
Pointers in C
C Programming and Software Tools
N.C. State Department of Computer Science

If ever there was a time to pay
attention, now is that time.

CSC230: C and Software Tools © NC State Computer Science Faculty 2

A critical juncture

CSC230: C and Software Tools © NC State Computer Science Faculty 3

When you understand pointers If you don’t…

Agenda

• I’m going to cover this TWICE,
in two different ways

– My condensed slides

– The original slides

CSC230: C and Software Tools © NC State Computer Science Faculty 4

Pointers: the short, short version

5

Memory is a real thing!

• Most languages –

protected variables

• C – flat memory space

6

Figure from Rudra Dutta, NCSU, 2007

user_info
shopping_cart

system_id

inventory

user_info
shopping_cart

system_id
inventory

The memory map on 32-bit x86

code

static data

heap

shared library

stack

kernel space

0x42000000
(1,107,296,256)

0xC0000000
(3,221,225,472)

0xFFFFFFFF
(4,294,967,295)

Based on Dawn Song’s RISE: http://research.microsoft.com/projects/SWSecInstitute/slides/Song.ppt

Func params

Bookkeeping
(frame & stack pointers)

Local variables

Func params

Bookkeeping
(frame & stack pointers)

Local variables

Frame 0

Frame 1

Frame 2+

What do variable declarations do?

int x=5;

char msg[] = "Hello";

int main(int argc, const char* argv[]) {

 int v;

 float pi = 3.14159;

 printf("%d\n",x);

 printf("%d\n",v);

}

8

When the program starts, set aside an extra 4

bytes of static data, and set them to 0x00000005.

When I type x later, assume I want the value

stored at the address you gave me.

Ditto, but get 6 bytes and put ‘H’, ‘e’, ‘l’, ‘l’, ‘o’, and a zero in them.

Whenever this function is run, reserve a chunk of space on the

stack. Put in it what was passed in; call it argc and argv.

In that chunk of stack space, reserve 4 more

bytes. Don’t pre-fill them. When I type v later,

give me the data in the spot chosen.

Ditto, but treat the space as a decimal, call it

pi, and make it 3.14159.

Look up what’s in x and print it. Ditto for v.

What do variable declarations do?

int x=5;

char msg[] = "Hello";

int main(int argc, const char* argv[]) {

 int v;

 float pi = 3.14159;

 printf("%d\n",x);

 printf("%d\n",v);

}

9

code

static

heap

libs

stack

kernel

Params

Bookkeeping

Locals

Params

Bookkeeping

Locals

Let’s look at memory addresses!

• You can find the address of ANY variable with:

&
The address-of operator

int v = 5;

printf(“%d\n”,v);

printf(“%p\n”,&v);

10

$ gcc x4.c && ./a.out
5
0x7fffd232228c

Testing our memory map

int x=5;

char msg[] = "Hello";

int main(int argc, const char* argv[]) {

 int v;

 float pi = 3.14159;

 printf("&x: %p\n",&x);

 printf("&msg: %p\n",&msg);

 printf("&argc: %p\n",&argc);

 printf("&argv: %p\n",&argv);

 printf("&v: %p\n",&v);

 printf("&pi: %p\n",&pi);

}

11

code

static

heap

libs

stack

kernel

Params

Bookkeeping

Locals

Params

Bookkeeping

Locals

$ gcc x.c && ./a.out
&x: 0x601020
&msg: 0x601024
&argc: 0x7fff85b78c2c
&argv: 0x7fff85b78c20
&v: 0x7fff85b78c38
&pi: 0x7fff85b78c3c

What’s a pointer?

• It’s a memory address you treat as a variable

• You declare pointers with:

*
The dereference operator

int v = 5;

int* p = &v;

printf(“%d\n”,v);

printf(“%p\n”,p);

12

$ gcc x4.c && ./a.out
5
0x7fffe0e60b7c

Append to any data type

What’s a pointer?

• You can look up what’s stored at a pointer!

• You dereference pointers with:

*
The dereference operator

int v = 5;

int* p = &v;

printf(“%d\n”,v);

printf(“%p\n”,p);

printf(“%d\n”,*p); 13

$ gcc x4.c && ./a.out
5
0x7fffe0e60b7c
5

Prepend to any pointer variable or expression

What is an array?

• The shocking truth:

 You’ve been using pointers all along!

