Pointers in C

C Programming and Software Tools

N.C. State Department of Computer Science

Lomputer dcience

If ever there was a time to pay
attention, now is that time.

[omputer Science
2 NC STATE UNIVERSITY

A critical juncture

When you understand pointers If you don't...

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 3

Agenda

e I'm going to cover this TWICE,

in two different ways

+ Most languages - + C - flat memory space
protected variables

user_info
. i shopping_cat oot info shopping_ca
— My condensed slides | D=+ i
g . i gL
¥ _EDO O system_id mveﬂir’v
inventory :

Figurs fom Rugs Duma, MOSU, 2397

All References are Addresses?

* In reality, all program references (to variables,
functions, system calls, interrupts, ...) are
addresses

1. youwrite code that uses symbolic names
L] L] L] . .
2. the compiler translates those for you into the
e O r I g I n a S I e S addresses needed by the computer
— requiresa directory or symbol table
(name — address translation)

* You could just write code that uses addresses (no
symbolic names)

— advantages? disadvantages?

Computer Scence

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 4

Pointers: the short, short version

Memory Is a real thing!

* Most languages - e C - flat memory space
protected variables

user_info
shopping_cart

user_info :
i_ shopping_cart
i i
system _id /Q %
ﬁg system_id inventory
inventory 6

Figure from Rudra Dutta, NCSU, 2007

The memory map on 32-bit x86

<
OXFFFFFFFF

(4,294,967,295)

Func params | ™. kernel space

Bookkeepin <
Frame O - (frame & stack pe;integs) Stale 0xCO000000

(3,221,225,472)

Local variables

shared library

Func params :: <
P : 0x42000000
(1,107,296,256)
Frame 1 1 | Bookkeeping :
(frame & stack pointers) ..‘ 1
heap
Local variables | .
- static data
Frame 2+ :
; code =0 Asogg
O (a2

Based on Dawn Song’s RISE: http://research.microsoft.com/projects/SWSeclnstitute/slides/Song.ppt

What do variable declarations do?

. e When the program starts, set aside an extra 4
1nt x=5; bytes of static data, and set them to 0x00000005.

char msg[] = "Hello"; When | type x later, assume | want the value
l\ stored at the address you gave me.
Ditto, but get 6 bytes and put ‘H’, ‘e’, ', ‘', ‘'0’, and a zero in them.

stack. Put in it what was passed in; call it argc and argv.

K Whenever this function is run, reserve a chunk of space on the

int main(int argc, const char* argv[]) {

int v; In that chunk of stack space, reserve 4 more
float pi = 3.14159; bytes. Don't pre-fill them. When | type v later,
give me the data in the spot chosen.

printf("%d\n",x); Ditto, but treat the space as a decimal, call it
printf("%d\n",v); pi, and make it 3.14159.

J _

Look up what’s in x and print it. Ditto for v. 8

What do variable declarations do?

int x=5;

char msg[] = "Hello";

int main(int argc, const char* argv[]) {

3.14159;-’/;:H

int v; =

float pi =

printf("%d\n",x);
printf("%d\n",v);

Params

Bookkeeping

kernel

Locals

Params

snj?k

Bookkeeping

libs

Locals

I

heap

.StatIC

code

Let’s look at memory addresses!

e You can find the address of ANY variable with:

&

The address-of operator

int v = 5;

. . $ gcc x4.c && ./a.out
printf(“%d\n”,v); :

printf(“%p\n”,&v); ox7fffd232228¢

Testing our memory map

int x=5;

char msg[] = "Hello";

int main(int argc, const char* argv[]) {

int v;

float pi = 3.14159;

printf("&x:
printf("&msg:
printf("&argc:
printf("&argv:
printf("&v:
printf("&pi:

%p\n",&x);
%p\n",&msg);
%p\n",&argc);
%p\n",&argv);
%p\n",8&v);
%p\n”,&pi);

Params

Bookkeeping

kernel

Locals

Params

stj?k

Bookkeeping

libs

Locals

$ gcc x.c && ./a.out
&x: ©x601020
&msg: ©x601024
&argc: Ox7fff85b78c2c

&argv: Ox7fff85b78c20
&v: Ox7fff85b78c38
&pi: Ox7fff85b78c3c

I

heap

static

code

11

What’s a pointer?

e [t's a memory address you treat as a variable

* You declare pointers with:

*

The dereference operator

int v = 5;

/ Append to any data type
int* p &v;

printf(“%d\n”,v),
. $ gcc x4.c & & ./a.out
printf(“%p\n”,p); 5

Ox7fffeBe60b7cC

What’s a pointer?

