Testing and Debugging

C Programming and Software Tools

N.C. State Department of Computer Science

Lomputer dcience

Introduction

e Vajority of software development is testing,
debugging, and bug fixing

e The best software developers are 10X (!) more
productive than other developers; why???

[omputer Science
NG STATE i vErsiT

Why Do Bugs Happen ?

e OS problem? Compiler? Hardware? — not likely

e Unclear requirements / specifications, constantly
changing, unreasonable schedules, ...

e Lack of mastery of programming tools / language

e |Inadequate testing procedures

e Faulty logic A
Addressed In this
course

[omputer Science

3

Testing Procedures
e Types of testing

— Unit testing — test each function

— Integration testing — test interaction between units and
components

— System testing — testing complete system

— Regression testing — selective retesting

— Acceptance Testing — testing of acceptance criteria
— Beta Testing — 3™ party testing

e Test logging
e Bug fixing
— test one change at a time
— maintain old versions, and log the changes

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 4

Test Case Information

e Unique Identifier
— Black box: name of test input/output files
e Inputinto the program or program unit
— Black box: how the user runs and interacts with the program
e Could be redirection input and output
e Expected output from the program or program unit

— What you expect to get based on input and requirements
e Stored in a file that can be compared with actual output

Actual results of running the test case

— Black box: what the user gets from the program
e Could be redirection of std out

[omputer Science

CSC216: Programming Concepts © Sarah Heckman 5

Test Creation

e Some test-generating strategies
— typical, “common” cases
e Equivalence Classes
— “corner” or extreme cases
e Boundary Value Tests

— random cases & deliberate errors
e Diabolic tests

e What are some tests for the program
description?

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 6

Sample Tests

Test ID Description Expected Result Actual
Result

String?
Lower Bound (0-9):
Upper Bound (0-9):

String?
Lower Bound (0-9):
Upper Bound (0-9):

String?
Lower Bound (0-9):
Upper Bound (0-9):
String?
Lower Bound (0-9):
Upper Bound (0-9):

Lomputer acience

IVERSITY

Testing Strategies

e Encode our tests into file to facilitate
automation (scripts or programs)

e Using redirection of program input and output
for system and acceptance testing

e Use diff to compare expected and actual output

% ./string analyzer < inl > aoutl
% diff aoutl eoutl

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 8

Test Quality

e How measure test coverage?
— Functions executed
— Statements executed
— Branches executed
— Conditionals executed

e Use gcov

— Compile using the —fprofile-arcs and —ftest-
coverage flags

— Execute your program with redirected input and output
— Observe coverage

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 9

Example gcov Execution

% gcc -Wall -std=c99 —-fprofile-arcs —-ftest-
coverage string analyzer.c -o string analyzer
%./string analyzer < inl > aoutl

% gcov string analyzer.c

File ‘string analyzer.c’

Lines executed:87.88% of 33

string analyzer.c:creating
‘string analyzer.c.gcov’

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 10

Example gcov Output

execution_count: 1ine_num: source_text

If no code, execution countis“-"

If you want branch information (for branch
coverage), add =b option

[omputer Science

Handling Errors in Production?

e Recover or abort?
e Audit logs and meaningful error messages

. #include <assert.h>
Assertions

in C lnt f (int a, int b) {
assert ((a > b) && (b '= 0));

}

If condition is FALSE at run time, automatically prints the
following, and aborts execution:

filename:lineno: failed assertion "condition"

assert ()

Example

c = getc(stdin);
assert(c == ‘A’);

> a.out

X
test.c:15: failed assertion ‘c == ‘A’
>

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty NC STATE UNIVERSITY

assert().. (cont’d)

e |f NDEBUG defined (using #define) when
assert.h #include'd, assert () is

ignhored
e You can also define NDEBUG on compiler’s
command line - no change to program

#define NDEBUG /* turns off assertions */
#include <assert.h>

14

[omputer

clence

Source Level Debugging

e Symbolic debugging lets you single step through
program, and modify/examine variables while
program executes

e Drawbacks / limitations??
e On the Linux platform: gdb
e Source-level debuggers built into most IDEs

[omputer Science
15 NC STATE UNIVERSITY

Debugging approaches

ust change
stuff until it works

— Exception:

e Add printfs and
test theories

e Use a debugger

[omputer Science

16

CSC230: C and Software Tools © NC State Computer Science Facu

gdb commands

list <line>
list <function>

list <line>,<line>

list (show) 10 lines of code at specified
location in program

List from first line to last line

run

start running the program

continue
step
next

continue execution

single step execution, including into
functions that are called

single step over function calls

print <var>
printf “fmt”, <var>

display <var>
undisplay <var>

show variable value

show variable each time execution
stops

CSC230: C and Software Tools © NC State Computer Science Faculty

I
NC STATE UNIVERSITY

gdb commands

break <line>
break <function>
break <line> if <cond>

set breakpoints (including
conditional breakpoints)

info breakpoints
delete breakpoint <n>

list, and delete, breakpoints

set <var> <expr>

set variable to a value

backtrace full
bt

show the call stack & args

arguments and local variables

CSC230: C and Software Tools © NC State Computer Science Facult

[omputer

clence

gdb quick reference card

e GDB Quick Reference.pdf — print it!