• Every array IS a pointer to a block of memory

14

09 00 00 00 ‘h’ ‘e’ ‘l’ ‘l’ ‘o’ 00 06 00 07 00 08 00

int x = 9;
char msg[] = “hello”;
short nums = {6,7,8};

msg nums &x

Array lookups ARE pointer references!

15

int x[] = {15,16,17,18,19,20};

• This is why arrays don’t know their own length:

they’re just blocks of memory with a pointer!

Array lookup Pointer reference Type

x x int*

x[0] *x int

x[5] *(x+5) int

x[n] *(x+n) int

&x[0] x int*

&x[5] x+5 int*

&x[n] x+n int*

(In case you don’t believe me)
int n=2;
printf("%p %p\n", x , x);
printf("%d %d\n", x[0] , *x);
printf("%d %d\n", x[5] ,*(x+5));
printf("%d %d\n", x[n] ,*(x+n));
printf("%p %p\n",&x[0], x);
printf("%p %p\n",&x[5], x+5);
printf("%p %p\n",&x[n], x+n);

$ gcc x5.c && ./a.out
0x7fffa2d0b9d0 0x7fffa2d0b9d0
15 15
20 20
17 17
0x7fffa2d0b9d0 0x7fffa2d0b9d0
0x7fffa2d0b9e4 0x7fffa2d0b9e4
0x7fffa2d0b9d8 0x7fffa2d0b9d8

Using pointers

• Start with an address of something that exists

• Manipulate according to known rules

• Don’t go out of bounds (don’t screw up)

void underscorify(char* s) {

 char* p = s;

 while (*p != 0) {

 if (*p == ' ') {

 *p = '_';

 }

 p++;

 }

}
16

int main() {
 char msg[] = "Here are words";
 puts(msg);
 underscorify(msg);
 puts(msg);
}

$ gcc x3.c && ./a.out
Here are words
Here_are_words

Shortening that function

void underscorify(char* s) {

 char* p = s;

 while (*p != 0) {

 if (*p == ' ') {

 *p = '_';

 }

 p++;

 }

}

// how a developer might code it

void underscorify2(char* s) {
 char* p;
 for (p = s; *p ; p++) {
 if (*p == ' ') {
 *p = '_';
 }
 }
}

// how a kernel hacker might code it

void underscorify3(char* s) {
 for (; *s ; s++) {
 if (*s == ' ') *s = '_';
 }
}

Pointers: powerful, but deadly

• What happens if we run this?
#include <stdio.h>

int main(int argc, const char* argv[]) {

 int* p;

 printf(" p: %p\n",p);

 printf("*p: %d\n",*p);

}

$ gcc x2.c && ./a.out
 p: (nil)
Segmentation fault (core dumped)

Pointers: powerful, but deadly

• Okay, I can fix this! I’ll initialize p!
#include <stdio.h>

int main(int argc, const char* argv[]) {

 int* p = 100000;

 printf(" p: %p\n",p);

 printf("*p: %d\n",*p);

}

$ gcc x2.c
x2.c: In function ‘main’:
x2.c:4:9: warning: initialization makes pointer from
integer without a cast [enabled by default]
$./a.out
 p: 0x186a0
Segmentation fault (core dumped)

A more likely pointer bug…

void underscorify_bad(char* s) {

 char* p = s;

 while (*p != '0') {

 if (*p == 0) {

 *p = '_';

 }

 p++;

 }

}

int main() {
 char msg[] = "Here are words";
 puts(msg);
 underscorify_bad(msg);
 puts(msg);
}

Almost fixed…

void underscorify_bad2(char* s) {

 char* p = s;

 while (*p != '0') {

 if (*p == ' ') {

 *p = '_';

 }

 p++;

 }

}

int main() {
 char msg[] = "Here are words";
 puts(msg);
 underscorify_bad2(msg);
 puts(msg);
}

Worked but

crashed on exit

Worked totally!!

Worked totally!!

Worked totally!!

Worked totally!!

Worked totally!!

Worked totally!!

Worked totally!!

Effects of pointer mistakes

No visible effect
Totally weird behavior

Silent corruption & bad results

Program crash with OS error

Access an array out of bounds

or some other invalid pointer location?

