Pointers in C

C Programming and Software Tools
N.C. State Department of Computer Science

[omputer Science
The Derived Data Types
\/Arrays
>Pointers
® (Structs)
® (Enums)
® (Unions)
[omputer Science

€5€230: € and Software Tools © NC State Computer Science Faculty .3 NC STATE UNIVERSITY

Pointers Every Day

e Examples
— telephone numbers
— web pages

e Principle: indirection

* Benefits?
(omputer Science
€SC230: € and Software Tools © NC State Computer Science Faculty 3

All References are Addresses?

e In reality, all program references (to variables,
functions, system calls, interrupts, ...) are
addresses
1. you write code that uses symbolic names

2. the compiler translates those for you into the
addresses needed by the computer

— requires a directory or symbol table
(name — address translation)
® You could just write code that uses addresses (no
symbolic names)

— advantages? disadvantages?

[omputer Science

€5€230: € and Software Tools © NC State Computer Science Faculty /R NC STATE UNIVERSITY

Pointer Operations in C

e Make sense?
e "vand w are variables of type int"
e "pVis a variable containing the address of another variable"

e "pv =the address of V"
e "W =the value of the int whose address is contained in pv"

Same as this! int v, w
int * pv;
pv = &v
w = *pv .
[omputer Science

5 NC STATE UNIVERSITY

€SC230: € and Software Tools © NC State Computer Science Faculty

C Pointer Operators

px = &x; |"px is assigned the address of x"

y = *px; |'y is assigned the value at the
address indicated (pointed to) by
px”

e pX is not an alias (another name) for the variable
X; it is a variable storing the location (address) of
the variable X

[omputer Science
iy 6

€5€230: € and Software Tools © NC State Computer Science Facu

int a;
int *ap;

ap = &a;

gets the address
of variable a”

...Operators (cont’d)
e & =“the address of...”

“ap is a pointer

to an int”

char c;
char *cp;

cp = &c;

“cp gets the address
of variable ¢”

€SC230: € and Software Tools © NC State Computer Science Faculty

“cp is a pointer

to a char”

float T; . .

float *fp; Tﬂf;ﬁgﬂe

fp = &F;

“fp gets the address .
otvariabe pufer ciene

7 NC STATE UNIVERSITY

...Operators (cont’d)

* = "pointer to.."

(.e. a)’

value ‘Q™

(i.e., c)

(Q.e. f)

€5€230: C and Software Tools © NC State Computer Science Faculty

“the variable ap points to (i.e., a) is assigned value 33"

“b is assigned the value of the variable pointed to by ap

“the variable cp points to (i.e., c) is assigned the

“d is assigned the value of the variable pointed to by cp

“the variable fp points to (i.e.,) is assigned value 3.14"

"g is assigned the value of the variable pointed to by fp

[omputer Science
PR NC STATE UNVERSITY

Variable Names Refer to Memory

e A C expression, without pointers
a=»>b+ c; /* all of type iInt */

Symbol Table

"Pseudo-Assembler" code

load int at address O into regl
load Iint at address 4 into reg2
add regl to reg2

store reg2 into add resfmﬁpum Sﬁiﬂnﬁﬂ
€SC230: C ar}d Software Tools © NC State m

Variables Stored in Memory

Almost all machines are byte-addressable, i.e.,
every byte of memory has a unique address

-

Addr Contents
0 Value of b
4 Value of ¢
8 Value of a
N Y
N
32 bits (4 bytes) wide [:[IITI])[IIEI SIZIEIIIIE

€5C230: C and Software Tools © NC State m

Pointers Refer to Memory Also

oA C expression, with pointers

int *ap;

ap = &a;

ap = b + c; / all of type int */

"Pseudo-assembler” code

load address 8 into reg3

load Iint at address O into regl
load Int at address 4 into reg2
add regl to reg2

store reg2 into addresTIﬁofnged
to by reg3 Drhpuier ocience
€SC230: C ar}d Software Tools © NC State W

Pointers Refer... (cont’d)

