
Testing and Debugging 
C Programming and Software Tools  
N.C. State Department of Computer Science 



Introduction 

• Majority of software development is testing, 
debugging, and bug fixing 

• The best software developers are 10X (!) more 
productive than other developers; why??? 

CSC230: C and Software Tools © NC State Computer Science Faculty 2 



Why Do Bugs Happen ? 

• OS problem? Compiler? Hardware? – not likely 

• Unclear requirements / specifications, constantly 
changing, unreasonable schedules, … 

• Lack of mastery of programming tools / language 

• Inadequate testing procedures 

• Faulty logic 

CSC230: C and Software Tools © NC State Computer Science Faculty 3 

Addressed in this 

course 



Testing Procedures 
• Types of testing 

– Unit testing – test each function 

– Integration testing – test interaction between units and 
components 

– System testing – testing complete system 

– Regression testing – selective retesting 

– Acceptance Testing – testing of acceptance criteria 

– Beta Testing – 3rd party testing 

• Test logging 

• Bug fixing 

– test one change at a time 

– maintain old versions, and log the changes 

CSC230: C and Software Tools © NC State Computer Science Faculty 4 



Test Case Information 

• Unique Identifier 

– Black box: name of test input/output files 

• Input into the program or program unit 

– Black box: how the user runs and interacts with the program 

• Could be redirection input and output 

• Expected output from the program or program unit 

– What you expect to get based on input and requirements 

• Stored in a file that can be compared with actual output 

• Actual results of running the test case 

– Black box: what the user gets from the program 

• Could be redirection of std out 

CSC216: Programming Concepts © Sarah Heckman 5 



Test Creation 

• Some test-generating strategies 
– typical, “common” cases 

• Equivalence Classes 

– “corner” or extreme cases 
• Boundary Value Tests 

– random cases & deliberate errors 
• Diabolic tests 

 

• What are some tests for the program 
description? 

CSC230: C and Software Tools © NC State Computer Science Faculty 6 



Sample Tests 

Test ID Description Expected Result Actual 
Result 

String?  
Lower Bound (0-9):  
Upper Bound (0-9): 

String?  
Lower Bound (0-9):  
Upper Bound (0-9): 

String?  
Lower Bound (0-9):  
Upper Bound (0-9): 

String?  
Lower Bound (0-9):  
Upper Bound (0-9): 

CSC230: C and Software Tools © NC State Computer Science Faculty 7 



Testing Strategies 

• Encode our tests into file to facilitate 
automation (scripts or programs) 

• Using redirection of program input and output 
for system and acceptance testing 

• Use diff to compare expected and actual output 

 

% ./string_analyzer < in1 > aout1 

% diff aout1 eout1 

CSC230: C and Software Tools © NC State Computer Science Faculty 8 



Test Quality 
• How measure test coverage? 

– Functions executed 

– Statements executed 

– Branches executed 

– Conditionals executed 

• Use gcov 

– Compile using the –fprofile-arcs and –ftest-
coverage flags 

– Execute your program with redirected input and output 

– Observe coverage 

 

CSC230: C and Software Tools © NC State Computer Science Faculty 9 



Example gcov Execution 

% gcc –Wall –std=c99 –fprofile-arcs –ftest-

coverage string_analyzer.c –o string_analyzer 

%./string_analyzer < in1 > aout1 

% gcov string_analyzer.c 

File ‘string_analyzer.c’ 

Lines executed:87.88% of 33 

string_analyzer.c:creating 

‘string_analyzer.c.gcov’ 

CSC230: C and Software Tools © NC State Computer Science Faculty 10 



Example gcov Output 

execution_count: line_num: source_text 

 If no code, execution_count is “-” 

If you want branch information (for branch 
coverage), add –b option 

CSC230: C and Software Tools © NC State Computer Science Faculty 11 



Handling Errors in Production? 

• Recover or abort? 

• Audit logs and meaningful error messages  

CSC230: C and Software Tools © NC State Computer Science Faculty 12 

#include <assert.h> 

… 

int f ( int a, int b) { 

    assert ((a > b) && (b != 0)); 

    … 

} 

If condition is FALSE at run time, automatically prints the 
following, and aborts execution: 

Assertions  
in C  



assert() 

CSC230: C and Software Tools © NC State Computer Science Faculty 13 

Example 

 

 

Output  

c = getc(stdin); 

assert(c == ‘A’); 

> a.out 

x 

test.c:15: failed assertion ‘c == ‘A’’ 

> 



assert()… (cont’d) 

• If NDEBUG defined (using #define) when 
assert.h #include'd, assert() is 
ignored 

• You can also define NDEBUG on compiler’s 
command line - no change to program 

CSC230: C and Software Tools © NC State Computer Science Faculty 14 

#define NDEBUG /* turns off assertions */ 

#include <assert.h> 



Source Level Debugging 

• Symbolic debugging lets you single step through 
program, and modify/examine variables while 
program executes 

• Drawbacks / limitations?? 

