Storage and Scope

C Programming and Software Tools

N.C. State Department of Computer Science

Lomputer dcience

Blocks

e A block is a set of statements delimited by curly
braces: { }

— i.e., body of a loop, function definition, or anywhere
you want to define a new scope, for example...

int sum = 0O;
int main (void)
{
int 1i;
for (i=0 ; i<n ; i++) {

}
if (n > 60) {

}

} [omputer Science
CSC230: C and Software Tools © NC Stare-omversrtycompurerscrerceTacurty 2 NC STATE UNIVERSITY

Scope of Variables

e (for the moment, this discussion is only for programs whose
source code is contained entirely in one file)

A variable defined or declared
outside of any block has
global scope

— the variable is visible
(read/writable) to all functions
that appear after it in the
source file

int main
(void)
{ ...}

int 1

int £¢(..)
{..}

int g(..)
{..}

15;

omputer

clence

Scope... (cont’d)

e Avariable defined inside a block has scope only
within that block

e Variables with different scopes (even if they
have the same name) are independent variables

e |f two or more variables have the same name, to
resolve a variable reference the rule is:

“most local scope wins”

[omputer Science

4

c.:l.lé,r c = 'a'; Exam |e
Ant i = 15,5 P

int 1 = 15;

1
int j 0;

int £ (void)
{

char ¢ = 'b';

Cint i = 25; 0 4=

int sum = 0;

for (int k = 1; k < 4; k++)
sum += k;
(void) printf("c=%c, i=%d, sum=%d\n", c, i, sum);

{
C int i = 35; 9 \
j =1+ 13;

(void) printf("c=%c, i=%d, j=%d\n", c, i--, 3J);

}

(void) printf ("c=%c, i=%d, j=%d\n", c, i, 3J);

- \/

Scope... (cont’d)

e |s it a good idea to avoid reusing the same
variable name?

— Often, but not always

f
[omputer Science
CSC230: C and Software Tools © NC State University Computer Science Faculty 6 NC STATE UNIVERSITY

Lifetime (Storage Class) of Variables

e Memory space for a global variable is statically-
allocated at compile and load time

— this is called the static storage class

N 4 Kernel virtual memory

§ User stack

s 1

©

3 |

- . . : :

E Shared libraries - L inux run-time
g T memory image
> Run-time heap (malloc’ed)

2

o

&)

= Instructions (code)

(unused) Computer Science
€SC230: C and Software Tools © NC State University Computer Science [N STATE UN v2RSITY

||||||||

Lifetime... (cont’d)

e Memory space for a variable declared inside a
block is automatically-allocated at run time

— entry into the block triggers automatic memory
allocation and exit triggers automatic deallocation

— this is called the Kernel virtual memory
auto storage class

1

Shared libraries

1

Run-time heap (malloc’ed)

Statically defined data

Instructions (code)

Lomputer dcience
CSC230: C and Software Tools © NC State University Computer Science Faculty (u n u Se d) 9 NC STATE UNIVERSITY

char ¢ = 'a'; For each i variable, how is the

int i = 15; memory allocated (statically or
int j 0; dynamically) and what is the
storage class?

int main (void)
{
char ¢ = 'b’';
int i = 25;
int sum = O;
for (int k
sum += k;
(void) printf("c=%c, i=%d, sum=%d\n", c, i, sum);

1; k < 4; k++)

{
Cint i = 35; O
j =1+ 13;
(void) printf ("c=%c, i=%d, j=%d\n", c, i--, 3J);
}

(void) printf("c=%c, i=%d, j=%d\n", c, i, j):;

Ty IU

Lifetime... (cont’d)

e In C, you can manually force variables declared
inside a block to be static storage class using the
static keyword

— memory space is allocated only once, in the Static
area of memory

f
[omputer Science
CSC230: C and Software Tools © NC State University Computer Science Faculty 1 1 NC STATE UNIVERSITY

int £ (void)

{

char ¢ = 'b';
int 1 = 25;

int sum = 0

for (int k
sum += k;

(void) printf("c=%c, i=%d, sum=%d\n", c, i, sum);

II ~ e

1; k < 4; k++)

static int i = 35;

(void) printf ("c=%c, i=%d, j=%d\n", c, i--, 3J);

}

(void) printf ("c=%c, i=%d, j=%d\n", c, i, 3J);

108

Initialization of Variables

e static, auto, ... - what does it matter?

e 1. Space on the stack is limited (remember
problems allocating bigarray[] as an auto

variable?)