* You can look up what's stored at a pointer!

* You dereference pointers with:

x*

The dereference operator
int v = 5;

. x _ .
int* p = &v; Prepend to any pointer variable or expression
printf(“%d\n”,v); " 4.c 8 ./a.out

. gcc x4.c ./a.ou
printf(“%p\n”,p); 5

pr\int-F(“%d\n”, *p) ; 2x7fffe@e6@b7c

What is an array?

* The shocking truth:
You’'ve been using pointers all along!

e Every array IS a pointer to a block of memory

int x = 9;
char msg[] = “hello”;
short nums = {6,7,8};

&X msg nuMSs

14

Array lookups ARE pointer references!

int x[] = {15,16,17,18,19,20}; (In case you don't believe me)

int n=2;
printf("%p %p\n", X X)

Array lookup printf(7d K, xlo] L x)

printf("%d %d\n", x[5] ,*(x+5));

X X int* printf("%d %d\n", x[n] ,*(x+n));
. printf("%p %p\n",&x[0], X);
*
x[0] X Int printf("%p %p\n",&x[5], x+5);
X[5] *(X+5) int printf("%p %p\n",&x[n], X+n);
x[n] *(x+n) int $ gcc x5.c && ./a.out
Ox7fffa2dobode ©x7fffa2dobode
&x[0] X int* 15 15
_ 20 20
&X[5] X+5 int* 17 17

Ox7fffa2dob9do ox7fffa2dob9do
Ox7fffa2dob9ed4 oOx7fffa2dob9e4d
Ox7fffa2dobod8 ox7fffa2dobods

&x[n] X+n int*

* This is why arrays don’t know their own length:
they’re just blocks of memory with a pointer!

15

Using pointers

e Start with an address of something that exists
* Manipulate according to known rules
* Don’t go out of bounds (don’t screw up)

void underscorify(char* s) { int main() {

char* p = s; char(msgg] = "Here are words";
. puts(msg);
*n | =
while (*p !=0) { underscorify(msg);
if (*p==""){ puts(msg);
*p — l_l; }
}
p++; $ gcCC x3.c && ./a.out

} Here are words
Here_are words

¥

16

Shortening that function

, . // how a developer might code it
void underscorify(char* s) { void underscorify2(char* s) {

char* p = s; char* p;
while (*p != 0) { for (p = s; Tpl; p++) {
if (*p == "' ") { P 2=)
o= 0 } P =
} }
p++; }
}
} // how a kernel hacker might code it

void underscorify3(char* s) {
for (; *s ; s++) {
if (¥*s == " ') *s = "' ';
}
}

Pointers: powerful, but deadly

* What happens if we run this?
#include <stdio.h>

int main(int argc, const char* argv[]) {
int* p;

printf(" p: %p\n",p);
printf("*p: %d\n",*p);

$ gcc x2.c && ./a.out

p: (nil)
Segmentation fault (core dumped)

Pointers: powerful, but deadly

e Okay, | can fix this! I'll initialize p!

#include <stdio.h>

int main(int argc, const char* argv[]) {
int* p = 100000;

printf(" p: %p\n",p);
printf("*p: %d\n",*p);

$ gcc x2.c
x2.c: In function ‘main’:
X2.C:4:9: warning: initialization makes pointer from

integer without a cast [enabled by default]
$./a.out

p: ©0x186a0
Segmentation fault (core dumped)

A more likely pointer bug...

int main() {

void underscorify bad(char* s) {

char msg[] = "Here are words";
char* p = s; puts(msg);
while (*p != '0") { underscorify bad(msg);
if (*p == 0) { puts(msg);
=TS }
}
p++;

Almost fixed...

) . int main() {
void underscorify bad2(char* s) {

char msg[] = "Here are words";

char* p = s; puts(msg);
while (*p != '0") { underscorify_bad2(msg);

if (¥p == ' ') { puts(msg);

*p] ! '; }

}

P++, Worked but
} gn-—nnr:r"mnpfnu'lr (s } crashed on exit

} @ ~ % gcc x3.c && . fa.out

Worked totally!!

y . /d.0Ut

Worked totally!!

&% . /4. out

Worked totally!!

y . /d.0Ut

Worked totally!!

Gy .S A OUT

Worked totally!!

2 . Ja.out

Worked totally!!

