
The C Preprocessor
C Programming and Software Tools
N.C. State Department of Computer Science

Preprocessing
• Modifies the contents of the source code file

before compiling begins

• The proprocessor is run automatically when you
compile your program

– use gcc –E option if you want to see just the
results of the preprocessing step

• It is (mostly) simple string substitution

CSC230: C and Software Tools © NC State Computer Science Faculty 2

#define PI 3.1415926

double x = PI * d;

preprocess

to get… double x = 3.1415926 * d;

Steps in Compiling (Review)

CSC230: C and Software Tools © NC State Computer Science Faculty 3

Source Code

Expanded Source Code

#define N 3

a=c+b*N;

Tokens

a=c+b*3;

a = c + b * 3 ;

preprocessing

lexical analysis

parsing

…

Uses of Preprocessing

1. (header) file inclusion
(e.g., #include <stdio.h>)

2. macro substitution for common (short)
fragments of code
(e.g., #define PI 3.1415926)

3. conditional compilation
(e.g., #ifdef DEBUG … #endif)

• No preprocessing provided in Java

CSC230: C and Software Tools © NC State Computer Science Faculty 4

Preprocessor Commands

• Any line starting with the # character

• A preprocessing command is terminated by the
end of the line, unless continued with a \

• Ex.:

CSC230: C and Software Tools © NC State Computer Science Faculty 5

#define PISHORT 3.1416

#define PILONG \

 3.14159265358979323846264

#define

• #define identifier token-sequence

• Proprocessor: anywhere it finds identifier
in the program, it replaces it with token-
sequence

• One use: giving names to “magic” constants, ex.:

CSC230: C and Software Tools © NC State Computer Science Faculty 6

#define E 2.718282

#define BIGRAISE 50000

#define FALSE 0

#define TRUE 1

#define ERROR -1

#define EQ ==

#define TABLESIZE 100

#define (cont’d)

• This is not the same as declaring a variable; no
storage is allocated

• You've already used such constants: EOF,
RAND_MAX

CSC230: C and Software Tools © NC State Computer Science Faculty 7

if (really_good_year EQ TRUE)

 salary += BIGRAISE;

if (really_good_year == 1)

 salary += 50000;

preprocess to get…



#define (cont’d)

• is translated by the preprocessor
(before compiling) into…

CSC230: C and Software Tools © NC State Computer Science Faculty 8

int table[TABSIZE];

…

for (i = 0; i < TABSIZE; i++)

 if (table[i] EQ 15)

 …

int table[100];

…

for (i = 0; i < 100; i++)

 if (table[i] == 15)

 …



More About #define

• #defines can also contain #define’d values

CSC230: C and Software Tools © NC State Computer Science Faculty 9

#define PI 3.1415926

#define TWOPI 2*PI

By convention, #define identifiers are written in
ALL CAPS

Do not terminate #define by ‘;’ or it becomes
part of token_sequence!

#define PI 3.1416 ;

…

area = PI * r * r;

area = 3.1416 ; * r * r;


 common source of bugs 

terminating macro

definition with ‘;’

#define … (cont’d)

CSC230: C and Software Tools © NC State Computer Science Faculty 10

If a #define contains multiple statements, put the whole
thing in braces (i.e., use block structure)

#define MYMAC \

 i = j; \

 j = 16

…

if (m > 27)

 MYMAC ;

if (m > 27)

 i = j;

 j = 16;

Without using braces (wrong)



 common source of bugs 

failure to delimit a

block macro with {}

#define … (cont’d)

CSC230: C and Software Tools © NC State Computer Science Faculty 11

#define MYMAC \

{ \

 i = j; \

 j = 16; \

}

…

if (m > 27)

 MYMAC;

if (m > 27)

{

 i = j;

 j = 16;

}



With braces (right)

More… (cont’d)

• The token_sequence does not need to be a
valid expression or statement, e.g.,

CSC230: C and Software Tools © NC State Computer Science Faculty 12

#define TIMES2 * 2

…

a = b TIMES2 ; a = b * 2 ;


Macro Expansion

• #define can take parameters or arguments
(like functions), e.g.,

CSC230: C and Software Tools © NC State Computer Science Faculty 13

#define DIAM(radius) 2*PI*(radius)

…

diameter = DIAM(r);

Note: no white space!

diameter = 2*PI*(r);

looks like a function call, but it’s not!

Parenthesize Macro Parameters
• Without parentheses:

CSC230: C and Software Tools © NC State Computer Science Faculty 14

#define SQUARE(x) x * x

…

y = SQUARE(z+1) ;

y = z+1 * z+1 ;

#define SQUARE(x) (x) * (x)

…

y = SQUARE(z+1) ;

y = (z+1) * (z+1) ;

difference???
With parentheses:

 common source of bugs 

failure to parenthesize

a macro parameter

Macros vs. Functions

CSC230: C and Software Tools © NC State Computer Science Faculty 15

Which is better:

– a macro F?

– a function f()?

int f(int j, int k)

{

 int i;

 i = j + k;

 return (i * 2);

}

…

if (m > 27)

 x = f(x,y);

#define F(j,k) \

{ \

 int i; \

 i = j + k; \

 j = i * 2; \

}

…

if (m > 27)

 F(x,y);

Macros vs. Functions… (cont'd)

CSC230: C and Software Tools © NC State Computer Science Faculty 16

#define DIAM(radius) 2*PI*(radius)

double diamf (float radius)

{…}

double diami (int radius)

{…}

double diamd (double radius)

{…}

vs.

