
File IO

C Programming and Software Tools
N.C. State Department of Computer Science

<stdio.h> … (cont’d)

• Every C program begins execution with 3
streams

– stdin, stdout, and stderr

• The program does not need to open or close
these streams; happens automatically

CSC230: C and Software Tools © NC State University Computer Science Faculty 2

<stdio.h> fopen()
FILE* fopen(const char *filename,

 const char *mode)

CSC230: C and Software Tools © NC State University Computer Science Faculty 3

Establishes a connection between a file or device and a
stream

Returns pointer to object of type FILE, records information
for controlling stream

– returns NULL on failure

FILE* infile;

infile = fopen(“/tmp/testfile.txt”, “r”);

if (infile == NULL)

 { printf(“Error.\n”); return -1;}

<stdio.h> fopen() (cont’d)

• Mode

– "r" - open for reading

– "w" - create file for writing (discard previous
contents)

– "a" - append to existing file or create for writing

– (+ some others, less important)

• If ‘b’ appended to above modes, file is opened
as binary file

CSC230: C and Software Tools © NC State University Computer Science Faculty 4

<stdio.h> Binary Files

• Needed if
– non-ASCII data, or

– need to handle differences between outputs produced by
different platforms (e.g., Windows Linux)

• Examples of binary files
– images: .bmp, .gif, .jpg, .tif

– audio: .wav, .ac3

– video: .avi

– word processing: .rtf

– encrypted files

– etc.

CSC230: C and Software Tools © NC State University Computer Science Faculty 5

<stdio.h> Byte-Ordering

• Different architectures store the bytes of a word
in different orders

• What’s an architecture? Type of processor

– Ex.: Intel, PowerPC, ARM, VIA, CELL, etc.

• What’s a word? Primitive datatypes of a
language

– Ex.: int, short int, float, double, …

CSC230: C and Software Tools © NC State University Computer Science Faculty 6

<stdio.h> The Problems This Causes
• Your program, executing on an Intel PC, writes the

(4-byte) int values 20, 500, 500000 to a file

CSC230: C and Software Tools © NC State University Computer Science Faculty 7

Another program, executing on a PowerPC, reads the (4-
byte) int values from this file and interprets them as
335544320, 4093706240, and 547424000

Same byte values, but interpreted differently!

14 00 00 00 F4 01 00 00 20 A1 07 00

3 integer values, each shown as 4 bytes, in hexadecimal

Big-endian vs. little-endian

• Big-endian: MOST significant byte FIRST

• Little-endian: LEAST significant byte FIRST

• Little-endian: Intel x86

• Big-endian: Everything else (almost)

CSC230: C and Software Tools © NC State University Computer Science Faculty 8

Figure from http://en.wikipedia.org/wiki/Endianness

Converting Between B-E and L-E

CSC230: C and Software Tools © NC State University Computer Science Faculty 9

#include <stdint.h>

uint32_t swap_4byte_word(uint32_t x) {

 return

 ((x>>24) & 0x000000ff) |

 ((x>> 8) & 0x0000ff00) |

 ((x<< 8) & 0x00ff0000) |

 ((x<<24) & 0xff000000);

}

Other data sizes are left to the reader…

<stdio.h> fgetc()

int fgetc(FILE *stream)

int getc(FILE *stream)

CSC230: C and Software Tools © NC State University Computer Science Faculty 10

Read next character of stream as unsigned char
(converted to int)

returns EOF if end of file or error

getchar() is equivalent to getc(stdin)

int res;

unsigned char c;

if ((res = getc(stdin)) == EOF)

 …take action here…

c = (unsigned char) res;

King, Section 22.4

Function

Macro

<stdio.h> fputc()

int fputc(int c, FILE *stream)

int putc(int c, FILE * stream)

CSC230: C and Software Tools © NC State University Computer Science Faculty 11

Write the character c (converted to
unsigned char) to stream

Returns character written, or EOF on error

putchar(c) equivalent to putc(c, stdout)

putc(‘H’, stdout);

putc(‘I’, stdout);

putc(‘!’, stdout);

Function

Macro

<stdio.h> ungetc()

int ungetc(int c, FILE * stream)

CSC230: C and Software Tools © NC State University Computer Science Faculty 12

Pushes c (converted to unsigned char) back onto
stream !

– Clears the stream’s end-of-file indicator.

– c will be read by next getc on stream

Only one character of pushback per stream is guaranteed

EOF may not be pushed back

Returns character pushed back, EOF on error

<stdio.h> fread()

size_t fread (void * ptr, size_t

size, size_t nobj, FILE * stream)

CSC230: C and Software Tools © NC State University Computer Science Faculty 13

Reads up to nobj objects of size size from
stream into array pointed to by ptr

Returns number of objects read, less if error
int nums[NUMNUMS];

size_t nr = fread((void *) nums, sizeof(int),

 (size_t) NUMNUMS, stdin);

if (nr != NUMNUMS)

 … do something here …

King, Section 22.6

<stdio.h> fwrite()

size_t fwrite (const void * ptr,

 size_t size, size_t nobj,

 FILE * stream)

CSC230: C and Software Tools © NC State University Computer Science Faculty 14

Writes up to nobj objects of size size starting at
address ptr to stream

Returns number of objects written,
less than requested if error

This is the “vomit” function from lecture 1!