Gy .S A OUT

Worked totally!!

Effects of pointer mistakes

Access an array out of bounds
or some other invalid pointer location?

N
« Totally wei havi
No visible effect otally weird behavior

ash [=[=] =

Silent corruption & bad results

Program crash with OS error

The application M_PROGRAM=iTerm.app quit
unexpectedly.

Mac OS X and other applications are not affected.

Click Relaunch to launch the application again. Click
Report to see more details or send a report to Apple.

I"- Report... -\I (Relaunch)

Error: Access vinlation at 0x00736002 (tried ko read Fram 0x0000001F), program kerminaked.

(8]4

Pointer summary

e Memory is linear, all the variables live at an address
— Variable declarations reserve a range of memory space

* You can get the address of any variable with
the address-of operator &
int x; printf(“%p\n”,&x);
* You can declare a pointer with the dereference operator *
appended to a type:
int* p = &x;
* You can find the data at a memory address with the

dereference operator * prepended to a pointer expression:
printf(“%d\n”, *p);

e Arrays in C are just pointers to a chunk of memory

e Don't screw up
23

POINTERS — TRADITIONAL SLIDES

Lomputer dcience
.

The Derived Data Types

‘/Arrays
> Pointers
® (Structs)
® (Enums)
® (Unions)

[omputer Science

Pointers Every Day

e Examples
— telephone numbers
— web pages
e Principle: indirection
e Benefits?

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty

All References are Addresses?

e In reality, all program references (to variables,

functions, system calls, interrupts, ...) are
addresses

1. you write code that uses symbolic names

2. the compiler translates those for you into the
addresses needed by the computer

— requires a directory or symbol table
(name — address translation)

e You could just write code that uses addresses (no
symbolic names)

— advantages? disadvantages?

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty

Pointer Operations in C

e Make sense?

e "y and w are variables of type int"
e "pvisavariable containing the address of another variable"

e "pv =the address of v"
e “v =thevalue of the int whose address is contained in pv"

int v, w;
int * pv;

pv = &v;
w = *pv;

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty

C Pointer Operators

px = &x; |“pxisassigned the address of x”

y = *px; |“yisassigned the value at the address
indicated (pointed to) by px”

» px is not an alias (another name) for the variable
x; it is a variable storing the location (address) of
the variable x

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty

...Operators (cont’d)

& = “the address of...

“ap Is a pointer
to an int”
int a;
int *ap;

ap = &a;

“ap gets the address
of variable a”

“cp Is a pointer
to a char”

“fp Is a pointer
to a float”

char c;
char *cp;

cp = &c;

float f;
float *fp;

fp = &f;

“cp gets the address
of variable c”

CSC230: C and Software Tools © NC State Computer Science Faculty

“fp gets the address
of variable "

[omputer Science

...Operators (cont’d)

* = “pointer to...”

“the variable ap points to (i.e., a) is assigned value 33"

*ap = 33; o | _ |
* “b is assigned the value of the variable pointed to by ap (i.e.,
b = *ap; a)’
“the variable cp points to (i.e., ¢) is assigned the
*cp = ‘Q'; value ‘Q”
d = *cp; “d is assigned the value of the variable pointed to by cp (i.e.,

c)”

*fp = 3.14; “the variable fp points to (i.e., f) is assigned value 3.14"

g = *fp; “g is assigned the value of the variable pointed to by fp (i.e.,
f)”

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 3 1

Side note: where to put the *

e How | write and think about pointers:

- int* x; // x is an int pointer

e How many C programmers do:

- int *x; // x is a pointer, its type is int
e \What does this mean?
—int *x,y;

Equivalent to:
- int *x; // x is a pointer, its type is int
int y; // .and y is an int

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 32

Variable Names Refer to Memory

*A C expression, without pointers
a=b + c; /* all of type int */

Symbol Table
Memory Variable
Address
0 b
4 C
S ; “Pseudo-Assembler” code

load int at address 0 into reqgl
load int at address 4 into reg2
add regl to reg2

store reg2 into address 8

[omputer Science

CSC230: C and Software Tools © NC State Computer Rmmw

nnnnnnnnnnnnnn

Variables Stored in Memory

Almost all machines are byte-addressable, i.e.,
every byte of memory has a unigue address