Pointer summary

• Memory is linear, all the variables live at an address

– Variable declarations reserve a range of memory space

• You can get the address of any variable with

the address-of operator &

int x; printf(“%p\n”,&x);

• You can declare a pointer with the dereference operator *

appended to a type:

int* p = &x;

• You can find the data at a memory address with the

dereference operator * prepended to a pointer expression:

printf(“%d\n”,*p);

• Arrays in C are just pointers to a chunk of memory

• Don’t screw up
23

POINTERS – TRADITIONAL SLIDES

CSC230: C and Software Tools © NC State Computer Science Faculty 24

The Derived Data Types

Arrays

Pointers

• (Structs)

• (Enums)

• (Unions)

CSC230: C and Software Tools © NC State Computer Science Faculty 25

Pointers Every Day

• Examples

– telephone numbers

– web pages

• Principle: indirection

• Benefits?

CSC230: C and Software Tools © NC State Computer Science Faculty 26

All References are Addresses?
• In reality, all program references (to variables,

functions, system calls, interrupts, …) are
addresses
1. you write code that uses symbolic names

2. the compiler translates those for you into the
addresses needed by the computer

– requires a directory or symbol table
(name  address translation)

• You could just write code that uses addresses (no
symbolic names)
– advantages? disadvantages?

CSC230: C and Software Tools © NC State Computer Science Faculty 27

Pointer Operations in C

• Make sense?
• "v and w are variables of type int"
• "pv is a variable containing the address of another variable"

• "pv = the address of v"
• “v = the value of the int whose address is contained in pv"

CSC230: C and Software Tools © NC State Computer Science Faculty 28

int v, w;

int * pv;

pv = &v;

w = *pv;

C Pointer Operators

• px is not an alias (another name) for the variable
x; it is a variable storing the location (address) of
the variable x

CSC230: C and Software Tools © NC State Computer Science Faculty 29

px = &x; “px is assigned the address of x”

y = *px; “y is assigned the value at the address
indicated (pointed to) by px”

…Operators (cont’d)
& = “the address of…”

CSC230: C and Software Tools © NC State Computer Science Faculty 30

int a;

int *ap;

ap = &a;

“ap gets the address

of variable a”

“ap is a pointer

to an int”

char c;

char *cp;

cp = &c;

“cp gets the address

of variable c”

“cp is a pointer

to a char”

float f;

float *fp;

fp = &f;

“fp gets the address

of variable f”

“fp is a pointer

to a float”

…Operators (cont’d)

CSC230: C and Software Tools © NC State Computer Science Faculty 31

* = “pointer to…”

*ap = 33;

b = *ap;

“the variable ap points to (i.e., a) is assigned value 33”

“b is assigned the value of the variable pointed to by ap (i.e.,

a)”

*cp = ‘Q’;

d = *cp;

“the variable cp points to (i.e., c) is assigned the

value ‘Q’”

“d is assigned the value of the variable pointed to by cp (i.e.,

c)”

*fp = 3.14;

g = *fp;

“the variable fp points to (i.e., f) is assigned value 3.14”

“g is assigned the value of the variable pointed to by fp (i.e.,

f)”

Side note: where to put the *

• How I write and think about pointers:
– int* x; // x is an int pointer

• How many C programmers do:
– int *x; // x is a pointer, its type is int

• What does this mean?
– int *x,y;

 Equivalent to:
– int *x; // x is a pointer, its type is int

int y; // …and y is an int

CSC230: C and Software Tools © NC State Computer Science Faculty 32

Variable Names Refer to Memory

•A C expression, without pointers

Memory
Address

Variable

0 b

4 c

8 a

CSC230: C and Software Tools © NC State Computer
Science Faculty

33

“Pseudo-Assembler” code

Symbol Table

a = b + c; /* all of type int */

load int at address 0 into reg1

load int at address 4 into reg2

add reg1 to reg2

store reg2 into address 8

Variables Stored in Memory

Addr Contents

0 Value of b

4 Value of c

8 Value of a

CSC230: C and Software Tools © NC State Computer
Science Faculty

34

32 bits (4 bytes) wide

Almost all machines are byte-addressable, i.e.,

every byte of memory has a unique address

Pointers Refer to Memory Also

•A C expression, with pointers

CSC230: C and Software Tools © NC State Computer
Science Faculty

35

“Pseudo-assembler” code

Symbol Table

int *ap;

ap = &a;

ap = b + c; / all of type int */

load address 8 into reg3

load int at address 0 into reg1

load int at address 4 into reg2

add reg1 to reg2

store reg2 into address pointed

to by reg3

Memory
Address

Variable

0 b

4 c

8 a

12 ap

Pointers Refer… (cont’d)

Addre
ss

Contents Variable
Name

0 Value of b b

4 Value of c c

8 Value of a a

12 8 (address of a) ap

CSC230: C and Software Tools © NC State Computer
Science Faculty

36

32 bits (4 bytes) wide

Addresses vs. Values

• Result of execution

CSC230: C and Software Tools © NC State Computer Science Faculty 37

int a = 35;

int *ap;

ap = &a;

printf(“ a=%d\n &a=%u\n ap=%u\n *p=%d\n”,

 a,

 (unsigned int) &a,

 (unsigned int) ap,

 *ap);

???