Addr Contents Variable

ess Name

0 Value of b b

4 Value of ¢ c

8*‘) Value of a a

12 & 8 (address of a) ap

N J
e
32 bits (4 bytes) wide [:[]mpum SE]EIIIIE

€5C230: C and Software Tools © NC State m

Addresses vs. Values

int a = 35;
int *ap;
ap = &a;
printf(“ a=%d\n &a=%u\n ap=%u\n *p=%d\n”’,
a,
(unsigned int) &a,
(unsigned int) ap,
*ap);

e Result of execution

35
= 3221224568 PPN
3221224568 o

e amputer Science
YIJILVC STATE UNIVERSITY

€SC230: € and Software Tools © NC State Computer Science Faculty

Pointers to Pointers to ...

A C expression

char * ap = &a; Addr Contents Var
char ** app = ≈ 0 Value of b b
char *** appp = &app;
***gppp = b + c; 4 Value of ¢ c
8 Value of a a
Var | Address
: 8e 12 8 (addr of a) ap
ap 12 16 / ,120 (addr of app) | appp
app 20 20 12 (addr of ap) | app
appp 16
b O \ 4(.
_Vﬂmem
C £5€230: Chand Software Tools @ NC State 32 blts (4 byteS) Im

Flow of Control in C Programs

e When you call a function, how do you know
where to return to when exiting the called
function?

— The call function information is pushed on the stack
— The callee is processed

— The last part of the callee (before popping from the
stack) is the address of the caller (a pointer to the
caller in memory)

— Return value is a pointer to where value is stored in

memory I: t S .
€SC230: € and Software Tools © NC State Computer Science Faculty IR NC STATE UNIVERSITY

Why Pointers?

¢ Indirection provides a level of flexibility that is
immensely useful

— “There is no problem in computer science that
cannot be solved by an extra level of indirection.”
e Even Java has pointers; you just can’t modify
them

— e.g., objects are passed to methods by reference,
and can be modified by the method

[omputer Science

€5€230: € and Software Tools © NC State Computer Science Faculty T NC STATE UNIVERSITY

...Types (cont’d)

e Make sure pointer type agrees with the type of
the operand it points to

int 1, *ip;

float T, *fp;

fp = &f; /* makes sense */

fp = &i; /* definitely fishy */
/* but only a warning */

Ex.: if you're told the office of an instructor is a

mailbox number, that's probably a mIT‘rake

i .
€5€230: C and Software Tools © NC State Computer Science Faculty iy NC STATE UNIVERSITY

Pointer Type Conversions

e Pointer casts are possible, but rarely (never?)
useful

char * cp =
float * fp =

fp = (float *) cp; /* casts a pointer to a char
* to a pointer to a float???
*/

Analogy: like saying a phone number is really an
email address -- doesn't make sensel!

[omputer Science
€5€230: € and Software Tools © NC State Computer Science Faculty JE:J NC STATE UNIVERSITY

...Conversions (cont’d)

However, casts (implicit or explicit) of variables
pointed to are useful

float T;
int i;
char * ip = &i ;

T

* ip; /* converts an int to a float */

T i ; /* no different! */

[omputer Science

€5C230: € and Software Tools © NC State Computer Science Faculty 19 NC STATE UNIVERSITY

Find the Pointer Bloopers

Do any of the following |int a, b, *ap, *bp;
cause problems, and |char c, d, *cp, *dp;
if so, what type? float T, g, *fp, *gp;

1. ap = &c;

£ common source of bugs

2. *ap = 3333; pretty much

* everything *

to do with pointers

[omputer Science

10

int a, b, *ap, *bp;
Bloopers (cont’d)

char c, d, *cp, *dp;
float f, g, *fp, *gp;

5. dp = ap;

7. fp = 3.14159;

8. gp = &fp;

9. *gp = 3.14159;

Science Faculty

[omputer Science
P Q] \C STATE UNVERSITY

€5€230: € and Software Tools © NC State Computer

int a, b, *ap, *bp;
char c, d, *cp, *dp;

float f, g, *fp, *gp;

10. *fp = &gp;

11. &gp = &fp;

12. b = *a;

13. b = &a;

€5C230: € and Software Tools © NC State

Computer Science Faculty

.. Bloopers (cont'd)

[omputer Science

24 NC STATE UNIVERSITY

11

Sense...

