
Storage and Scope
C Programming and Software Tools
N.C. State Department of Computer Science

Blocks
• A block is a set of statements delimited by curly

braces: { }

– i.e., body of a loop, function definition, or anywhere
you want to define a new scope, for example…

CSC230: C and Software Tools © NC State University Computer Science Faculty 2

int sum = 0;

int main (void)

{

 int i;

 for (i=0 ; i<n ; i++) {

 …

 }

 if (n > 60) {

 …

 }

 …

}

Scope of Variables
• (for the moment, this discussion is only for programs whose

source code is contained entirely in one file)

CSC230: C and Software Tools © NC State University Computer Science Faculty 3

int main

(void)

{ … }

int i = 15;

int f(…)

{…}

int g(…)

{…}

A variable defined or declared
outside of any block has
global scope

– the variable is visible
(read/writable) to all functions
that appear after it in the
source file

Scope… (cont’d)

• A variable defined inside a block has scope only
within that block

• Variables with different scopes (even if they
have the same name) are independent variables

• If two or more variables have the same name, to
resolve a variable reference the rule is:

 “most local scope wins”

CSC230: C and Software Tools © NC State University Computer Science Faculty 4

...

char c = 'a';

int i = 15;

int j = 0;

int f(void)

{

 char c = 'b';

 int i = 25;

 int sum = 0;

 for (int k = 1; k < 4; k++)

 sum += k;

 (void) printf("c=%c, i=%d, sum=%d\n", c, i, sum);

 {

 int i = 35;

 j = i + 13;

 (void) printf("c=%c, i=%d, j=%d\n", c, i--, j);

 }

 (void) printf("c=%c, i=%d, j=%d\n", c, i, j);

 …

}

Example

CSC230: C and Software Tools © NC State University Computer Science Faculty 5

Scope… (cont’d)

• Is it a good idea to avoid reusing the same
variable name?

– Often, but not always

CSC230: C and Software Tools © NC State University Computer Science Faculty 6

 common source of bugs 

confusion about scoping,

and use of common names

Special Case: Scope of Labels

• The scope of
(goto) labels
is just the
function they
are contained
in

– so: you cannot
goto a label
defined in
another
function

CSC230: C and Software Tools © NC State University Computer Science Faculty 7

int f1(int b) {

 if (b < 10)

 goto labelx;

 (void) printf(“b < 10\n”);

labelx:

 return 0;

}

int f2(int a) {

 if (a > 5)

 goto labelx;

 (void) printf(“a > 5\n”);

labelx:

 return 0;

}

Lifetime (Storage Class) of Variables
• Memory space for a global variable is statically-

allocated at compile and load time

– this is called the static storage class

CSC230: C and Software Tools © NC State University Computer Science
Faculty

8

(unused)

In
c
re

a
s
in

g
 m

e
m

o
ry

 a
d
d
re

s
s
e
s

Linux run-time

memory image

Instructions (code)

Shared libraries

User stack

Kernel virtual memory

Statically defined data

Run-time heap (malloc’ed)

Lifetime… (cont’d)
• Memory space for a variable declared inside a

block is automatically-allocated at run time

– entry into the block triggers automatic memory
allocation and exit triggers automatic deallocation

– this is called the
auto storage class

CSC230: C and Software Tools © NC State University Computer Science Faculty 9

Statically defined data

(unused)

Instructions (code)

Run-time heap (malloc’ed)

Shared libraries

User stack

Kernel virtual memory

Example: Lifetime

CSC230: C and Software Tools © NC State University Computer Science Faculty 10

...

char c = 'a';

int i = 15;

int j = 0;

int main (void)

{

 char c = 'b';

 int i = 25;

 int sum = 0;

 for (int k = 1; k < 4; k++)

 sum += k;

 (void) printf("c=%c, i=%d, sum=%d\n", c, i, sum);

 {

 int i = 35;

 j = i + 13;

 (void) printf("c=%c, i=%d, j=%d\n", c, i--, j);

 }

 (void) printf("c=%c, i=%d, j=%d\n", c, i, j);

 …

}

For each i variable, how is the

memory allocated (statically or

dynamically) and what is the

storage class?