Pointers to Pointers to …

C expression

Var Address

a 8

ap 12

app 20

appp 16

b 0

c 4
CSC230: C and Software Tools © NC State Computer Science Faculty 38

char * ap = &a;

char ** app = ≈

char *** appp = &app;

***appp = b + c;

Addr Contents Var

0 Value of b b

4 Value of c c

8 Value of a a

12 8 (addr of a) ap

16 20 (addr of app) appp

20 12 (addr of ap) app

32 bits (4 bytes) wide

Flow of Control in C Programs

• When you call a function, how do you know
where to return to when exiting the called
function?
– The call function information is pushed on the stack

– The callee is processed

– The last part of the callee (before popping from the
stack) is the address of the caller (a pointer to the
caller in memory)

– Return value is a pointer to where value is stored in
memory

CSC230: C and Software Tools © NC State Computer Science Faculty 39

Why Pointers?

• Indirection provides a level of flexibility that is
immensely useful

– “There is no problem in computer science that
cannot be solved by an extra level of indirection.”

• Even Java has pointers; you just can’t modify
them

– e.g., objects are passed to methods by reference,
and can be modified by the method

CSC230: C and Software Tools © NC State Computer Science Faculty 40

…Types (cont’d)

• Make sure pointer type agrees with the type of
the operand it points to

CSC230: C and Software Tools © NC State Computer Science Faculty 41

int i, *ip;

float f, *fp;

fp = &f; /* makes sense */

fp = &i; /* definitely fishy */

 /* but only a warning */

Ex.: if you're told the office of an instructor is a mailbox
number, that's probably a mistake

Pointer Type Conversions

• Pointer casts are possible, but rarely useful

– Unless you’re creative and believe in yourself

CSC230: C and Software Tools © NC State Computer Science Faculty 42

char * cp = …;

float * fp = …;

….

fp = (float *) cp; /* casts a pointer to a char

 * to a pointer to a float???

 */

Analogy: like saying a phone number is really an email
address -- doesn’t make sense!

Fast inverse square root
One of the wonders of the modern age

• Why does this work?

– Crazy math and/or magic

– Read wikipedia for more info…

CSC230: C and Software Tools © NC State Computer Science Faculty 43

float Q_rsqrt(float number)

{

 long i;

 float x2, y;

 const float threehalfs = 1.5F;

 x2 = number * 0.5F;

 y = number;

 i = * (long *) &y; // evil floating point bit level hacking

 i = 0x5f3759df - (i >> 1); // what the fuck?

 y = * (float *) &i;

 y = y * (threehalfs - (x2 * y * y)); // 1st iteration

// y = y * (threehalfs - (x2 * y * y)); // 2nd iteration, this can be removed

 return y;

}

Actual source code from Quake III Arena

Didn’t actually invent this,

but people assume he did.

…Conversions (cont’d)

CSC230: C and Software Tools © NC State Computer Science Faculty 44

However, casts (implicit or explicit) of variables pointed to
are useful

float f;

int i;

char * ip = &i ;

…

f = * ip; /* converts an int to a float */

f = i ; /* no different! */

Find the Pointer Bloopers

CSC230: C and Software Tools © NC State Computer Science Faculty 45

int a, b, *ap, *bp;

char c, d, *cp, *dp;

float f, g, *fp, *gp;

2. *ap = 3333;

4. c = *ap;

1. ap = &c;

3. c = ap;

Do any of the following
cause problems, and if
so, what type?

 common source of bugs 

pretty much

* everything *

to do with pointers

incompatible types

incompatible types

OK

Overflow

Bloopers (cont’d)

CSC230: C and Software Tools © NC State Computer Science Faculty 46

8. gp = &fp;

9. *gp = 3.14159;

int a, b, *ap, *bp;

char c, d, *cp, *dp;

float f, g, *fp, *gp;

