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Introduction

e Vajority of software development is testing,
debugging, and bug fixing

e The best software developers are 10X (!) more
productive than other developers; why???
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Why Do Bugs Happen ?

e OS problem? Compiler? Hardware? — not likely

e Unclear requirements / specifications, constantly
changing, unreasonable schedules, ...

e Lack of mastery of programming tools / language

e |Inadequate testing procedures

e Faulty logic A
Addressed In this
course
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Testing Procedures
e Types of testing

— Unit testing — test each function

— Integration testing — test interaction between units and
components

— System testing — testing complete system

— Regression testing — selective retesting

— Acceptance Testing — testing of acceptance criteria
— Beta Testing — 3™ party testing

e Test logging
e Bug fixing
— test one change at a time
— maintain old versions, and log the changes
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Test Case Information

e Unique Identifier
— Black box: name of test input/output files
e Inputinto the program or program unit
— Black box: how the user runs and interacts with the program
e Could be redirection input and output
e Expected output from the program or program unit

— What you expect to get based on input and requirements
e Stored in a file that can be compared with actual output

Actual results of running the test case

— Black box: what the user gets from the program
e Could be redirection of std out
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Test Creation

e Some test-generating strategies
— typical, “common” cases
e Equivalence Classes
— “corner” or extreme cases
e Boundary Value Tests

— random cases & deliberate errors
e Diabolic tests

e What are some tests for the program
description?
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Sample Tests

Test ID Description Expected Result Actual
Result

String?
Lower Bound (0-9):
Upper Bound (0-9):

String?
Lower Bound (0-9):
Upper Bound (0-9):

String?
Lower Bound (0-9):
Upper Bound (0-9):
String?
Lower Bound (0-9):
Upper Bound (0-9):
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Testing Strategies

e Encode our tests into file to facilitate
automation (scripts or programs)

e Using redirection of program input and output
for system and acceptance testing

e Use diff to compare expected and actual output

% ./string analyzer < inl > aoutl
% diff aoutl eoutl
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Test Quality

e How measure test coverage?
— Functions executed
— Statements executed
— Branches executed
— Conditionals executed

e Use gcov

— Compile using the —fprofile-arcs and —ftest-
coverage flags

— Execute your program with redirected input and output
— Observe coverage
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Example gcov Execution

% gcc -Wall -std=c99 —-fprofile-arcs —-ftest-
coverage string analyzer.c -o string analyzer
%./string analyzer < inl > aoutl

% gcov string analyzer.c

File ‘string analyzer.c’

Lines executed:87.88% of 33

string analyzer.c:creating
‘string analyzer.c.gcov’
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Example gcov Output

execution_count: 1ine_num: source_text

If no code, execution countis“-"

If you want branch information (for branch
coverage), add =b option
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Handling Errors in Production?

e Recover or abort?
e Audit logs and meaningful error messages

. #include <assert.h>
Assertions

in C lnt f ( int a, int b) {
assert ((a > b) && (b '= 0));

}

If condition is FALSE at run time, automatically prints the
following, and aborts execution:

filename:lineno: failed assertion "condition"



assert ()

Example

c = getc(stdin);
assert(c == ‘A’);

> a.out

X
test.c:15: failed assertion ‘c == ‘A’
>
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assert().. (cont’d)

e |f NDEBUG defined (using #define) when
assert.h #include'd, assert () is

ignhored
e You can also define NDEBUG on compiler’s
command line - no change to program

#define NDEBUG /* turns off assertions */
#include <assert.h>

14
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Source Level Debugging

e Symbolic debugging lets you single step through
program, and modify/examine variables while
program executes

e Drawbacks / limitations??
e On the Linux platform: gdb
e Source-level debuggers built into most IDEs
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Debugging approaches

ust change
stuff until it works

— Exception:

e Add printfs and
test theories

e Use a debugger

[omputer Science
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gdb commands

list <line>
list <function>

list <line>,<line>

list (show) 10 lines of code at specified
location in program

List from first line to last line

run

start running the program

continue
step
next

continue execution

single step execution, including into
functions that are called

single step over function calls

print <var>
printf “fmt”, <var>

display <var>
undisplay <var>

show variable value

show variable each time execution
stops
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gdb commands

break <line>
break <function>
break <line> if <cond>

set breakpoints (including
conditional breakpoints)

info breakpoints
delete breakpoint <n>

list, and delete, breakpoints

set <var> <expr>

set variable to a value

backtrace full
bt

show the call stack & args

arguments and local variables
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gdb quick reference card

e GDB Quick Reference.pdf — print it!

— Also available annotated by me with most important
commands for a beginner:
GDB Quick Reference - annotated.pdf
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GDB exercise: underscorify (1)

int main() {

h = llH d Il;
void underscorify bad(char* s) { char msg| ] ere are words

puts(msg) ;
char* p = s; underscorify bad(msg);
while (*p = '0") { puts(msg) ;
if (*p ==0) { }
* p = 1 _ 1 ;
} ( = -bash | = | E X -|ﬁ
p++; <
}
}
‘ I_SHELL=/bin/bash_XDG_SESSION_COOKIE=le
00026bc-1386809487. 335 65344744 :
~ IR




GDB exercise: underscorify (2)

int main() {

void underscorify bad2(char* s) { ;Zig(nggg = "Here are words”;
char* p = s; underscorify bad2(msg);
while (*p != '0") { puts(msg);
if (*p==""){ }
p= "0
}
D++; Worked but

crashed on exit

Worked totally!!
Worked totally!!
Worked totally!!
Worked totally!!
Worked totally!!
Worked totally!!

Worked fot [y
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Finding Bugs

1. Test as you write the code (write test harness)
Make sure you remove before delivery

2. Write trivial programs to test your mastery of
the programming language, library functions,
etc.

3. Working backwards from an error: divide and
conquer

— you can’t do better than binary search to isolate the
problem
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... Finding (cont’d)

4. Make the bug reproducible (eliminate all
variations in execution conditions)

5. Try simple things first (sanity checking)

— including, check the inputs
6. Inspect your code and think about it!

7. Ask for help, explain code / bug to TA or
Instructor

8. Write an automated test program or script

[omputer Science
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Bug Reports

e Technical Document
— Failure of system under test (SUT)
— “Product” of testing

e Used to communicate failures to developers
e Shows specific quality problems
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Key Elements in Bug Reporting

e Reproduce: test it again
e |solate: test it differently

e Generalize: test it elsewhere
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Example Bug Report

e Steps to Reproduce
— Test input file: inl
— Expected output: eoutl
- % ./pgm<inl>! aoutl
— The actual results print 3, when we expect 2

e |solation & Generalization
— The test focuses on the bounds of the input
— The program may make an incorrect check on input

— Also happens with new input file, in7, where the input value
considers another boundary value
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Comments from the Gnome Project

e “Itis extremely important that code be correct and
robust. This means that the code should do what is
expected of it, and it should handle exceptional
conditions gracefully.

e Use assertion macros to ensure that your program's
state is consistent. These macros help locate bugs very
quickly, and you'll spend much less time in the debugger
if you use them liberally and consistently.

e [nsert sanity checks in your code at important spots like
the beginning of public functions, at the end of code that
does a search that must always succeed, and any place
where the range of computed values is important.”
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