C

Addr Contents
0 Value of b
4 Value of c
8 Value of a
_ J
Y

32 bits (4 bytes) wide

CSC230: C and Software Tools © NC State Computer

nnnnnnnnnnnnnn

[omputer Science
e

Pointers Refer to Memory Also

eA C expression, with pointers

int *ap;

ap = &a;

ap = b + ¢; / all of type int */

Symbol Table

Memory Variable
Address

0 b

“Pseudo-assembler” code

load address 8 into reg3
load int at address 0 into regl
load int at address 4 into reg2
add regl to reg2
store reg2 into address pointed
to by reg3

compUTE ST

CSC230: C and Software Tools © NC State Computer m

nnnnnnnnnnnnnn

4 C
8 a
12 ap

Pointers Refer... (cont’d)

Addre Contents
SS
0 Value of b
4 Value of c
8 Value of a
12 8 (address of a)
Y

32 bits (4 bytes) wide

CSC230: C and Software Tools © NC State Computer

nnnnnnnnnnnnnn

Variable
Name

b
C

d

ap

[omputer Science
(g

Addresses vs. Values

int a = 35;
int *ap;
ap = &a;
printf (Y a=%d\n &a=%u\n ap=%u\n *p=%d\n”,
a/
(unsigned int) &a,
(unsigned int) ap,
*ap) ;
e Result of execution

a = 35
&a 3221224568 70

ap 3221224568
*ap —

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 3

Pointers to Pointers to ...

C expression

char * ap = &a; Addr Contents Var
char ** app = ≈ 0 Value of b b
char *** appp = &app;
***appp — b .l. c; 4 Value OfC C
8 Val f a
Var Address SHe ot d
3 8 12 8 (addr of a) ap
ap 12 16/ | 20 (addr of app) | appp
a 20
Ph 20 % 12 (addr of ap) | app
appp 16
b 0 \ J

Y
c 4 32 bits (4 bytes) wide

CSC230: C and Software Tools © NC State Computer Science Faculty 38

Flow of Control in C Programs

e When you call a function, how do you know
where to return to when exiting the called
function?

— The call function information is pushed on the stack
— The callee is processed

— The last part of the callee (before popping from the
stack) is the address of the caller (a pointer to the
caller in memory)

— Return value is a pointer to where value is stored in
memory

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 39

Why Pointers?

e Indirection provides a level of flexibility that is
immensely useful

— “There is no problem in computer science that
cannot be solved by an extra level of indirection.”
e Even Java has pointers; you just can’t modify
them

— e.g., objects are passed to methods by reference,
and can be modified by the method

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty

..Types (cont’d)

e Make sure pointer type agrees with the type of
the operand it points to

int 1, *ip;

float £, *fp;

fp = &f; /* makes sense */

fp = &1; /* definitely fishy * /
/* but only a warning */

Ex.: if you're told the office of an instructor is a mailbox
number, that's probably a mistake

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 4

Pointer Type Conversions

e Pointer casts are possible, but rarely useful

— Unless you’re creative and believe in yourself

char * cp = ..;

float * fp = ..;

fp = (float *) cp; /* casts a pointer to a char
* to a pointer to a float???
*/

Analogy: like saying a phone number is really an email
address -- doesn’t make sense!

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty

Fast inverse square root
One of the wonders of the modern age

JOouM CARYACY

. ? Didn’t actually invent this, technlcal Girector « Id Sciiware. ’ \
® Why does thls Work. but people assume he did.

— Crazy math and/or magic

— Read wikipedia for more info...

Actual source code from Quake Il Arena

float Q rsqrt(float number)

{
long i;]-

float x2, y; y — p—
const float threehalfs = 1.5F; a.h..-"';I.'

x2 number * 0.5F;
number;

* (long *) &y; // evil floating point bit level hacking
0x5£3759df - (i > 1); // what the fuck?

* (float *) &i;

y * (threehalfs - (x2 *y *y)); // 1lst iteration

* (threehalfs - (x2 *y *y)); // 2nd iteration, this can be removed

KK R R

LT | | [| | A

// y =

return y;
}
CSC230: Cand Software Tools © NC State Computer Science Faculty a3

...Conversions (cont’d)

However, casts (implicit or explicit) of variables pointed to
are useful

float £;
int 1i;
char * ip = &1 ;

f * ip; /* converts an int to a float */

f i ; /* no different! */

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 44

Find the Pointer Bloopers

Do any of the following int a, b, *ap, *bp;
cause problems, andif |char ¢, d, *cp, *dp;
so, what type? float £, g, *fp, *gp;
I. ap = &c; incompatible types
2. *ap = 3333; OK
3 cC = ap; incompatible types