5. dp = ap;

6. dp = ‘Q’;

7. fp = 3.14159;

incompatible types

incompatible types

almost certainly a mistake

forgot the *

OK

… Bloopers (cont’d)

CSC230: C and Software Tools © NC State Computer Science Faculty 47

10. *fp = &gp;

11. &gp = &fp;

12. b = *a;

13. b = &a;

int a, b, *ap, *bp;

char c, d, *cp, *dp;

float f, g, *fp, *gp;

incompatible types

b is not a pointer

& cannot be on left-hand-side of assignment

a is not a pointer

Ethical, cool things to do

• OK:

CSC230: C and Software Tools © NC State Computer Science Faculty 48

a = *p2; copy value pointed to by p2 to a

*p1 = 35; set value of variable pointed to by p1 to 35

*p1 = b; copy value of b to value pointed to by p1

*p1 = *p2; copy value pointed to by p2 to value pointed to
by p1

p1 = & b; p1 gets the address of b

p1 = p2; p1 gets the address stored in p2 (i.e., they now
point to the same location)

int a, b, *p1, *p2;

a = 30, b = 50;

p1 = & a;

p2 = & b;

Initially:

Shameful things to never do

• Not OK:

CSC230: C and Software Tools © NC State Computer Science Faculty 49

<anything> = &35;

<anything> = *35;

p1 = 35;

a = &<anything>;

a = *b;

*a = <anything>;

&<anything> = <anything>;

a = p2;

int a, b, *p1, *p2;

a = 30, b = 50;

p1 = & a;

p2 = & b;

a = **p2;

p1 = b;

p1 = &p2;

p1 = *p2;

<anything> = *b;

*p1 = p2;

*p1 = &<anything>;

Initially:

 

Reminder: Precedence of & and *

Tokens Operator Class Prec. Associates

++ -- increment, decrement prefix

15

right-to-left

sizeof size unary right-to-left

~ bit-wise complement unary right-to-left

! logical NOT unary right-to-left

- + negation, plus unary right-to-left

& address of unary right-to-left

*
Indirection

(dereference)
unary right-to-left

CSC230: C and Software Tools © NC State Computer Science Faculty 50

Pointers as Arguments of Functions

• Pointers can be passed as arguments to functions

• Useful if you want the callee to modify the caller’s
variable(s)

– that is, passing a pointer is the same as passing a
reference to (the address of) a variable

• (The pointer itself is passed by value, and the
caller’s copy of the pointer cannot be modified by
the callee)

CSC230: C and Software Tools © NC State Computer Science Faculty 51

…as Arguments (cont’d)

CSC230: C and Software Tools © NC State Computer Science Faculty 52

int i = 100, j = 500;

int *p1 = &i, *p2 = &j;

printf(“%d %d %p %p\n”, i, j, p1, p2);

swap(p1, p2);

printf(“%d %d %p %p\n”, i, j, p1, p2);

void swap (int * px, int * py) {

 int temp = *px;

 *px = *py;

 *py = temp;

 px = py = NULL; /* just to show caller’s

 pointers not changed

*/

}
prints the pointer (not the

variable that is pointed to)

Reminder: Go to course web page for link to exercise form.
Paste code into ideone.com and submit the link.

Exercise 13a

• Write a function that copies the integer src to
the memory at pointers dest1 and dest2 unless
the pointer in question is NULL. Prototype:

– void copy2(int src, int* dest1, int* dest2)

• Examples:

CSC230 - C and Software Tools © NC State University Computer Science Faculty

53

Input and output params

int a=0,b=0,c=0;

int* p = &b;

copy2(5,&a,NULL);

printf("%d %d %d\n",a,b,c); // 5 0 0

copy2(a+1,&c,p);

printf("%d %d %d\n",a,b,c); // 5 6 6

copy2(9,NULL,NULL);

printf("%d %d %d\n",a,b,c); // 5 6 6

Any Limits on References?

• Like array bounds, in C there are no limitations
on what a pointer can address

• Ex:

CSC230: C and Software Tools © NC State Computer Science Faculty 54

int *p = (int *) 0x31415926;

printf(“*p = %d\n”, *p);

When I compiled (no errors or warnings) and ran this code,
result was:

Segmentation fault

who knows what is

stored at this location?!