Initially: [& b. *p1. *p2:

pl
p2

& a;
& b;

copy value pointed to by p2 to a

set value of variable pointed o by p1 to 35
copy value of b to value pointed to by p1
copy value pointed to by p2 to value pointed
to by pl1

pl gets the address of b

pl gets the address stored in p2 (i.e., they
now point to the same location)

L}
26 NC STATE UNIVERSITY

€5C230: € and Software Tools © NC State Computer Science Faculty

...and Nonsensibility

Inl"'lﬂ”y ;n: 26 bt; :péé-*pZ;
pl = & a;
p2 = & b;

e Not OK:

27 INC STATE UNIVERSITY

12

Reminder: Precedence of & and *

€SC230: € and Software Tools © NC State Computer Science Faculty

++ -- increment, decrement prefix right-to-left
sizeof size unary right-to-left
~ bit-wise complement unary right-to-left
1 logical NOT unary right-to-left
-+ negation, plus unary 15 right-to-left
right-to-
& address of unary left
* Indirection right-to-
unary
(dereference) left

28 NC STATE UNIVERSITY

Pointers as Arguments of Functions

e Pointers can be passed as arguments to

functions

e Useful if you want the callee to modify the
caller’s variable(s)

— that is, passing a pointer is the same as passing a
reference to (the address of) a variable

e (The pointer itself is passed by value, and the
caller’s copy of the pointer cannot be modified

by the callee)

€5€230: C and Software Tools © NC State Computer Science Faculty

[omputer Science
29

13

...as Arguments (cont’d)

void swap (int * px, int * py) {

int temp = *px;

*py = temp;

px = py = NULL; /* just to show caller’s
pointers not changed */

prints the pointer (not the
variable that is pointed to)

int 1 = 100, j = 500; l
int *pl = &i, *p2 = &j;
printf(“%d %d %p %p\n”, 1, J,/pl, p2);

swap(pl, p2);
printf(“%d %d %p %p\n”, 1, j, pl, p2);

€SC230: € and Software Tools © NC State Computer Science Faculty

...as Arguments (cont'd)

e Results of execution:

[omputer Science

€5€230: € and Software Tools © NC State Computer Science Faculty Y NC STATE UNIVERSITY

14

Any Limits on References?

e Like array bounds, in C there are no limitations
on what a pointer can address

e EX:lint *p = (Int *) 0x31415926;
printf(“*p = %d\n”, *p); ‘-_—f”"\

who knows what is
stored at this location?!

When I compiled (no errors or warnings) and ran
this code, result was:

Segmentation fault

Lomputer dcience

€5C230: € and Software Tools © NC State Computer Science Faculty 32 NC STATE UNIVERSITY

Pointers as Return Values

e A function|int i, j, *rp;
rp = bigger (&i, &);

can return
a pointer — —— ——
as the Ent igger (int *pl, iInt *p2)
result if (*pl > *p2)
return pl;
else
return p2;
+
Useful? Wouldn't it be easier to return the
bigger value (*p1 or *p2) ? [omputer Science
€5€230: € and Software Tools © NC State Computer Science Faculty 33

15

e Warning!
never
return a
pointer to
an auto
variable in
the scope
of the
callee!

e Why not?

...Return Values (cont’d)

int main (void)

{

}

printf("'%d\n*, * sumit (3));
printf("'%d\n*, * sumit (4));
printf("'%d\n*", * sumit (5));

return (0);

int * sumit (Int 1)

}

int sum = 0O;
sum += i;
return ∑

€SC230: € and Software Tools © NC State Computer Science Faculty

L. NG 5IAIE UV

But with
this
change, no
problems!

Why not?

