checking Out: Example
• Importing project files into the repo does NOT connect the local directory to the repo in any way
• Need to check out project
• Check out latest revision from the repository

CSC230: C and Software Tools © NC State Computer Science Faculty 19

% svn co

svn://subversion.ncsu.edu/repos1/proj1

A proj1/trunk

A proj1/trunk/search.c

…

Checked out revision 4.

Revisions

• A revision is a snapshot of project at one
moment in time

– allows users to say “get revision 1432 of XYZ”

• commit creates a new revision

CSC230: C and Software Tools © NC State Computer Science Faculty 20

Committing a Revision: Example
• Update to latest revision from the repository

CSC230: C and Software Tools © NC State Computer Science Faculty 21

% svn update

A proj1/trunk

A proj1/trunk/search.c

…

Checked out revision 4.

% cd proj1 ; vi trunk/search.c

% svn commit –m “Add better search”

Sending trunk/search.c

Transmitting data…

Committed revision 5.

Commit the changes to the repository (new revision)

Edit search.c

Getting File Info

• Get info on a particular file or directory

CSC230: C and Software Tools © NC State Computer Science Faculty 22

% svn info trunk/search.c

Path: trunk/search.c

Url:

svn://subversion.ncsu.edu/repos1/trunk/search.c

Revision: 5

Node Kind: file

Schedule: normal

Last Changed Rev: 5

Last Changed Date: 2006-08-08 12:20:18 -0700

(Thu, 08 Aug 2006)

The Basic Steps in Using svn

1. Check out a working copy

2. Update your working copy (modify, add, delete
files and folders)

3. Make changes to selected files

4. Examine your changes

5. Merge with other people’s changes

6. Commit your changes

CSC230: C and Software Tools © NC State Computer Science Faculty 23

Basic Steps

• 1. Check out a working copy
% svn co svn://subversion.ncsu.edu/repos1 

proj1

• 2. Update the working copy

– Update all files and directories to the most current version
 % svn update

– Get an older revision for all files
 % svn update –r 1345

– Get an even older version of a particular file
 % svn update –r 999 search.c

CSC230: C and Software Tools © NC State Computer Science Faculty 24

…Basic (cont’d)

• 3. Make changes to local copies of files

– Add new files and directories
 % vi trunk/new_algorithm.c

 % mkdir trunk/data-files

 % vi trunk/data-files/file1

 % svn add trunk/new_algorithm.c 

trunk/data-files

– Delete files
 % svn delete foo old_algorithm.c

CSC230: C and Software Tools © NC State Computer Science Faculty 25

…Basic (cont’d)

– Rename file
 % svn rename trunk/README.txt 

trunk/README_OLD.txt

– Copy files and directories
 % svn copy trunk/data-files 

trunk/data-files-new

CSC230: C and Software Tools © NC State Computer Science Faculty 26

…Basic (cont’d)
• 4. Examine your changes (more info with –v)
• % svn status

CSC230: C and Software Tools © NC State Computer Science Faculty 27

_ L ./abc.c

 [svn has a lock in its .svn directory for abc.c]

M ./bar.c

 [the contents in bar.c have local modifications]

? ./foo.o

 [svn doesn't manage foo.o]

! ./foo.c

 [svn knows foo.c but a non-svn program deleted it]

A + ./moved_dir

 [added with history of where it came from]

M + ./moved_dir/README

 [added with history and has local modifications]

D ./stuff/fish.c

 [this file is scheduled for deletion]

…Basic (cont’d)
•svn status -v (be verbose)

– second column, working revision

– third column, last changed revision

– fourth column, who changed it

% svn status -v

M 44 23 joe ./README

_ 44 30 frank ./INSTALL

M 44 20 frank ./bar.c

_ 44 18 joe ./stuff

_ 44 35 mary ./stuff/trout.c

D 44 19 frank ./stuff/fish.c

_ 44 21 mary ./stuff/things

A 0 ? ? ./stuff/things/bloo.h

_ 44 36 joe ./stuff/things/gloo.c

CSC230: C and Software Tools © NC State Computer Science Faculty 28

…Basic (cont’d)

• svn diff: Show your modifications

– show all differences between files in repository
(most recent revision) and local working copy

 % svn diff

– diff between revision 3 of foo.c in repository
and local working foo.c

 % svn diff –r 3 foo.c

– diff between revisions 2 and 3 of foo.c in the
repository

 % svn diff –r 2:3 foo.c

CSC230: C and Software Tools © NC State Computer Science Faculty 29

…Basic (cont’d)

• Revert (i.e., discard your changes)

– (does not require network access)
% svn revert . -R

• 6. Commit your changes (create a new
revision)
% svn commit

CSC230: C and Software Tools © NC State Computer Science Faculty 30

Conflict Resolution
• Conflicts occur when two users are working

independently on their own local copies of the
same file (e.g., pgm.c)
– first and second users update the file: revision 4
– first user commits their changes (revision 5): no

problem
– second user commits their changes: conflict!
– indicated by a C in svn update output

• The resulting "committed" file pgm.c has
embedded conflict markers

CSC230: C and Software Tools © NC State Computer Science Faculty 31

Conflicts... (cont'd)
• Three temporary files are also created

– pgm.c.mine – 2nd user's (uncommitted) file
– pgm.c.r4 – file 2nd user checked out, before any

changes committed by either user
– pgm.c.r5 – file containing 1st user's changes,

without 2nd user's changes

• Subversion requires definite action from the
user 2 to resolve the conflict

CSC230: C and Software Tools © NC State Computer Science Faculty 32

Conflicts... (cont’d)

• Possible resolutions

1. hand merge the conflicting text in pgm.c, or

2. copy one of the temporary file versions over
pgm.c, or

3. run svn revert to undo all of your changes

• 5. Once resolved, you need to tell svn that the
conflict has been resolved
% svn resolved pgm.c

– also deletes the temporary files

CSC230: C and Software Tools © NC State Computer Science Faculty 33

Locks
• locking = a mechanism for mutual exclusion between

users to avoid clashing commits

• Creating a lock
svn lock trunk/search.c -m 

 “On a deadline, pls do not modify”

• Succeeds if the file isn’t already locked by someone
else, and is up to date

• Attempts by other users to update the master version
of the file (through svn commit) will fail, with an
error message

CSC230: C and Software Tools © NC State Computer Science Faculty 34

Locks (cont’d)

• Releasing a lock:

– svn unlock <filename>, or

– svn commit (automatically releases locks)

CSC230: C and Software Tools © NC State Computer Science Faculty 35

Branches

• Branches are parallel copies of projects,
maintained by subversion

• Often: one main (production) branch, and many
versions (in development branches)

• Can be edited and modified separately, but
share common files

• Can be merged when a branch has been fully
tested

CSC230: C and Software Tools © NC State Computer Science Faculty 36

Branches (cont’d)
• Creating a branch

–svn copy trunk branches/br1

–svn commit -m “Created branch br1”

• Checking out just a branch
–svn checkout 

svn://subversion.ncsu.edu/repos1/branches/b

r1

• Merging two branches
–svn merge

svn://subversion.ncsu.edu/repos1/trunk 

svn://subversion.ncsu.edu/repos1/branches/b

r1 trunk

CSC230: C and Software Tools © NC State Computer Science Faculty 37