Pointers as Return Values

• A function can
return a
pointer as the
result

CSC230: C and Software Tools © NC State Computer Science Faculty 55

int i, j, *rp;

rp = bigger (&i, &j);

Useful? Wouldn't it be easier to return the bigger value
(*p1 or *p2) ?

int * bigger (int *p1, int *p2)

{

 if (*p1 > *p2)

 return p1;

 else

 return p2;

}

…Return Values (cont’d)

• Warning!
never return
a pointer to
an auto
variable in the
scope of the
callee!

• Why not?

CSC230: C and Software Tools © NC State Computer Science Faculty 56

int main (void)

{

 printf("%d\n", * sumit (3));

 printf("%d\n", * sumit (4));

 printf("%d\n", * sumit (5));

 return (0);

}

int * sumit (int i)

{

 int sum = 0;

 sum += i;

 return ∑

}

…Return Values (cont’d)

CSC230: C and Software Tools © NC State Computer Science Faculty 57

• But with this

change, no

problems!

• Why not?

Result

int * sumit (int i)

{

 static int sum = 0;

 sum += i;

 return ∑

}

3

7

12

void sumit (int i, int *sp)

{

 *sp += i;

 return

}

Alternative…

CSC230: C and Software Tools © NC State Computer Science Faculty 58

int s = 0;

sumit(3, &s); printf("%d\n", s);

sumit(4, &s); printf("%d\n", s);

sumit(5, &s); printf("%d\n", s);

Arrays and Pointers
• An array variable declaration is really two things:

1. allocation (and initialization) of a block of memory large
enough to store the array

2. binding of a symbolic name to the address of the start
of the array

CSC230: C and Software Tools © NC State Computer Science Faculty 59

int nums[3] = { 10, 20, 30 };

Byte Address Contents

nums 10

nums + 4 20

nums + 8 30

Ex.:

Block of

Memory

Ways to Denote Array Addresses

• Address of first element of the array

– nums (or nums+0), or

– &nums[0]

• Address of second element
– nums+1

– &nums[1]

• etc.

CSC230: C and Software Tools © NC State Computer Science Faculty 60

What happened to the

“address of” operator?

Why “+1” and not “+4”?

Arrays as Function Arguments

• Reminder: an array is passed by reference, as an
address of (pointer to) the first element

• The following are equivalent

CSC230: C and Software Tools © NC State Computer Science Faculty 61

int len, slen (char s[]);

char str[20] = “a string”;

len = slen(str);

…

int slen(char str[])

{

 int len = 0;

 while (str[len] != ‘\0’)

 len++;

 return len;

}

int len, slen (char *s);

char str[20] = “a string”;

len = slen(str);

…

int slen(char *str)

{

 char *strend = str;

 while (*strend != ‘\0’)

 strend++;

 return (strend – str);

}

With arrays With pointers

Arrays are Pointers

• Ex.: adding together elements of an array

• Version 0, with array indexing:

CSC230: C and Software Tools © NC State Computer Science Faculty 62

int i, nums[3] = {10, 20, 30};

int sum = 0;

for (i = 0; i < 3; i++)

 sum += nums[i];

…are Pointers (cont’d)

CSC230: C and Software Tools © NC State Computer Science Faculty 63

Same example, using pointers (version 1)

int *ap, nums[3] = {10, 20, 30};

int sum = 0;

for (ap = &(nums[0]); ap < &(nums[3]); ap++)

 sum += *ap;

loop until you exceed the

bounds of the array

initialize pointer to

starting address of array

add next element to sum

pointer to int increment pointer to

next element in array

(pointer arithmetic)

…are Pointers (cont’d)

CSC230: C and Software Tools © NC State Computer Science Faculty 64

Using pointers in normal way (version 2)

for (ap = nums; ap < (nums+3); ap++)

 sum += *ap;

But don’t try to do this

for (ap = (nums+3); nums < ap; nums++)

 sum += *nums;

initialize pointer to

starting address of array
loop until you exceed the

bounds of the array -

more pointer arithmetic

Pointer Arithmetic
• Q: How much is the increment?

