
Arrays in C
C Programming and Software Tools
N.C. State Department of Computer Science

Contents

• Declaration

• Memory and Bounds

• Operations

• Variable Length Arrays

• Multidimensional Arrays

• Character Strings

• sizeof Operator

CSC230: C and Software Tools (c) NC State University Computer Science Faculty 2

Arrays

• Almost any interesting program uses for loops
and arrays

• a[i] refers to ith element of array a

– numbering starts at 0

• Specification of array and index is commutative,
i.e., a[i] references the same value as i[a]!

CSC230: C and Software Tools (c) NC State University Computer Science Faculty 3

 common source of bugs 

referencing first

element as a[1]

days_in_month[0] = 31;

1[days_in_month] = 28;

Declaring Arrays

• The declaration determines the

1. element datatype

2. array length (implicit or explicit)

3. array initialization (none, partial, or full)

• Array length (bounds) can be any constant
(integer) expression, e.g., 3, 3*16-20/4, etc.

CSC230: C and Software Tools (c) NC State University Computer Science Faculty 4

Declaring 1-D Arrays
• Explicit length, nothing initialized:

• Explicit length, fully initialized:

CSC230: C and Software Tools (c) NC State University Computer Science Faculty 5

int days_in_month[12];

char first_initial[12];

float inches_rain[12];

int days_in_month[12]

= {31,28,31,30,31,30,31,31,30,31,30,31 };

char first_initial[12]

= {‘J’,‘F’,‘M’,‘A’,‘M’,‘J’,‘J’,‘A’,‘S’,‘O’,‘N’,‘D’};

float inches_rain[12]

= {3.5,3.7,3.8,2.6,3.9,3.7,4.0,4.0,3.2,2.9,3.0,3.2};

what happens if you try to initialize more than 12 values??

Declaring 1-D… (cont’d)

• Implicit length + full initialization:

CSC230: C and Software Tools (c) NC State University Computer Science Faculty 6

The number of values initialized implies the size of the array

int days_in_month[]

= {31,28,31,30,31,30,31,31,30,31,30,31 };

char first_initial[]

= {‘J’,‘F’,‘M’,‘A’,‘M’,‘J’,‘J’,‘A’,‘S’,‘O’,‘N’,‘D’};

float inches_rain[]

= {3.5,3.7,3.8,2.6,3.9,3.7,4.0,4.0,3.2,2.9,3.0,3.2};

Declaring 1-D… (cont’d)

• Can initialize just selected elements

– uninitialized values are cleared to 0

• Two styles:

CSC230: C and Software Tools (c) NC State University Computer Science Faculty 7

int days_in_month[12] = {31,28,31,30,31,30};

char first_initial[12] = {‘J’,‘F’,‘M’};

float inches_rain[12] = {3.5,3.7,3.8,2.6,3.9,3.7,4.0,4.0};

int days_in_month[12] = {[0]=31,[3]=30,[7]=31};

char first_initial[12] = {[2]=`M’,[3]=‘A’,[4]=‘M’,[11]=‘D’};

Declaring 1-D… (cont’d)

• Implicit array length and partial initialization??

CSC230: C and Software Tools (c) NC State University Computer Science Faculty 8

char first_initial[] =

 { [0]=‘J’, [2]=‘M’, [8]=‘S’ };

How big is this array??

Memory Layout and Bounds
Checking

• There is NO bounds checking in C
– i.e., it’s legal (but not advisable) to refer to
days_in_month[216] or
days_in_month[-35] !

– who knows what is stored there?

CSC230: C and Software Tools (c) NC State University Computer Science Faculty 9

… …

Storage for array int days_in_month[12];

Storage for other stuff
Storage for some more stuff

(each location shown here is an int)

Bounds Checking… (cont’d)

• References outside of declared array bounds

– may cause program exceptions (“bus error” or
“segmentation fault”),

– may cause other data values to become corrupted, or

– may just reference wrong values

• Debugging these kinds of errors is one of the
hardest errors to diagnose in C

CSC230: C and Software Tools (c) NC State University Computer Science Faculty 10

 common source of bugs 

referencing outside

the declared bounds

of an array

Operations on Arrays

• The only built-in operations on arrays are:

– address of operator (&)

– sizeof operator
– we’ll discuss these shortly...

• Specifically, there are no operators to…

– assign a value to an entire array

– add two arrays

– multiply two arrays

– rearrange (permute) contents of an array

– etc.

CSC230: C and Software Tools (c) NC State University Computer Science Faculty 11

Operations on Arrays?

• Instead of using built-in operators, write loops
to process arrays, e.g….

CSC230: C and Software Tools (c) NC State University Computer Science Faculty 12

int exam1_grade[NUM_STUDENTS],

 hw1[NUM_STUDENTS],

 hw2[NUM_STUDENTS],

 hw_total[NUM_STUDENTS];

for (int j = 0; j < NUM_STUDENTS; j++) {

 exam1_grade[j] = 100;

 hw_total[j] = hw1[j] + hw2[j];

}

Variable Length Arrays

• In C99, array length can be dynamically declared
for non-static variables:

CSC230: C and Software Tools (c) NC State University Computer Science Faculty 13

int i, szar;

printf(”Enter # of months in year: ");

scanf("%d", &szar);

int days[szar];

what happens if you attempt to allocate an array of size zero,

or of negative size??

Variable… (cont’d)
• However… array lengths cannot change

dynamically during program execution

CSC230: C and Software Tools (c) NC State University Computer Science Faculty 14

int sz1, sz2;

(void) printf(”Enter first # of records: ");

(void) scanf("%d", &sz1);

int recs[sz1];

… do some stuff…

(void) printf(”Enter second # of records: ");

(void) scanf("%d", &sz2);

int recs[sz2];

Won’t work! Compile error!

