
String Processing in C
C Programming and Software Tools
N.C. State Department of Computer Science

Standard Library: <ctype.h>

• Many functions for checking whether a character is a
digit, is upper case, …
– isalnum(c), isalpha(c), isspace(c),…

• Also, functions for converting to upper case and
converting to lower case
– toupper(c), tolower(c), …

• Argument is an int and return is an int

– Works fine with unsigned chars or 7-bit character types

– Need to cast to unsigned char for safety

CSC230: C and Software Tools © NC State University Computer Science Faculty 2

<ctype.h> (cont’d)
Checking:

CSC230: C and Software Tools © NC State University Computer Science Faculty 3

isalnum (c) c is a letter or a digit

isalpha(c) c is a letter

isdigit (c) c is a decimal digit

islower (c) c is a lower-case letter

isspace (c) c is white space (\f\n\r\t\v)

isupper (c) c is an upper-case letter

Only a partial list (see p. 612-613 or library for full list)

tolower (c) convert c to lower case

toupper (c) convert c to upper case

Converting:

Strings

• Simply 1-D arrays of type char, terminated by
null character ('\0')

• A variety of standard library functions provided
for processing

CSC230: C and Software Tools © NC State University Computer Science Faculty 4

scanf() and printf() for Strings

• sscanf(s, "…", …) scans a string (instead
of stdin) for expected input

• sprintf(s, "…", …) outputs to a string
(instead of stdout) the specified output

CSC230: C and Software Tools © NC State University Computer Science Faculty 5

Standard Library: <string.h>

• Lots of string processing functions for

– copying one string to another

– comparing two strings

– determining the length of a string

– concatenating two strings

– finding a substring in another string

– …

• Function headers at end of slides

• More details in King text book (Section 23.6)

CSC230: C and Software Tools © NC State University Computer Science Faculty 6

A Useful Memory Operation: memcpy()

• Must #include <string.h>

• Syntax:
void * memcpy (void *dest,

 void *src,

 size_t n)

• Copy n bytes from memory pointed to by src
to memory pointed to by dest
– memory areas must not overlap!

• Returns pointer to dest

CSC230: C and Software Tools © NC State University Computer Science Faculty 7

note order!

memcpy() (cont’d)

• Since C does not have an operator to assign one
array to another, this is a handy function

CSC230: C and Software Tools © NC State University Computer Science Faculty 8

#define SZ 1000

int *ip, *jp;

int A[1000], B[1000];

… assign some values to A …

memcpy(B, A, 1000*sizeof(int));

Variant: memmove()

• memmove() works just like memcpy(),
except src and dest areas may overlap

CSC230: C and Software Tools © NC State University Computer Science Faculty 9

Another Useful Operation:
memcmp()
• Syntax:
int memcmp (void *s1, void *s2,

 size_t n)

• Returns 0 if n bytes starting at s1 are equal to n bytes
starting at s2

• Else, return val < 0 if first non-equal byte of s1 < byte of
s2, > 0 if …

• Useful for comparing arrays, but byte-by-byte
comparison only

– e.g., don't use for comparing arrays of ints, floats, structs, etc.

CSC230: C and Software Tools © NC State University Computer Science Faculty 10

memcmp()... (cont'd)

CSC230: C and Software Tools © NC State University Computer Science Faculty 11

char X[1000], Y[1000];

int A[1000], B[1000];

… assign some values to A, B, X, Y …

if (memcmp(X, Y, 1000) < 0)

 ...X is less than Y...

Do not try this as-is with A and B; why not?

String function summary
Raw memory String String with limit Purpose

memcpy

memmove1

strcpy strncpy Copy

- strcat strncat Concatenate (append) strings

memcmp strcmp strncmp Compare

memchr strchr

strrchr2

- Find a char

CSC230: C and Software Tools © NC State University Computer Science Faculty 12

String Purpose

strspn

strcspn

strpbrk

Find any of a set of chars in a
string

strstr Find one string within another

strtok Split a string into tokens

strlen Find the length of a string

1 Allows overlapping memory
2 Reverse (right-to-left) search

Raw mem Purpose

memset Fill a block of memory

Reference: http://www.cplusplus.com/reference/cstring/

Danger zone (1)

• What’s wrong with this?

CSC230: C and Software Tools © NC State University Computer Science Faculty 13

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

int main(int argc, char* argv[]) {

 char filename[32];

 strcpy(argv[1],filename);

 printf("Opening %s...\n",filename);

 // more code goes here

 return 0;

}

Danger zone (2)

• What’s wrong with this, then?