£ common source of bugs £

pretty much

4. ¢ = *ap; Overflow

* everything *
CSC230: C and Software Tools © NC State Computer Science Faculty to d O W I t h p O I n t e rS

Bloopers (cont’d)

int a, b, *ap, *bp;
char ¢, d, *cp, *dp;
float £, g, *fp, *gp;

5. dp = ap;

6. dp = ‘Q’;

7. f£p = 3.14159;

8. gp &fp;

9. *gp = 3.14159;

CSC230: C and Software Tools © NC State Computer Science Faculty

Incompatible types
almost certainly a mistake
forgot the *

incompatible types

OK

46

[omputer

clence

... Bloopers (cont’d)

int a, b, *ap, *bp;
char ¢, d, *cp, *dp;
float £, g, *fp, *gp;

10. *fp = &gp; incompatible types
11. &gp = &fp; & cannot be on left-hand-side of assignment
12. b = *a; a is not a pointer
13. b = &a; b is not a pointer

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 47

Ethical, cool things to do

. [} = * * O
A A Initially: |nt 2. b, *pl, *p2;
- a =30, b =50;
il Ja("JAN
' pl = & a;
P2 = & b;

a = *p2; |copyvalue pointed to by p2toa

*pl = 35; |setvalue of variable pointed to by p1 to 35

*pl = b; |copy value of b to value pointed to by p1

*pl = *p2; | copy value pointed to by p2 to value pointed to
by p1l
pl = & b; |plgetstheaddressofb

pl = p2; |plgetsthe address storedin p2 (i.e., they now
point to the same location)

LOMPUTE oCience

CSC230: C and Software Tools © NC State Computer Science Faculty

Shameful things to never do

pe— Initially:

e Not OK: '~/

<anything> &35;

int a, b, *pl, *p2;
a =30, b =250;

pl & a;

p2 & b;

<anything> = *35;

pl = 35;

a = &<anything>;

pl = &p2;

a = *b;

pl = *p2;

*a = <anything>;

<anything> = *b;

*pl = p2;

&<anything> = <anything>;

a = p2;

*pl = &<anything>;

CSC230: C and Software Tools © NC State Computer Science Faculty

[omputer Science
49 [N STATE UNERSTY

Reminder: Precedence of & and *

Associates

Operator

e increment, decrement prefix

sizeof size unary

~ bit-wise complement unary

! logical NOT unary

-+ negation, plus unary
& address of unary
" Indirection e

(dereference)

15

right-to-left

right-to-left

right-to-left

right-to-left

right-to-left

right-to-left

right-to-left

CSC230: C and Software Tools © NC State Computer Science Faculty

[omputer Science

Pointers as Arguments of Functions

e Pointers can be passed as arguments to functions

e Useful if you want the callee to modify the caller’s
variable(s)

— that is, passing a pointer is the same as passing a
reference to (the address of) a variable

e (The pointer itself is passed by value, and the
caller’s copy of the pointer cannot be modified by

the callee)

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty

...as Arguments (cont’d)

void swap (int * px, int * py) {
int temp = *px;
*Px = *py;
*py = temp;
px = py = NULL; /* just to show caller’s
pointers not changed

*/
}

prints the pointer (not the —
variable that is pointed to)

int i = 100, j = 500;

int *pl = &1, *p2 = &j; l
printf (“%d %d %$p %p\n”, i, j,/pl, p2);
swap (pl, p2);

printf (“%d %d %p %$p\n”, i, j, pl, p2

CSC230: C and Software Tools © NC State Computer Science Faculty 52

Exercise 13a

Input and output params

e Write a function that copies the integer src to
the memory at pointers destl and dest2 unless
the pointer in question is NULL. Prototype:

— void copy2(int src, int* destl, int* dest2)
e Examples:

int a=0,b=0,c=0;
int* p = &b;

copy2 (5, &a,NULL) ;

printf("%d %d %d\n",a,b,c); // 5 0 0
copy?2 (a+l, &c,p) ;

printf("%d %d %d\n",a,b,c); // 5 6 6
copy2 (9,NULL,NULL) ;

printf("%d %d %d\n",a,b,c); // 5 6 6

CSC230 - C and Software Tools © NC State University Computer Science Faculty

Reminder: Go to course web page for link to exercise form. E[]mpllIEI SCiEﬂEE
Paste code into ideone.com and submit the link. 23 e

Any Limits on References?

e Like array bounds, in C there are no limitations
on what a pointer can address

® EX!|int *p = (int *) 0x31415926;
printf (“*p = %d\n”, *p); “_,//’“\

who knows what is
stored at this location?!