« 2. static variables with global scope can be
initialized only with constant expressions

char ¢ = 'a';
int 1 = 15 + (39 % 3);
int j = 0;

[omputer Science
13 NC STATE UNIVERSITY

Initialization ... (cont’d)

* auto class variables can be initialized using any

valid expression at the point at which they are
declared | ..

int 1
int j

15 + (39 $ 3) + £() ;
getchar() * 6 + i;

.}
e 3. default value of static variables (if not

explicitly initialized) is O

— There is no default initial value for auto variables

{ 4int i; static int j;

prlntf ("%d %d\n" y i - J) ; } 2 common source of bugs £
failure to explicitly
I?
Output: initialize variables

Initialization ... (cont’d)

e 4, Static class variables are initialized only once!

auto variables are (re-)initialized every time the
block is entered

[omputer Science

15

Initialization Example

void £ (void) ;

main (void) {

£():
£():
£():
}
void £(void) {
int k = 0;
static int §J = 0;
printf (% %d %d\n”, ++j, ++k);
}

Output?

16

[omputer

clence

The register Storage Class

e Arecommendation to the compiler to consider
storing the variable in a register instead of
memory

int main (void)

{

int 1 = 25;

double m=0.0;
for (] register int k = 1; k < 1000000; k++)

sum += k;

What difference does that make?

[omputer Science
CSC230: C and Software Tools © NC State University Computer Science Faculty 17 NC STATE UNIVERSITY

The register .. (cont'd)

e Can only be specified for auto variables (i.e.,
not for global variables)

— some restrictions on what types of variables can be
specified as register class (see reference manual

for details)

e Optimizing compilers may be able to do a better
job than you can at identifying candidates for
register storage

Seriously — | have never seen “register” used
by itself in a C program. It implies that the

programmer is “trusting” C to do something,
which C programmers never do.

f
[omputer Science
CSC230: C and Software Tools © NC State University Computer Science Faculty 18 NC STATE UNIVERSITY

The Stack

e Area of memory reserved for dynamic allocation
of auto variables, and function parameters

— input parameter values

— return address of caller

— auto variables local to the block
— saved register values

— result returned by function

e All of this is called the activation record or stack
frame of the called function (i.e., the callee)

[omputer Science
19 NC STATE UNIVERSITY

Example of Stack Contents

*Top of | Local variables for 2()
stack

Input parameters for f2()

> Activation record for
Saved register values function £2 ()

return address in f1() Operations on stack are LIFO (last-
in, first-out): push onto stack

return value from f2() and pop from stack

Local variables for f1()

Input parameters for f1() > Activation record for
function £1 ()

Increasing memory addresses

Saved register values

return address in main()

return value from f1()

CSC230: C and Software Tools © NC State University Computer Science Faculty 20 NC STATE UNIVERSITY

[omputer Science

Another Storage Class: extern

e discussed later along with linking...

[omputer Science
21 NC STATE UNIVERSITY

Exercise 10a

Variable storage

int x = 15, y = 25;
int main (void) {

® For each

numbered printf, printf (“#d\n”, x); //1
indicate: int x;

printf (“%d\n”, x); //2
— What is printed? el 0

printf (“%d\n”, y); //3

Puta ? If it could for (int 5 = 0; 3 < 3; 44) I
be anything int y = 32;
static int x = 35;
— Where the X = 2 % x;
variable in Printf/(“id\n”, x); //4
ian i y =Yy ;
gllljgcsigltoergjlfstaCk : printf (“*%d\n”, y); //5
or static region)? int y = 100;

printf (“%d\n”, y); //6

copyright 2009 Douglas S Reeves

Reminder: Go to course web page for link to exercise form.
Paste code into ideone.com and submit the link. 22

[omputer Science