CSC230: C and Software Tools © NC State Computer Science Faculty 65

int *ap, nums[3] = {10, 20, 30};

int sum = 0;

for (ap = nums; ap <= (nums+2); ap++)

 sum += *ap;

char *ap, nums[3] = {10, 20, 30};

char sum = 0;

for (ap = nums; ap <= (nums+2); ap++)

 sum += *ap;

A: the size of one element of the array (e.g., 4 bytes for an
int, 1 byte for a char, 8 bytes for a double, …)

Add 4 to the address

Add 1 to the address

…Arithmetic (cont’d)
• Array of ints

CSC230: C and Software Tools © NC State Computer Science Faculty 66

Symbolic Address Byte Addr Contents

nums Start of nums 10

nums+1 Start of nums + 4 20

nums+2 Start of nums + 8 30

Symbolic Address Byte Addr Cont
ents

nums Start of nums 10

nums+1 Start of nums + 1 20

nums+2 Start of nums + 2 30

Array of chars

…Arithmetic (cont’d)

• Referencing the ith element of an array

CSC230: C and Software Tools © NC State Computer Science Faculty 67

int nums[10] = {…};

…

nums[i-1] = 50;

int nums[10] = {…};

…

*(nums + i – 1) = 50;

Equivalent

Referencing the end of an array

int *np, nums[10] = {…};

…

for (np = nums; np < (nums+10); np++)

 …

A Special Case of Array Declaration

• Declaring a pointer to a string literal also
allocates the memory containing that string

• Example:

CSC230: C and Software Tools © NC State Computer Science Faculty 68

Doesn’t work with other types or arrays, ex.:

char *str = “This is a string”;

int *nums = {0, 1, 2, 3, 4}; // won’t work!

char *str = {‘T,‘h’,‘i’,‘s’}; // no NULL char

is equivalent to…

char str[] = “This is a string”;

Except! first version is read only (cannot modify string
contents in your program)!

Input Arguments to scanf(),
again
• Must be passed using “by reference”, so that
scanf() can overwrite their value

– arrays, strings: just specify array name

– anything else: pass a pointer to the argument

• Ex.:

CSC230: C and Software Tools © NC State Computer Science Faculty 69

char c, str[10];

int j;

double num;

int result;

result =

 scanf(“%c %9s %d %lf”, &c, str, &j, &num);

 common source of bugs 

failure to use &

before arguments

to scanf

Multidimensional Arrays and
Pointers
• 2-D array 

1-D array of 1-D arrays

CSC230: C and Software Tools © NC State Computer Science Faculty 70

double rain[years][months] =

{ {3.1, 2.6, 4.3, …},

 {2.7, 2.8, 4.1, …},

 …

};

year = 3, month = 5;

rain[year][month] = 2.4;

double *yp, *mp;

yp = rain[3];

mp = yp + 5;

*mp = 2.4;

Remember:

rain is the address of the

entire array

rain[3] is the address of

the 4th row of the array

rain[3][5] is the value of

the 6th element in the 4th

row

&rain[3][5] is the

address of the 6th element

in the 4th row

yp = address

of 4th row

mp = address of 6th

element in 4th row

…Multidimensional (cont’d)

• Equivalent:

CSC230: C and Software Tools © NC State Computer Science Faculty 71

double *yp, *mp;

yp = rain[3];

mp = yp + 5;

*mp = 2.4;

Remember:

rain is the address of the

entire array

rain[3] is the address of

the 4th row of the array

rain[3][5] is the value of

the 6th element in the 4th

row

&(rain[3][5]) is the

address of the 6th element

in the 4th row

double *mp;

mp = &(rain[3][5]);

*mp = 2.4;

inconsistent?

2-D Array of Equal Length Strings

• Ex. using indexing

CSC230: C and Software Tools © NC State Computer Science Faculty 72

char strings[4][7] = {

 “Blue”, “Green”, “Orange”, “Red”

};

…

printf (“%s\n”, strings[3]);

int i = 0;

strings[2][i++] = ‘W’, strings[2][i++] = ‘h’,

strings[2][i++] = ‘i’, strings[2][i++] = ‘t’,

strings[2][i++] = ‘e’, strings[2][i++] = ‘\0’;

printf (“%c\n”, strings[2][3]);

4 rows, each with 7 characters

(i.e., each row is a string)

Red

t

…Equal Length Strings (cont’d)

• With pointers

CSC230: C and Software Tools © NC State Computer Science Faculty 73

char strings[4][7] = {

 “Blue”, “Green”, “Orange”, “Red”

};

…

printf (“%s\n”, *(strings+3));

char *cp = strings[2];

*cp++ = ‘W’, *cp++ = ‘h’, *cp++ = ‘i’,

*cp++ = ‘t’, *cp++ = ‘e’, *cp++ = ‘\0’;

cp = strings[2];

printf (“%c\n”, *(cp+3));