Lifetime… (cont’d)

• In C, you can manually force variables declared
inside a block to be static storage class using the
static keyword

– memory space is allocated only once, in the Static
area of memory

CSC230: C and Software Tools © NC State University Computer Science Faculty 11

Lifetime

CSC230: C and Software Tools © NC State University Computer Science Faculty 12

...

char c = 'a';

int i = 15;

int j = 0;

int f(void)

{

 char c = 'b';

 int i = 25;

 int sum = 0;

 for (int k = 1; k < 4; k++)

 sum += k;

 (void) printf("c=%c, i=%d, sum=%d\n", c, i, sum);

 {

 static int i = 35;

 j = i + 13;

 (void) printf("c=%c, i=%d, j=%d\n", c, i--, j);

 }

 (void) printf("c=%c, i=%d, j=%d\n", c, i, j);

 …

}

Initialization of Variables

• static, auto, … - what does it matter?

• 1. Space on the stack is limited (remember
problems allocating bigarray[] as an auto
variable?)

• 2. static variables with global scope can be
initialized only with constant expressions

CSC230: C and Software Tools © NC State University Computer Science Faculty 13

char c = 'a';

int i = 15 + (39 % 3);

int j = 0;

Initialization … (cont’d)
• auto class variables can be initialized using any

valid expression at the point at which they are
declared

• 3. default value of static variables (if not
explicitly initialized) is 0

– There is no default initial value for auto variables

CSC230: C and Software Tools © NC State University Computer Science Faculty 14

{…

 int i = 15 + (39 % 3) + f();

 int j = getchar() * 6 + i;

…}

{ int i; static int j;

 printf("%d %d\n", i, j); }

Output?

 common source of bugs 

failure to explicitly

initialize variables

Don’t rely on this!

Initialization … (cont’d)

• 4. Static class variables are initialized only once!

auto variables are (re-)initialized every time the
block is entered

CSC230: C and Software Tools © NC State University Computer Science Faculty 15

 common source of bugs 

expecting static

behavior from

auto variables

Initialization Example
void f(void);

main(void) {

 …

 f();

 f();

 f();

}

void f(void) {

 int k = 0;

 static int j = 0;

 printf (“ %d %d\n”, ++j, ++k);

}

CSC230: C and Software Tools © NC State University Computer Science Faculty 16

Output?

The register Storage Class
• A recommendation to the compiler to consider

storing the variable in a register instead of
memory

CSC230: C and Software Tools © NC State University Computer Science Faculty 17

int main (void)

{

 …

 int i = 25;

 double sum = 0.0;

 for (register int k = 1; k < 1000000; k++)

 sum += k;

 …

}

What difference does that make?

The register … (cont’d)

• Can only be specified for auto variables (i.e.,
not for global variables)

– some restrictions on what types of variables can be
specified as register class (see reference manual
for details)

• Optimizing compilers may be able to do a better
job than you can at identifying candidates for
register storage

CSC230: C and Software Tools © NC State University Computer Science Faculty 18

Seriously – I have never seen “register” used
by itself in a C program. It implies that the

programmer is “trusting” C to do something,
which C programmers never do.

The Stack

• Area of memory reserved for dynamic allocation
of auto variables, and function parameters
– input parameter values

– return address of caller

– auto variables local to the block

– saved register values

– result returned by function

• All of this is called the activation record or stack
frame of the called function (i.e., the callee)

CSC230: C and Software Tools © NC State University Computer Science Faculty 19

Example of Stack Contents
•Top of
stack

CSC230: C and Software Tools © NC State University Computer Science Faculty 20

return address in main()

Saved register values

Input parameters for f1()

return value from f1()

Local variables for f1()

return address in f1()

Saved register values

Input parameters for f2()

return value from f2()

Local variables for f2()

Activation record for
function f1()

Activation record for
function f2()

In
c
re

a
s
in

g
 m

e
m

o
ry

 a
d
d
re

s
s
e
s

Operations on stack are LIFO (last-
in, first-out): push onto stack
and pop from stack

Another Storage Class: extern

• discussed later along with linking…

CSC230: C and Software Tools © NC State University Computer Science Faculty 21

Reminder: Go to course web page for link to exercise form.
Paste code into ideone.com and submit the link.

int x = 15, y = 25;

int main (void) {

 printf(“%d\n”, x); //1

 int x;

 printf(“%d\n”, x); //2

 x = y;

 printf(“%d\n”, y); //3

 for (int j = 0; j < 3; j++) {

 int y = 32;

 static int x = 35;

 x = 2 * x;

 printf(“%d\n”, x); //4

 y = y / 2;

 printf(“%d\n”, y); //5

 }

 int y = 100;

 printf(“%d\n”, y); //6

}

Exercise 10a

• For each
numbered printf,
indicate:

– What is printed?
Put a ? If it could
be anything

– Where the
variable in
question is
allocated (stack
or static region)?

copyright 2009 Douglas S Reeves

22

Variable storage