...Return Values (cont’d)

int * sumit (Iint 1)

{

}

static |[int sum =
sum += i;
return ∑

0;

€5€230: C and Software Tools © NC State Computer Science Faculty

Result &
7
12

[omputer Science
LG STATE UNVERSTY

16

Alternative...
int s = 0;
sumit(3, &s); printf('%d\n*, s);
sumit(4, &s); printf(%d\n", s);
sumit(5, &s); printf(%d\n*, s);
void sumit (int i,)
{
return
+
[omputer Science
€5€230: C and Software Tools © NC State Computer Science Faculty 36

Arrays and Pointers

e An array variable declaration is really two

things:

1. allocation (and initialization) of a block of memory

large enough to store the array

2. binding of a symbolic name to the address of the

start of the array

Ex.: |int nums[3] = { 10, 20, 30 };

Address Contents
o e Block of
nums + 4 20 Block o
nums 8 30 puler cience
37

€5€230: C and Software Tools © NC State Computer Science Faculty

17

Ways to Denote Array Addresses

e Address of first element of the array

—nums (or nums+0), or

—&nums[O0]

e Address of second element

—nums+1¢ 2— What happened to the

—&Nnums
e etc.

“address of” operator?

Why “+1” and not “+4"?

€SC230: € and Software Tools © NC State Computer Science Faculty

[omputer Science
38

Arrays as Function Arguments

e Reminder: an array is passed by reference, as an
address of (pointer to) the first element

e The following are equivalent

int len, slen (char s[]);
char str[20] = “a string”;
len = slen(str);

int slen(char str[])
{
int len = 0;
while (str[len] = “\07”)
len++;
return len;

b

€5€230: C and Software Tools © NC State Computer Science Faculty

int len, slen (char *s);
char str[20] = “a string”;
len = slen(str);

int slen(char *str)
{
char *strend = str;
whille (*strend !'= “\07)
strend++;
return (strend — str);

With pointerS’, T rerrmmm

18

Arrays R’ Pointers

e Ex.: adding together elements of an array
e Version 0, with array indexing:

int i, nums[3] = {10, 20, 30};
int sum = 0;
for (i = 0; 1 < 3; 1++)

sum += nums[i];

[omputer Science

€5C230: € and Software Tools © NC State Computer Science Faculty 40 NC STATE UNIVERSITY

..R’ Pointers (cont’d)

ame example, using pointers (version 1)

R
rtoint.
\ ointer

int *ap, nums[3] = {10, 20, 30};

int sum = 0;
for (ap = &(nums[O]) ap < &(nums[S]) ap++)
sum += *ap;

/) Kmﬁ
omputer Science

€5€230: € and Software Tools © NC State Computer Sci 41 NC STATE UNIVERSITY

19

..R’ Pointers (cont’d)

Using pointers in normal way (version 2)

for (ap = nums; ap < (nums+3) ap++)
sum += *ap

b k.wp

But don't try to do ThIS

for (ap = (nums+3) ms < ap; nums++)
sum += *nums

puter Science Fai H‘y

Pointer Arithmetic
e Q: How much is the increment? Add 4 to the address

int|*ap, nums[3] = {10, 20, 30}; >

int sum = O;
for (ap = nums; ap <= (nums+2); ap++)

sum += *ap;

Add 1 to the address
char|*ap, nums[3] = {10, 20, 30};

char sum = O;
for (ap = nums; ap <= (nums+2); ap++)

sum += *ap;

A: the size of one element of the ar'r'ay (e g., 4
bytes for an int, 1 byte for a char, 8 [ﬁ/ ia

a dOUb I e, .”) u NBﬁTE

€5€230: C and Software Tools © NC State Computer Science Faculty

...Arithmetic (cont’d)

e Array of Ints
ymbolic Address Byte Addr

nums Start of nums
nums+1 Start of nums + 4
nums+2 Start of nums + 8

Array of chars
ymbolic Address Byte Addr

nums Start of nums
nums+1 Start of nums + 1
nums+2 Start of nums + 2

€SC230: € and Software Tools © NC State Computer Science Faculty

Contents

10
20
30

Cont

ents

10
20 .
30 | Lomputer Science

44 NC STATE UNIVERSITY

...Arithmetic (cont’d)

e Referencing the ith element of an array

nums[i-1] = 50;

int nums[10] = {.}; int nums[10] = {.};

*(nums + 1 — 1) = 50;

Referencing the end of an array

&-———-Equwabnt—————”

int *np, nums[10] = {.};

%or (np = nums; np < (nums+10); np++)

€5€230: C and Software Tools © NC State Computer Science Faculty

Lomputer ocience
YR e STATE UNNERSITY |

21

A Special Case of Array Declaration

e Declaring a pointer to a string literal also
allocates the memory containing that string

e Example:

char *str = “This is a string”;

is equivalent Yo...

char str[] = “This is a string”;

Except! first version is read only (cannot modify
string contents in your program)!