When | compiled (no errors or warnings) and ran this code,
result was:

Segmentation fault

CSC230: C and Software Tools © NC State Computer Science Faculty 54

[omputer Science

Pointers as Return Values

e A functioncan |int i, j, *rp;
rp = bigger (&i, &j),

return a
pointer as the

| int * bigger (int *pl, int *p2)
result {

if (*pl > *p2)
return pl;
else
return p2;

Useful? Wouldn't it be easier to return the bigger value
(*pl or *p2) ?

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 55

...Return Values (cont’d)

e Warning! int main (void)
{
never return printf("%d\n", * sum:l.t (3)),
a pointer to printf ("$d\n", * sumit (4));
printf ("$d\n", * sumit (5));
an auto return (0);

variable in the |}

scope of the

calleel int * sumit (int i)

{

¢ Why nOt? int sum = 0;
sum += 1i;

return ∑

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 56

...Return Values (cont’d)

* But with this
change, no
problems!

* Why not?

Result [
7

12

CSC230: C and Software Tools © NC State Computer Science Facu

Ity

int * sumit (int 1)

{
int sum = 0;
sum += 1;
return ∑
}
s

clence

Alternative...

int s = 0;

sumit (3, &s); printf("%d\n", s);
sumit (4, &s); printf("%d\n", s);
sumit (5, &s); printf("%d\n", s);

void sumit (int i,)
{
FSP|+= i

recurn

[omputer Science

58

CSC230: C and Software Tools © NC State Computer Science Faculty

Arrays and Pointers
e An array variable declaration is really two things:

1. allocation (and initialization) of a block of memory large
enough to store the array

2. binding of a symbolic name to the address of the start
of the array

EX.: |int nums[3] = { 10, 20, 30 };

ddress Contents
nums 10 Block of
nums + 4 20 >Memory
nums + 8 30

CSC230: C and Software Tools © NC State Computer Science Faculty 59

Ways to Denote Array Addresses

e Address of first element of the array
— nums (or nums+0), or
— &nums [0]

e Address of second element

- nums+14 Z—" What happened to the
— gnums [“address of” operator?

e efc.
Why “+1” and not “+47?

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty

Arrays as Function Arguments

e Reminder: an array is passed by reference, as an
address of (pointer to) the first element

e The following are equivalent

int len, slen (char s[]) int len, slen (char *s);
char str[20] = “a string”; char str[20] = “a string”;
len = slen(str); len = slen(str);
int slen(char str([]) int slen(char *str)
{ {
int len = 0; char *strend = str;
while (str[len] '= ‘\0’) while (*strend '= ‘\0’)
len++; strend++;
return len; return (strend - str);
} }

With arrays With pointers |
gl it

CSC230: C and Software Tools © NC State Computer Science Faculty 61

Arrays are Pointers K

e Ex.: adding together elements of an array
e Version 0, with array indexing:

int i, nums[3] = {10, 20, 30};
int sum = O;
for (i = 0; i < 3; i++)

sum += nums|[i];

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty

...are Pointers (cont’d)

ame example, using pointers (version 1)

pointer to int Increment pointer to
next element in array
\l (pointer arithmetic)

int *ap, nums[3] = {10, 20, 30};

int sum =
for (ap = &(n s[0]); ap < & (nums[3]) ; ap++)

Sum '|'— \

add next element to sum Ioop until you exceed the
bounds of the array

initialize pointer to
starting address of array

CSC230: C and Software Tools © NC State Computer Science Faculty 63

[omputer Science

...are Pointers (cont’d)

Using pointers in normal way (version 2)

for (ap = nums; ap < (nums+3); ap++)

sum += *ap; \ +
initialize pointer to \ loop until you exceed the
starting address of array bounds of the array -

more pointer arithmetic
But don’t try to do this
Y ~ p N\

(nums+3) > s < ap; nums++)
sum += *nums;
— X

7 ~ COTDUTEY Science

CSC230: ate Computer Science Faculty 64

Pointer Arithmetic
e Q: How much is the increment? Add 4 16 the address

int |*ap, nums[3] = {10, 20, 30};)

int sum = O;
for (ap = nums; ap <= (nums+2); ap++)
sum += *ap;

Add 1 to the address
‘char*ap, nums [3] = {10, 20, 30}; \>
char sum = 0; /
for (ap = nums; ap <= (nums+2),; ap++)
sum += *ap;

A: the size of one element of the array (e.g., 4 bytes for an
int, 1 byte for a char, 8 bytes for a double, ...)