— Also available annotated by me with most important
commands for a beginner:
GDB Quick Reference - annotated.pdf

GDB QUICK REFERENCE cop version 4

isse! Commands
e e e [e e

b [Re] Famction s Ermakiod it frmciion []

run [args ety v [t]
e

B e et valom 4 . s

g S st s

N et e, wtepping aver fmction call

= 2 i e e

Starting GDB

stast GDB, with ro debogsing fles
5 S e
£0b program core debug coredump core produeed by
£tb —help describe command line options
Stopping GDB
quie cxit GDB abao q o EOF (cg. C-d)
(68 C=c) terminate surcent command, or

e

INTERRUPT

Gemng Help
st classes of commands

SR i gt o mmmienta

]

halp oo

Executing your Program
run aniist start your program with arylist
run start your program with currest argument

st
PR . Cinf >ontf stast your program with input, output

irected
e e e
try dew v dew s stdin and stdout for next Tun
et args ot specily it for e
v arge ey ey gt Bk
i Gisplay argument list
show eny shone il exvisonment varibles
show eny war show value of emvironment variable var

808 nY var sring et crvisonment asiabls ar
unsat env Bt Sovinimet

Shell Commands

ed dir change working directory to dir
pud Print working dircctory
call “make®

make
shell emd exccute arbitrary shell command string

[] curoun cpsions ssgumens . . dhow e o mare sgumente

(1991, 1992, 2098 Fres Software Foundaion, .

Breakpoints and Watchpoints

brask [Ale]ine st breakpoink at lne mumber

e

b [fte:] e ox break sain.ci37
es]fume. st brenkpoiot st fune.fin £
break +ofact
break -offet
break saddr
ok

et break at offsct lines from current stop

et breakpoint at address addr
=t breakpaint at next instruction

break conditionally on sonzero ez

e conaditional et

ion on breakpoint
nake uneanditional if no expr

tbresk ..
rbreak mer

waten capr

cateh ek a8 Co1 handler for exeeption =
info break show defined beeakpoints

inta uateh =hi defined watchpoints

delete breakpoints at next instruction

elaar
Clear [fleiJfun delte breakpoinis at entey to fnl)

Cloar [te]line delete breakpoiats o souree line
delete [+] delete breakpoints [or breakpoint]
atsanie [n] disable beakpuints [or breakpaiat]
sasble [r] cambis brakpaiata [breaieaint 1]

csobie nce] cnablc Lrakpnt o bk o
dieabl again when seached
casble 61 [1] onaie bakpointe [i o}
delete when reach
Lgore n count ignore Lecakpoint n, count times
comsnds e G commenitt vy i
fattent] Dreakpoint n i eached. [si1ent
Command-list

auppresse delaalt diplay)
- o o commandlis

Program Stack
backtrace [] print trace of sl frames in sack; or of n
v] e

0

prioly

Tt frarne rzaber m o foame a4 addremn
 if no n, display current frame

wpn et Erare = B

trane [o]

lect frame » frames down
1020 trane [odds] describe selected rame, or frame at adde
into args acmummente o sclecied frame
1n10 Locals iablcs of acecte frame

gt van [s o] i lecid
o l1-reg includen foating point

info caten

exception handlers active in selected frame

Don't forget to do "goc -g” 1o include debug symbols! -- Tyler

Execution Control

contsnue [count] continue rusming if count specified, gnore

e [eound] Gnstemhtes
sop [ond] ot il st e sl e
& [eound] count imes if pecif

stept [omn] sicp by machine insiructions rather than
ot [cound] source lines

= “[:].m.] e st s, g ey unction

nexts [cound]

b e st e thon

w1 [focation]

finten run until sclected stack frame returns

run until nest instruction (o location)

o scleced, stk frme withont
pollerrasy Sealiumpigares |

[— ren cation wth sigmal = (none if 0)
Jump fine Fesume execution at specified line mumber
Jump o addres addre

aet Varsemr cvabiate expr withaut displaying 3 we
bl

for altering program vasiables

Display
prsn [/f] [cepr] show valus of ez for last atue 1]
pUs] [err) acconding 1o formah f
x mal
a sigaed datima
. igned decimal
o pore
B Taer
. address, sheolute and reltive
. G
: loatimg poiat

Gal) [/f] cxpr ke prizt but docs not dispay void

A e o
Pty
N «count of haw many units to display
i rghelpudr
ittt byies
et (o i)
o i i)
g =i eight bytes)
s i G iy P o, o

tarmiated sicig
Hiermyeton,
dlnasnen [adi]

dixplay mermory s machine instractions

Automatic Display
tptay 1] e s e of o s e progee
= [according to format /]

aisplay sl 1 conbled soprmions on
undisplay n remore mmbe(s) m rom st of
ically displayed expremioms

atasble diop o
enable digp n
£nte display

bl divplay for expremion(s) mumbes
o il fr cxprsionts) umber
rmmbered list of dinplay