<stdio.h> fseek()

int fseek (FILE *stream, long

offset, int origin)

CSC230: C and Software Tools © NC State University Computer Science Faculty 15

Sets file position (for subsequent reading or writing) to
offset from origin

origin may be SEEK_SET (beginning of file),
SEEK_CUR (current position), or SEEK_END (end of
file)

Mainly for binary streams

Returns non-zero on error

King, Section 22.7

<stdio.h> fseek() … (cont’d)

CSC230: C and Software Tools © NC State University Computer Science Faculty 16

int res = fseek(infile, (long) 1000, SEEK_SET);

c = getc(infile); /* now read 1001st byte */

int res = fseek(infile, (long) -5, SEEK_END);

c = getc(infile); /* read 5th byte from end */

<stdio.h> fflush()

int fflush(FILE *stream)

CSC230: C and Software Tools © NC State University Computer Science Faculty 17

Causes any buffered data to be immediately written to
output file

Helpful if you don’t want to wait for ‘\n’ to see output

fflush(stdout);

King, p. 549

<stdio.h> fclose()

int fclose(FILE * stream)

CSC230: C and Software Tools © NC State University Computer Science Faculty 18

Actions

– flush any unwritten data to output file or device

– close the stream (cannot be read or written after)

fclose(outfile);

King, p. 545

<stdio.h> remove()

• Delete the named file, return 0 if successful

CSC230: C and Software Tools © NC State University Computer Science Faculty 19

 int remove(const char *filename)

if (remove(“/tmp/testfile.txt”))

 …error, take action here…

King, p. 551

<stdio.h> fscanf()

• Like scanf, but specify stream to be read from

– scanf(fmt, args…) is same as
fscanf(stdin, fmt, args…)

CSC230: C and Software Tools © NC State University Computer Science Faculty 20

int fscanf(FILE *stream,

 const char *fmt, …)

int sscanf(char * s,

 const char *fmt, …)

• Like scanf, but … scans from a string instead of
a file!

King, p. 558

<stdio.h> fprintf()

• Like printf, but specify stream to be written to

– printf(fmt, args…) is same as
fprintf(stdin, fmt, args…)

CSC230: C and Software Tools © NC State University Computer Science Faculty 21

int fprintf(FILE *stream,

 const char *fmt, …)

int sprintf(char * s,

const char *fmt, …)

• Like printf, but … prints to a string instead of
a file!

King, p. 552

<stdio.h> I/O Error Functions

int feof(FILE *stream)

CSC230: C and Software Tools © NC State University Computer Science Faculty 22

• Returns true if EOF for stream has been reached

int ferror(FILE *stream)

• Returns true if error indicator for stream is set

void clearerr(FILE *stream)

• Clears previously set error indicator for stream

– errors are not cleared unless programmer
explicitly uses clearerr

King, p. 564

Normal IO workflow

Open Read/write Close

CSC230: C and Software Tools © NC State University Computer Science Faculty 23

fopen

Check for NULL!

Read Write Data

fgetc/getc fputc/putc One character at a time

fscanf fprintf ASCII tokens

fread fwrite Binary data

fclose

fseek: Move around the file.

feof: Check for EOF.

ferror: Check for error.

fflush: Force output to go out.

Example: mycp.c (1)

int main(int argc, char* argv[])

{

 if (argc != 3) {

 printf("Usage: mycp <src> <dest>\n");

 exit(1);

 }

 FILE* fp_in = fopen(argv[1],"rb");

 if (!fp_in) {

 pdie(argv[1]);

 }

 FILE* fp_out = fopen(argv[2],"wb");

 if (!fp_out) {

 pdie(argv[2]);

 }

 char buffer[BUF_SIZE];

 // CONTINUED NEXT SLIDE...

CSC230: C and Software Tools © NC State University Computer Science Faculty 24

#include <stdio.h>

#include <stdlib.h>

#define BUF_SIZE 4096

void pdie(char* msg) {

 perror(msg);

 exit(1);

}

Example: mycp.c (2)

 while (1) {

 int bytes_read = fread(buffer, sizeof(char), BUF_SIZE, fp_in);

 if (ferror(fp_in)) {

 pdie(argv[1]);

 }

 fwrite(buffer, sizeof(char), bytes_read, fp_out);

 if (feof(fp_out) || ferror(fp_out)) {

 pdie(argv[2]);

 }

 if (feof(fp_in)) {

 break;

 }

 }

 fclose(fp_in);

 fclose(fp_out);

}

CSC230: C and Software Tools © NC State University Computer Science Faculty 25

Not BUF_SIZE!

Reminder: Go to course web page for link to exercise form.
Paste code into ideone.com and submit the link.

Exercises 11a and 11b

• 11a) Write a program to generate the test input
from HW3 called “test_allbytes.dat” – a 256-
byte file consisting of bytes 0x00 through 0xFF.
Use a loop and fputc in your solution.

• 11b) Write a program that does the same thing,
except now do it by building a char array with
the bytes and write it out with a single fwrite
call.

CSC230 - C and Software Tools © NC State University Computer Science Faculty

26

Writing bytes

Any Questions?

CSC230 - C and Software Tools © NC State University Computer Science Faculty 27