Equal Length Strings In Memory

CSC230: C and Software Tools © NC State Computer Science Faculty 74

Blue\0\0\0 Green\0\0 Orange\0 Red\0\0\0\0

8 bytes 8 bytes 8 bytes 8 bytes

2-D Array of Unequal Length Strings)

• Ex., using array indexing

CSC230: C and Software Tools © NC State Computer Science Faculty 75

char *strings[4] =

{ “Blue”, “Green”, “Orange”, “Red” };

printf (“%s\n”, strings[3]);

for (i = 0; i < 4; i++) {

 int len = 0;

 for (j = 0; strings[i][j] != ‘\0’; j++)

 len += 1;

 printf(“length %d = %d\n”, i, len);

}

printf (“%c\n”, *(strings[2]+3);

strings[] is both a 1-D array of pointers to strings

and a 2-D array of characters!

Unequal Length Strings In Memory

• (don’t forget there is storage for the pointers)

CSC230: C and Software Tools © NC State Computer Science Faculty 76

Blue\0 Green\0 Orange\0 Red\0

5 bytes 6 bytes 7 bytes 4 bytes

strings[0]

8 bytes

strings[1]

8 bytes

strings[2]

8 bytes

strings[3]

8 bytes

Less storage?

…Unequal (cont’d)

• Ex., using pointers

CSC230: C and Software Tools © NC State Computer Science Faculty 77

char *strings[4] =

{ “Blue”, “Green”, “Orange”, “Red” };

char *cp = strings[3];

printf (“%s\n”, cp);

for (int i = 0; i < 4; i++) {

 int len = 0;

 cp = strings[i];

 while (*cp++ != ‘\0’)

 len += 1;

 printf(“length %d = %d\n”, i, len);

}

cp = strings[2] + 3;

printf (“%c\n”, *cp);

structs Containing Pointers
• structs are groups of fields into a single, named record (similar to an object)
• Lots of uses, e.g., linked lists

CSC230: C and Software Tools © NC State Computer Science Faculty 78

rec1

value = 3 “AB” next = &rec3

rec3

value = 4 “CD” next = &rec2

rec2

value = 5 “EF” next = NULL

More about this when
we discuss structs

head

of list

Pointers to Functions

• Another level of indirection: which function you
want to execute

• Example: giving raises to employees

– Type A employee gets $5000 raise, type B get $8000

• Two ways to do it

1.caller tells callee how much raise to give

2.caller tells callee what function to call to get the
amount of the raise

CSC230: C and Software Tools © NC State Computer Science Faculty 79

Approach #1

CSC230: C and Software Tools © NC State Computer Science Faculty 80

float sals[NUMOFEMPLOYEES];

void raise (int empnum, int incr);

…

int emp1 = …;

raise (emp1, 5000);

…

void raise (int empid, int incr)

{

 sals[empid] += incr; /* give the employee

 * a raise */

}

Approach #2

CSC230: C and Software Tools © NC State Computer Science Faculty 81

float sals[NUMOFEMPLOYEES];

void raise (int, int ());

int raiseTypeA (int);

int raiseTypeB (int);

int emp1 = …;

raise (emp1, raiseTypeA);

…

void raise (int empid, int raiseType ())

{

 sals[empid] += raiseType (empid);

}

…

int raiseTypeA (int eid) { … };

int raiseTypeB (int eid) { … };

Pointers to Functions (cont’d)

• Another type of input parameter

CSC230: C and Software Tools © NC State Computer Science Faculty 82

A function name used as an argument is a pointer to that function

– & and * are not needed!

You cannot modify a function during execution; you can only modify
the pointer to a function

Advantages to approach #1? approach #2?

void raise (int, int ()) ;

void raise (int empid, int (*rt) ()) ;

or…

A Better Example

• Standard library function for sorting:

CSC230: C and Software Tools © NC State Computer Science Faculty 83

void qsort

 (void *base,

 size_t n,

 size_t size,

 int (*cmp) (const void *, const void *)

);

starting address of array to be sorted

(in place)

number of objects to sort

size of each object

function that compares two objects and

returns < 0, 0, or > 0 if object 1 is < object 2,

== object 2, or > object 2, resp.

Why is it necessary to pass a pointer to a function in this
case?

Any Questions?

CSC230 - C and Software Tools © NC State University Computer Science Faculty 84