s intenal parmeten

i+ wtticg of parame

4 so

ssages on usual symbols
——iiy

W ——

DB expressions (auts, & or

s shown by ist
B prompt
o b i

e Following options:

o reaing history spasion
+5 GDB command history

ermanis kept in istory lat

xternal fle for command

b following optians:

ddresmcs o shacks, valoea
tiractive format for arrays

aghed) o internal form for
i
- syambsols in machine-

o ciements o
ived types for

. compact or ndented
o members

+ virtual function tables

J—
ands around number n
e

th symbols and executable
Jivcard both,

redurap: o discard
ctable only; o discard
e from files or discard
inke file ancd add s sy
al bl from i
londed at addr

g files and targets in use

detach release target from GDB control

show path
into share

of path searched for
Bl

cxecutable and symbel
display exeeutable and symbol 6l path
Yt mammes of shared lbracies currently

losded

Source Files

air names wdd directory names to frant of source
ath

air clear soure path

show dix shirw arvent woses path

Lt

Laat -
Mat lines

[tes

diplay oace e R

e

[fte:]function beginning of function [in named file]
off o lines after Last printed
-off off lines previous to last printed
~address line containing address

Laat 10 o tine [

info Line mum show starting, ending addresses of

info source shir e of exroest wores Bl
info sources
fory reges
rev reger

list all souree: fles in use

GDB under GNU Emacs
Hex g run GDB under Emacs
describe GDB mode

-
down ary frames. (d
. copy mumber from point, insert at end
ES (i souree fle) set break at point
GDB License
show copying Display GNU General Public License

Thre s NO WARRANTY for GOB

Display full nomwacranty staterment.

show warranty

Conmrighs ioa1, 139, 1332 Fre Sotiwase Foundatia, s
oo 1. P
Th uthor sumime 1o espossity o any esen o i v
This cand may b fely dlsribated under ch terms of tha GNU
Plsss cnsels 1o deelopmant o this card by s

g i
DB laet 1 ree scftware; yon are welcome o distribats copies of
et s of the GNU Gl Puble Lisas. Thers &
Sbmsiuialy o warrasty for GO

CSC230: C and Software Tools © NC State Computer Science Faculty

19

omp

ufer acience

GDB exercise: underscorify (1)

int main() {

h = llH d Il;
void underscorify bad(char* s) { char msg|] ere are words

puts(msg) ;
char* p = s; underscorify bad(msg);
while (*p = '0") { puts(msg) ;
if (*p ==0) { }
* p = 1 _ 1 ;
} (= -bash | = | E X -|ﬁ
p++; <
}
}
‘ I_SHELL=/bin/bash_XDG_SESSION_COOKIE=le
00026bc-1386809487. 335 65344744 :
~ IR

GDB exercise: underscorify (2)

int main() {

void underscorify bad2(char* s) { ;Zig(nggg = "Here are words”;
char* p = s; underscorify bad2(msg);
while (*p != '0") { puts(msg);
if (*p==""){ }
p= "0
}
D++; Worked but

crashed on exit

Worked totally!!
Worked totally!!
Worked totally!!
Worked totally!!
Worked totally!!
Worked totally!!

Worked fot [y

Ompuler ocience
e stre vy

Finding Bugs

1. Test as you write the code (write test harness)
Make sure you remove before delivery

2. Write trivial programs to test your mastery of
the programming language, library functions,
etc.

3. Working backwards from an error: divide and
conquer

— you can’t do better than binary search to isolate the
problem

[omputer Science

22

... Finding (cont’d)

4. Make the bug reproducible (eliminate all
variations in execution conditions)

5. Try simple things first (sanity checking)

— including, check the inputs
6. Inspect your code and think about it!

7. Ask for help, explain code / bug to TA or
Instructor

8. Write an automated test program or script

[omputer Science

23

Bug Reports

e Technical Document
— Failure of system under test (SUT)
— “Product” of testing

e Used to communicate failures to developers
e Shows specific quality problems

[omputer Sience
CSC326: Software Engineering © NC State Software Engineering Faculty Text based on Rex Black L01-24 Ncsmeuwvmsrw

Key Elements in Bug Reporting

e Reproduce: test it again
e |solate: test it differently

e Generalize: test it elsewhere

[omputer Science

Text © Rex Black LO1 - 25

CSC326: Software Engineering © NC State Software Engineering Faculty

Example Bug Report

e Steps to Reproduce
— Test input file: inl
— Expected output: eoutl
- % ./pgm<inl>! aoutl
— The actual results print 3, when we expect 2

e |solation & Generalization
— The test focuses on the bounds of the input
— The program may make an incorrect check on input

— Also happens with new input file, in7, where the input value
considers another boundary value

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 26

Comments from the Gnome Project

e “Itis extremely important that code be correct and
robust. This means that the code should do what is
expected of it, and it should handle exceptional
conditions gracefully.

e Use assertion macros to ensure that your program's
state is consistent. These macros help locate bugs very
quickly, and you'll spend much less time in the debugger
if you use them liberally and consistently.

e [nsert sanity checks in your code at important spots like
the beginning of public functions, at the end of code that
does a search that must always succeed, and any place
where the range of computed values is important.”

[omputer Science

27