Multi-Dimensional (“M-D”) Arrays

• Declaring a multi-dimensional array with explicit
length (in all dimensions), no initialization:

• Referring to one element of a multi-dimensional array:

CSC230: C and Software Tools (c) NC State University Computer Science Faculty 15

int xy_array[10][20];

char rgb_pixels[256][256][3];

xyval = xy_array[5][3];

r = rgb_pixels[100][25][0];

rows

columns
color intensity (r, g, or b)

M-D Arrays… (cont’d)

• M-D Arrays are really arrays of arrays! i.e.,

– 2-D arrays (xy_array) are arrays of 1-D arrays

– 3-D arrays (rgb_pixels) are arrays of 2-D arrays,
each of which is an array of 1-D arrays

– etc.

• The following are all valid references

CSC230: C and Software Tools (c) NC State University Computer Science Faculty 16

rgb_pixels /* entire array (image)

 of pixels */

rgb_pixels[9] /* 10th row of pixels */

rgb_pixels[9][4] /* 5th pixel in 10th row */

rgb_pixels[9][4][0] /* red value of 5th

 pixel in 10th row */

Initializing M-D Arrays

• With implicit initialization, elements are initialized in
“leftmost-to-rightmost” dimension order, e.g.

CSC230: C and Software Tools (c) NC State University Computer Science Faculty 17

/* 2-D array with 2 rows and 3 columns */

char s2D[2][3] =

 { {'a', 'b', 'c'}, {'d', 'e', 'f'} };

for (int i = 0; i < 2; i++)

 for (int j = 0; j < 3; j++)

 putchar(s2D[i][j]);

The above outputs abcdef

Initializing M-D… (cont’d)

CSC230: C and Software Tools (c) NC State
University Computer Science Faculty

18

int i[3][4] =

{ {0, 1, 2, 3},

 {4, 5, 6, 7},

 {8, 9, 10, 11} };

int i[3][4] =

{ {0, 1},

 {4, 5},

 {8, 9} };

Full initialization, explicit length

Partial initialization, explicit length

Implicit Length for M-D Arrays

• Only the first dimension (row) length can be
omitted

CSC230: C and Software Tools (c) NC State University Computer Science Faculty 19

int i[2][] =

{ {0, 1, 2}, {4, 5, 6} };

int i[][3] =

{ {0, 1, 2}, {4, 5, 6} };
OK

NOT OK

Memory Layout of M-D Arrays
• Laid out in row-major (leftmost-to-rightmost

dimension) ordering

CSC230: C and Software Tools (c) NC State University Computer Science Faculty 20

‘a’ ‘b’ ‘c’ ‘d’ ‘e’ ‘f’

Storage for array s2D[2][3]

1st row 2nd row

Doesn’t matter what the order is, in Java; why should we care in C?

Character Strings
• Strings (i.e., sequence of chars) are a

particularly useful 1-D array

• All the rules of arrays apply, but there are a
couple of extra features

• Initialization can be done in the following styles

CSC230: C and Software Tools (c) NC State University Computer Science Faculty 21

char s1[] = “csc230”;

char s1[] = { ‘c’, ‘s’, ‘c’, ‘2’, ‘3’, ‘0’ };

In the first style, the string is implicitly
null-terminated by the compiler

– i.e., the array is 7 characters long
 common source of bugs 

failure to null

terminate a string

Character Strings (cont’d)

• Null termination is a convenience to avoid the
need to specify explicitly the length of a string

– i.e., functions processing strings can simply look for a
null character to recognize the end of the string

– Ex.: printf() prints string of arbitrary length using
format specifier %s (string must be null terminated)

CSC230: C and Software Tools (c) NC State University Computer Science Faculty 22

char s1[] = “csc203”;

printf (“I’m in %s\n”, s1);

‘c’ ‘s’ ‘c’ ‘2’ ‘3’ ‘0’ null

Storage for array s1[]

(each location shown here is a char)
‘\0’

Character String Concatenation

• Can initialize a string as a concatenation of multiple
quoted initializers:

• Output of execution is:
 Now is the time

CSC230: C and Software Tools (c) NC State University Computer Science Faculty 23

char s1[] = "Now " "is " "the " "time";

printf("%s\n", s1);

char s1[] = “This is a really long string that”

 “would be hard to specify in a single”

 “line, so using concatenation is a”

 “convenience.” ;

The sizeof Operator

• Not a function call; a C operator

– returns number of bytes required by a data type

• Return value is of predefined type size_t

CSC230: C and Software Tools © NC State Computer Science Faculty 24

#include <stdlib.h>

size_t tsz1, tsz2, tsz3;

int a;

float b[100];

tsz1 = sizeof (a);

tsz2 = sizeof (b);

tsz3 = sizeof (b[0]);

What are these values?

The sizeof Operator (cont’d)

Can also be used to determine the number of
elements in an array

CSC230: C and Software Tools © NC State Computer Science Faculty 25

float b[100];

…

int nelems;

nelems = sizeof (b) / sizeof (b[0]);

sizeof() is evaluated at compile time for statically
allocated objects

Reminder: Go to course web page for link to exercise form.
Paste code into ideone.com and submit the link.

Exercise 08a

• Write a program that reads 10 integers and
prints them in reverse order. Use an array of
course.

CSC230 - C and Software Tools © NC State University Computer Science Faculty

26

Reverse 10

% ./reverse10

2 3 5 7 11 13 17 19 23 29

29 23 19 17 13 11 7 5 3 2

Any Questions?

CSC230 - C and Software Tools © NC State University Computer Science Faculty 27