CSC230: C and Software Tools © NC State Computer Science Faculty 65

..Arithmetic (cont’d)

e Array of ints

Symbolic Address
nums
nums+1

nums+2

Array of chars
Symbolic Address

nums
nums+1

nums+2

Byte Addr

Start of nums

Start of nums + 4

Start of nums + 8

Byte Addr

Start of nums
Start of nums + 1

Start of nums + 2

CSC230: C and Software Tools © NC State Computer Science Faculty

Contents
10
20
30
Cont
ents
10
20
30 [omputer Science

..Arithmetic (cont’d)

e Referencing the ith element of an array

int nums[10] = {..}; int nums[10] = {..};

nums[i-1] = 50; *(nums + 1 - 1) = 50;

R A

Equivalent

Referencing the end of an array

int *np, nums[10] = {..};

for (np = nums; np < (nums+10); np++)

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 67

A Special Case of Array Declaration
e Declaring a pointer to a string literal also
allocates the memory containing that string

e Example:
char *str = “"This is a string”;

is equivalent to...

char str[] = “"This is a string”;

Except! first version is read only (cannot modify string
contents in your program)!

Doesn’t work with other types or arrays, ex.:

int *nums = {0, 1, 2, 3, 4}; // won’t work!

char *str = {‘T,‘h’,‘i’,‘'s’}; // no NULL char j
CS3CZ307Cana C Ter SCrence Facuity

SOTIWare TooIs U NC S3tate Compu |0)e)

Input Arguments to scanf () ,

again

e Must be passed using “by reference”, so that
scanf () can overwrite their value
— arrays, strings: just specify array name
— anything else: pass a pointer to the argument

e EX.:
char c , Str [10] ; £ common source of bugs 2
: : failur
int 3 ; allure to use &

before arguments
double num; to scanf

int result;

result =
scanf (“%c %9s %d %1f”, &c, str, &j, &num);

CSC230: C and Software Tools © NC State Computer Science Faculty 69

Pointers

e 2-Darray =
1-D array of 1-D arrays

double rain[years] [months] =
{ {3.1, 2.6, 4.3, ..},
{2.7, 2.8, 4.1, ..},

};

year = 3, month = 5;
rain|[year] [month] =

2.4;

Multidimensional Arrays and

Remember:

rain IS the address of the
entire array

rain[3] is the address of
the 4th row of the array

rain[3] [5] is the value of
the 6th element in the 4th
row

&rain[3][5] iIs the
address of the 6th element
In the 4th row

double *yp, *mp;
yp = rain[3];

yp = address
| of 4th row

mp = address of 6th

mp = yp + 5;
*mp = 2.4; \

CSC230: C and Software Tools © NC Std

— element in 4th row

..Multidimensional (cont’d)

Equivalent:

double *yp, *mp;
YpP = raln[3] ’

mp = yp + 5;
*mp = 2.4;

Remember:

rain IS the address of the
entire array

c

Inconsistent?

¢

_ —~x
rain[3] is the address of
the 4th row of the array

rain[3] [5] is the value of
the 6th element in the 4?&

row

double *mp;

mp =

*mp = 2.4;

& (rain[3] [5]) ;

CSC230: C and Software Tools © NC State Computer Science Faculty

&(rain[3][5]) isthe
address of the 6th element
In the 4th row

[omputer Science

2-D Array of Equal Length Strings

. . . °
EX. using mdexmg 4 rows, each with 7 characters

/ (| e., each row is a string)

char strings[4][7] =
“Blue”, “Green”, “Orange”, “Red”

};

printf (“%s\n”, strings[3]);
int i = 0;

strings[2] [1++]
strings|[2] [1++]
strings[2] [1++]

‘W, strings[2][1++] = ‘h’,
‘i’ , strings([2] [1++] ‘t’,
‘e’ , strings[2] [i++] ‘\0’ ;

printf (“%c\n”, strings[2][3]);

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 72

...Equal Length Strings (cont’d)

e With pointers
char strings[4][7] {
“‘Blue”, “Green”, “Orange”, “Red”

};

printf (“%$s\n”, *(strings+3));
char *cp = strings([2];