• On the Linux platform: gdb 

• Source-level debuggers built into most IDEs 

CSC230: C and Software Tools © NC State Computer Science Faculty 15 



Debugging approaches 

• Just change 
stuff until it works 

– Exception: 

• Add printfs and 
test theories 

 

• Use a debugger 

CSC230: C and Software Tools © NC State Computer Science Faculty 16 

or 



gdb commands 

CSC230: C and Software Tools © NC State Computer Science Faculty 17 

list <line> 

list <function> 

list <line>,<line> 

list (show) 10 lines of code at specified 
location in program 

List from first line to last line 

run start running the program 

continue 

step 

next 

continue execution 
single step execution, including into 
functions that are called 
single step over function calls 

print <var> 

printf “fmt”, <var> 

display <var> 

undisplay <var> 

show variable value 
 
 

show variable each time execution 
stops 



gdb commands 

CSC230: C and Software Tools © NC State Computer Science Faculty 18 

break <line> 

break <function> 

break <line> if <cond> 

set breakpoints (including 
conditional breakpoints) 

info breakpoints 

delete breakpoint <n> 

list, and delete, breakpoints 

set <var> <expr> set variable to a value 

backtrace full 

bt 

 

show the call stack & args 
arguments and local variables 



gdb quick reference card 

• GDB Quick Reference.pdf – print it! 

– Also available annotated by me with most important 
commands for a beginner:  
GDB Quick Reference - annotated.pdf 

CSC230: C and Software Tools © NC State Computer Science Faculty 19 



GDB exercise: underscorify (1) 

void underscorify_bad(char* s) { 

  char* p = s; 

  while (*p != '0') { 

    if (*p == 0) { 

      *p = '_'; 

    } 

    p++; 

  } 

} 

int main() { 
  char msg[] = "Here are words"; 
  puts(msg); 
  underscorify_bad(msg); 
  puts(msg); 
} 



GDB exercise: underscorify (2) 

void underscorify_bad2(char* s) { 

  char* p = s; 

  while (*p != '0') { 

    if (*p == ' ') { 

      *p = '_'; 

    } 

    p++; 

  } 

} 

int main() { 
  char msg[] = "Here are words"; 
  puts(msg); 
  underscorify_bad2(msg); 
  puts(msg); 
} 

Worked but  

crashed on exit 

Worked totally!! 

Worked totally!! 

Worked totally!! 

Worked totally!! 

Worked totally!! 

Worked totally!! 

Worked totally!! 



Finding Bugs 

1. Test as you write the code (write test harness) 
 Make sure you remove before delivery 

2. Write trivial programs to test your mastery of 
the programming language, library functions, 
etc. 

3. Working backwards from an error: divide and 
conquer 

– you can’t do better than binary search to isolate the 
problem 

CSC230: C and Software Tools © NC State Computer Science Faculty 22 



… Finding (cont’d) 

4. Make the bug reproducible (eliminate all 
variations in execution conditions) 

5. Try simple things first (sanity checking) 

– including, check the inputs 

6. Inspect your code and think about it! 

7. Ask for help, explain code / bug to TA or 
instructor 

8. Write an automated test program or script 

CSC230: C and Software Tools © NC State Computer Science Faculty 23 



Bug Reports 

• Technical Document 

– Failure of system under test (SUT) 

– “Product” of testing 

• Used to communicate failures to developers 

• Shows specific quality problems 

CSC326: Software Engineering © NC State Software Engineering Faculty L01 - 24 Text based on Rex Black  
 



Key Elements in Bug Reporting 

• Reproduce: test it again 

 

• Isolate: test it differently 

 

• Generalize: test it elsewhere 

 

CSC326: Software Engineering © NC State Software Engineering Faculty L01 - 25 Text © Rex Black 



Example Bug Report 

• Steps to Reproduce 

– Test input file: in1 

– Expected output: eout1 

– % ./pgm < in1 >! aout1 

– The actual results print 3, when we expect 2 

• Isolation & Generalization 

– The test focuses on the bounds of the input 

– The program may make an incorrect check on input 

– Also happens with new input file, in7, where the input value 
considers another boundary value 

 

CSC230: C and Software Tools © NC State Computer Science Faculty 26 



Comments from the Gnome Project 
• “It is extremely important that code be correct and 

robust. This means that the code should do what is 
expected of it, and it should handle exceptional 
conditions gracefully.   

• Use assertion macros to ensure that your program's 
state is consistent.  These macros help locate bugs very 
quickly, and you'll spend much less time in the debugger 
if you use them liberally and consistently. 

• Insert sanity checks in your code at important spots like 
the beginning of public functions, at the end of code that 
does a search that must always succeed, and any place 
where the range of computed values is important.” 

CSC230: C and Software Tools © NC State Computer Science Faculty 27 