One difference: do not have to declare the type of the
arguments of a macro – but it may still matter

Macro Expansion of Macro Expansion of …

• Ex:

CSC230: C and Software Tools © NC State Computer Science Faculty 17

#define ABSDIFF(a,b) \

 ((a)>(b) ? (a)-(b) : (b)-(a))

What is result of…?

x = ABSDIFF(5,35) ;

x = ((5)>(35) ? (5)-(35) : (35)-(5)) ;

Macro Expansion of… (cont’d)

CSC230: C and Software Tools © NC State Computer Science Faculty 18

What is result of…?

x = ABSDIFF(70, ABSDIFF(5,35)) ;

x = (((70) > ((5)>(35)?(5)-(35):(35)-(5)) ?

(70-((5)>(35)?(5)-(35):(35)-(5)) :

((5)>(35)?(5)-(35):(35)-(5)))-(5))-(70))) ;

Side Effects and Macro Arguments

• Watch out for input parameters to macros that
have side effects (e.g., x++)

19

#define MAX(a,b) ((a)>(b) ? (a) : (b))

x = MAX(y++,z++);

What happens with…

y z

2 3

x y z

? ? ?

x = ((y++)>(z++) ? (y++) : (z++));

Before execution After execution Advice: avoid side
effects in macro
arguments!

 common source of bugs 

invoking macros with

parameters that have

side effects

Two More Uses

• Concatenation with the ## characters

CSC230: C and Software Tools © NC State Computer Science Faculty 20

#define TMPFILE(dir,fname) #dir #fname

…

char *s = TMPFILE(/usr/tmp,test1) ;

char *s = “/usr/tmp” “test1” ;

Quoting with the # character (Stringification)

#define CAT(x,y) x ## y

…

a = CAT(b,123) ;

a = b123;


#include

• Inserts into the source code the contents of
another file

– often called a header file (filetype: .h)

CSC230: C and Software Tools © NC State Computer Science Faculty 21

#include <stdio.h>

#include “mydefs.h”

Where does gcc look for these files?

– installation dependent (but often /usr/include)

– same directory as source code file

– other locations controlled by gcc –I option

standard library header file

user defined header file

#include (cont’d)

• Frequently part of header files:

– constant definitions

– function prototype declarations (for libraries)

– extern declarations (we’ll discuss later)

• When the header file changes, all source files
that #include it have to be recompiled

– i.e., there is a dependency of this source code on the
contents of the header file

CSC230: C and Software Tools © NC State Computer Science Faculty 22

Some Useful (Standard) Header Files

• stdio.h

• stddef.h

• math.h

• string.h

• float.h and limits.h

• Take a look in /usr/include on your system

CSC230: C and Software Tools © NC State Computer Science Faculty 23

Conditional Compilation

• To control what source code gets compiled

• Common uses
– to resolve, at compile time, platform (machine- or

OS-) dependencies

– to compile (or not) debugging code

• Requires the following preprocessor directives
– #if / #ifdef / #ifndef

– #elif / #else

– #endif

CSC230: C and Software Tools © NC State Computer Science Faculty 24

#if vs. #ifdef

• #ifdef BLAH ↔ #if defined(blah)

• #if BLAH ↔ #if BLAH!=0

CSC230: C and Software Tools © NC State Computer Science Faculty 25

#define A 0

#define B 1

int main() {

#if A

 printf("Compiled with A being true!\n");

#endif

#ifdef A

 printf("Compiled with A existing!\n");

#endif

#if B

 printf("Compiled with B being true!\n");

#endif

#ifdef B

 printf("Compiled with B existing!\n");

#endif

}

$./a.exe

Compiled with A existing!

Compiled with B being true!

Compiled with B existing!

Conditional Compilation: Example

• And when compiling
this program, can
define what
SYSTEM is by using
the -D option to
gcc

CSC230: C and Software Tools © NC State Computer Science Faculty 26

#ifdef LINUX

 #include “linux.h”

#elif defined(WIN32)

 #include “windows.h”

#else

 #include “default.h”

#endif

#include "windows.h"

gcc –DWIN32 myprog.c …



The -D option sets a macro to 1, unless you do -DNAME=VALUE

Debugging…

• Use macros to execute your program in debug
mode

– Assume program compiled with the following
command

gcc –DDEBUG –Wall –std=c99 myprog.c

– How would your print a debug message in your
code?

CSC230: C and Software Tools © NC State Computer Science Faculty 28

My debug recipe

CSC230: C and Software Tools © NC State Computer Science Faculty 29

#ifdef DEBUG

 #define DPRINTF printf

#else

 #define DPRINTF(...)

#endif

int main(int argc, char* argv[]) {

 DPRINTF("Running '%s', got %d args...\n",argv[0],argc);

 printf("Doing normal stuff...\n");

}

$ gcc -Wall -std=c99 debug-test.c

$./a.out

Doing normal stuff...

$ gcc -Wall -std=c99 -DDEBUG debug-test.c

$./a.out

Running './a.out', got 1 args...

Doing normal stuff...

Reminder: Go to course web page for link to exercise form.
Paste code into ideone.com and submit the link.

Exercise 12a: Smart fail message

• C predefines two macros:
_ _FILE_ _ - equal to the name of the C file

_ _LINE_ _ - equal to the current C line number

• Write a die macro that prints a given message,
followed by the file and line number, then exits with
code 1. This can make debugging easier. Example:

CSC230 - C and Software Tools © NC State University Computer Science Faculty

30

$./test

Unable to narfle the garthok (test.c:15)

if (narfle == ERROR) {

 die(“Unable to narfle the garthok”);

}

Line 15 of test.c

Any Questions?

CSC230 - C and Software Tools © NC State University Computer Science Faculty 31