*cpt+ = ‘W, *cp++ = ‘h’, *cp++
*cpt++ = ‘t’, *cp++ = ‘e’ , *cpt++

\i/

‘\0’ ;

cp = strings[2];
printf (“%c\n”, *(cp+3));

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 73

Equal Length Strings In Memory

8 bytes

8 bytes

8 bytes

8 bytes

Blue\0\0\O0

Green\0\0

Orange\0

Red\0\0\0\O0

CSC230: C and Software Tools © NC State Computer Science Faculty

[omputer

clence

2-D Array of Unequal Length Strings)

e EX., using array indexing

char *strings[4] =
{ “"Blue”, “Green”, “Orange”, “Red” };

"

printf (“%;:;:Tﬁ;trings[3]);
for (1 = 0; 1 < 4; i++) {
int len = 0;
for (j = 0; strings[i][j] '= ‘\0’; j++)
len += 1; ol —
printf (“length %d = %d\n”, i, len);

}
printf (“%c\n”, *(strings[2]+3);

strings[] Is both a 1-D array of pointers to strings
and a 2-D array of charactersi-

Unequal Length Strings In Memory

Less storage?

5 bytes 6 bytes 7 bytes 4 bytes

Blue\O Green\O0 Orange\O0 Red\0

hRES

strings[0] strings[1] strings[2] strings[3]

8 bytes 8 bytes 8 bytes 8 bytes

e (don’t forget there is storage for the pointers)
angr i

CSC230: C and Software Tools © NC State Computer Science Faculty

..Unequal (cont’d)

e EX., using pointers

char *strings[4] =
{ “"Blue”, “Green”, “Orange”, “Red” };
char *cp = strings([3];
printf (“%$s\n”, cp);
for (int 1 = 0; 1 < 4; i++) {

int len = 0;

cp = strings([i];

while (*cp++ '= ‘\0’)

len += 1;

printf (“length %d = %d\n”, i, 1len);
}
cp = strings[2] + 3;
printf (“%$c\n”, *cp);

CSC230: C and Software Tools © NC State Computer Science Faculty

77

[omputer

clence

structs Containing Pointers

e structs are groups of fields into a single, named record (similar to an object)

Lots of uses, e.g., linked lists

head —

of list

More about this when
we discuss structs

CSC230: C and Software Tools © NC State Computer Science Faculty

recl

value = 3

e R~

-

rec2

value =5

value = 4

rec3
“CD”

[omputer Science
78

Pointers to Functions

e Another level of indirection: which function you
want to execute

e Example: giving raises to employees
— Type A employee gets $5000 raise, type B get S8000
e Two ways todo it

1.caller tells callee how much raise to give

2.caller tells callee what function to call to get the
amount of the raise

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty

Approach #1

float sals[NUMOFEMPLOYEES] ;
void raise (int empnum, int incr);

int empl = ..;
raise (empl, 5000);

void raise (int empid, int incr)
{
sals[empid] += incr; /* give the employee
* a raise */

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 8

Approach #2

float sals[NUMOFEMPLOYEES] ;
void raise (int, int ());
int raiseTypeA (int);
int raiseTypeB (int);

int empl = ..;
raise (empl, raiseTypeA) ;

void raise (int empid, int raiseType ())

{
sals[empid] += raiseType (empid) ;

}

int raiseTypeA (int eid) { .. };
int raiseTypeB (int eid) { .. };

CSC230: C and Software Tools © NC State Computer Science Faculty 81

Pointers to Functions (cont’d)

e Another type of input parameter
void raise (int, int ()) ;

or...

void raise (int empid, int (*rt) ()) ;

A function name used as an argument is a pointer to that function

— & and * are not needed!

You cannot modify a function during execution; you can only modify
the pointer to a function

Advantages to approach #1? approach #27?

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty

A Better Example

e Standard library function for sorting:

<~ Starting address of array to be sorted
void gsort UVTgetets)

(void *basi;—”/sf
S?-Ze_t n{ - — size of each object
size t size,

int (*cmp) (const void *, const void ¥*)

) ; ™

function that compares two objects and
returns <0, O, or > 0 if object 1 is < object 2,
== object 2, or > object 2, resp.

number of objects to sort

Why is it necessary to pass a pointer to a function in this
case?

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty

Any Questions?

~
L e Stoo Retresh Hormme =

Address o @ I
QL e H
SEeiEage Q‘“Pple Compute, 3 '

(B |
_,//,,,,l

NI

Sl a2 S

CSC230 - C and Software Tools © NC State University Computer Science Faculty 84