Doesn't work with other types or arrays, ex.:

int *nums = {0, 1, 2, 3, 4}; /* won’t work! */
char *str = {“T,“h”,“17,“s”}; /* no NULL char */

Input Arguments to scant(),
again

® Must be passed using “call by reference”, so that
scant () can overwrite their value

— arrays, strings: just specify array name
— anything else: pass a pointer to the argument

* Ex.
Char Cc ’ Str [10] ; & common source of bugs &
int j; failure to use &

before arguments
to scanf

double num;
int result;

result =
scanf(“%c %9s %d %lf”, &c, str, &j, &num); |
€5€230: C and Software Tools © NC State Computer Science Faculty 477 W

22

Multidimensional Arrays and
Pointers

e 2-Darray =
1-D array of 1-D arrays

double rain[years][months] =

{ {3-1, 2.6,
{2.7, 2.8,

¥

4.3, .},
oadis wlps

year = 3, month = 5;
rain[year][month] = 2.4;

€S€230: € and Software Tools ©

double *yp, *mp;
yp = rain[3];

Remember:

rain is the address of the
entire array

rain[3] is the address of
the 4th row of the array

rain[3][5] is the value of
the 6th element in the 4th
row

&rain[3][5] is the
address of the 6th element
in the 4th row

g

mp = yp + 5;
*mp = 2.4; ‘__

/-

...Multidimensional (cont’d)

Equivalent:

Remember:

rain is the address of the
entire array

double *yp, *mp;

yp = rain[3]; (

mp = yp + 5;

*mp = 2.4; inconsistent?

C

] Lo A
rain[3] is the address of
the 4th row of the array

rain[3][5] is the value of
the 6th element in the 4t
row

double *mp;
mp = &(rain[3][5]);

*mp = 2.4;

€5€230: C and Software Tools © NC State Computer Science Faculty

&(rain[3][5]) is the
address of the 6th element
in the 4th row

[omputer Science
PRS NC STATE UNNESSITY |

23

2-D Array of Equal Length Strings

e Ex. using indexing mitm
.e., row Is a strin

char strings[4][7] = {
“Blue”, “Green”, “Orange”, ‘“Red”
}:

printf (“%s\n”, strings[3]);
int 1 = 0;

strings[2][i++] = “W?, strings[2][i++] = “h”,
strings[2][i++] = “i1”, strings[2][i++] = “t”,
strings[2][i++] = “e”, strings[2][i++] = “\O
printf (“%c\n”, strings[2][3]):

€5€230: C and Software Tools © NC State Computer Science Faculty 50

Equal Length Strings... (cont'd)

e Result

Red
t

[omputer Science

€5€230: € and Software Tools © NC State Computer Science Faculty (53 NC STATE UNIVERSITY

24

...Equal Length Strings (cont’d)

e With pointers
char strings[4][7] = {
“Blue”, “Green”, “Orange”, “Red”

¥

printf (“%s\n”, *(strings+3));
char *cp = strings[2];
*cp+t+ = ‘W7, *cpt++ “h”, *cp++ ‘1’7

*Ccp++ = “t7, *cp++ = “e’, *cp++ = “\07;
cp = strings[2];
printf (“%c\n”, *(cp+3));
[omputer Science
€5C230: € and Software Tools © NC State Computer Science Faculty 52

Equal Length Strings In Memory

8 bytes 8 bytes 8 bytes 8 bytes

Blue\0\0\O Green\0\O Orange\0 Red\0O\O\O\O

[omputer Science

€5€230: € and Software Tools © NC State Computer Science Faculty [SYC I NC STATE UNIVERSITY

25

2-D Array of Unequal Length Strings)

Ex., using array indexing

char *strings[4] =
{ “Blue”, “Green”, “Orange”, “Red” };
/\)
printf (“%s\n”, strings[3]);
for (i =0; 1 < 4; i++) {
int len = 0O;
for (J = 0; strings[i][J] '= “\O”; j++)
len += 1;
printf(“length %d = %d\n”,

i, len);

by
printf (“%c\n”, *(strings[2]+3);

J/ = .
strings[]isboﬂ1al{)awayofpmnuﬂstosnTgi’///
and a 2-D array of characterst—

Unequal Length Strings In Memory

Less storage?

5 bytes 6 bytes 7 bytes 4 bytes

‘ Blue\0 ‘ Green\0 Orange\0 ‘Red\o‘

2100

strings[0] | strings[1] | strings[2] | strings[3] |

4 bytes 4bytes 4bytes 4 bytes

e (don’t forget there is storage for the pointers)
Tl STATE U EFST |

€5€230: C and Software Tools © NC State Computer Science Faculty

26

...Unequal (cont’d)

e EX., using pointers

char *strings[4] =
{ “Blue”’, “Green”, “Orange”, “Red” };
char *cp = strings[3];
printf (“%s\n”, cp);
for Cint 1 =0; 1 <4; i++) {

int len = 0;

cp = strings[i];

while (*cp++ I= “\07)

len += 1;
printf(“length %d = %d\n”, 1, len);

}
cp = strings[2] + 3; .
orintf (“%e\n", *cpy: iter Science

56

€SC230: € and Software Tools © NC State Computer Science Faculty

structs Containing Pointers

e structs are groups of fields into a single, named record (similar to

an object)

e Lots of uses, e.g., linked lists
recl

rec2

More about this when

i | value = 4 | “cD”
we discuss structs

€5€230: C and Software Tools © NC State Computer Science Faculty

[omputer Science
YAl G STATE UNVERSITY

27

Pointers to Functions

e Another level of indirection: which function you
want to execute
e Example: giving raises to employees
— Type A employee gets S5000 raise, type B get $8000
e Two ways to do it
1.caller tells callee how much raise to give

2.caller tells callee what function to call to get the
amount of the raise

[omputer Science

€5C230: € and Software Tools © NC State Computer Science Faculty 58 NC STATE UNIVERSITY

Approach #1

float sals[NUMOFEMPLOYEES];
void raise (int empnum, int Incr);

int empl = ..;
(void) raise (empl, 5000);

void raise (int empid, int incr)

{
sals[empid] += incr; /* give the employee
* a raise */
by
[omputer Science
€5€230: C and Software Tools © NC State Computer Science Faculty 59

28

Approach #2

float sals[NUMOFEMPLOYEES];
void raise (int, int ());
Iint raiseTypeA (iInt);

int raiseTypeB (iInt);

int empl = ..;
(void) raise (empl, raiseTypeA);

void raise (Int empid, int raiseType ())

pres

sals[empid] += raiseType (empid);

-’

int raiseTypeA (int eid) { .. };
int raiseTypeB (int eid) { .. };

OU

Pointers to Functions (cont’d)

e Another type of input parameter
void raise (int, int ()) ;

or..

void raise (int empid, int (*rt) O) ;

A function name used as an argument is a pointer to that
function

— & and * are not needed!

You cannot modify a function during execution; you can only
modify the pointer to a function

Advantages to approach #1? approach #2? :
[omputer Science

€5€230: € and Software Tools © NC State Computer Science Faculty (4 Q NC STATE UNIVERSITY

29

A Better Example

e Standard library function for sorting:

< starting address of array to be sorted

void gsort) (in place)

(void *base number of objects to sort
size t n,+———’5—_————

_ ? size of each object
size t size,+—

int (*cmp) (const void *, const void *)

function that compares two objects and
returns <0, 0, or > 0 if object 1 is < object 2,
== object 2, or > object 2, resp.

Why is it necessary to pass a pointer to a function

in this case?

€SC230: € and Software Tools © NC State Computer Science Faculty

[omputer Science

62 NC STATE UNIVERSITY

30