CSC230: C and Software Tools © NC State University Computer Science Faculty 14

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

int main(int argc, char* argv[]) {

 char filename[32];

 strcpy(filename,argv[1]);

 printf("Opening %s...\n",filename);

 // more code goes here

 return 0;

}

Safety zone (1)

• The common way to fix this

CSC230: C and Software Tools © NC State University Computer Science Faculty 15

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

int main(int argc, char* argv[]) {

 char* filename;

 filename = argv[1];

 printf("Opening %s...\n",filename);

 // more code goes here

 return 0;

}

Safety zone (2)

• If you absolutely need a copy of the string.

CSC230: C and Software Tools © NC State University Computer Science Faculty 16

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

int main(int argc, char* argv[]) {

 char* filename = malloc(strlen(argv[1])+1);

 strcpy(filename,argv[1]);

 printf("Opening %s...\n",filename);

 // more code goes here

 return 0;

}

Good Practice

• You should be able to write the code for any of
the standard library functions

– e.g., computing the length of a string…

CSC230: C and Software Tools © NC State University Computer Science Faculty 17

char s[1000] = “a string”;

char *p = s;

while (*p++)

 ;

return (p – s);

<stdlib.h> String Functions
• double atof(char s[]) converts a string

to a double, ignoring leading white space

• int atoi(char s[]) converts a string to
an int, ignoring leading white space

– These don’t return information about errors

• Could also use
– strtol

– strtod/f

– sscanf

CSC230: C and Software Tools © NC State University Computer Science Faculty 18

That sucks.

Nicest, but expensive.

Fine, but error reporting is a little complicated.

Arrays of Strings

• Creating a two dimensional array of chars is
inefficient

– Wasted space when strings of different lengths

• Instead we want a ragged array

– Create an array where the elements are pointers to
strings

char *planets[] = {“Mercury”,

“Venus”, “Earth”, “Mars”, “Jupiter”,

“Saturn”, “Uranus”, “Neptune”);

CSC230: C and Software Tools © NC State University Computer Science Faculty 19

Arrays of Strings (con’t)

• Accessing a string in the array
– planets[i]

• Accessing a character in a string
– planets[i][j]

Example:

for (int i = 0; i < 8; i++)

 if (planets[i][0] == ‘M’)

 printf(“%s\n”, planets[i]);

CSC230: C and Software Tools © NC State University Computer Science Faculty 20

Reminder: Go to course web page for link to exercise form.
Paste code into ideone.com and submit the link.

Exercise 15a

• Make a function that does this:

CSC230 - C and Software Tools © NC State University Computer Science Faculty

21

Upper-case-ify

void uppercaseify(char* c) {

 // YOUR CODE HERE

}

int main() {

 char s[] = “Hey everyone!";

 printf("%s\n",s); // Hey everyone!

 uppercaseify(s);

 printf("%s\n",s); // HEY EVERYONE!

}

Pro-mode: Don’t use any brackets in uppercaseify

HERE’S A BUNCH OF FUNCTION
PROTOTYPES YOU CAN READ YOURSELF

Better yet, read the manpages, or a C reference
library like cplusplus.com.

CSC230: C and Software Tools © NC State University Computer Science Faculty 22

<string.h>: Copying

• void *memcpy(void * restrict s1, const void

* restrict s2, size_t n);

• void *memove(void *s1, const void *s2,

size_t n);

• char * strcpy(char * restrict s1, const char

* restrict s2);

• char *strncpy(char * restrict s1, const char

* restrict s2, size_t n)

CSC230: C and Software Tools © NC State University Computer Science Faculty 23

<string.h>: Concatenation

• char *strcat(char * restrict s1, const char

* restrict s2);

• char *strncat(char * restrict s1, const char

* restrict s2, size_t n);

CSC230: C and Software Tools © NC State University Computer Science Faculty 24

<string.h>: Comparison

• int memcmp(const void *s1, const void *s2,

size_t n);

– n comparisons

• int strcmp(const char *s1, const char *s2)

– Stops when reaches null in either string

• int strcoll(const char *s1, const char *s2);

– Locale dependent

• int strncmp(const char *s1, const char *s2,

size_t n);

– Stops when reaches null in either string or n

comparisons, which ever is first

CSC230: C and Software Tools © NC State University Computer Science Faculty 25

<string.h>: Search

• void *memchr(const void *s, int c, size_t

n);

– Like strchr, but stops searching after n characters

• char *strchr(const char *s, int c);

– Searches a string for a particular character

– Use pointer arithmetic to find additional characters

• size_t strcspn(const char *s1, const char

*s2);

– Index of first character that’s in the set s2

• char *strpbrk(const char *s1, const char

*s2);

– Pointer to leftmost character in s1 that matches any

character in s2

CSC230: C and Software Tools © NC State University Computer Science Faculty 26

<string.h>: Search

• char *strrchr(const char *s, int c);

– Searches string in reverse order

• size_t strspn(const char *s1, const char

*s2);

– Index of first character that’s NOT in the set s2

• char *strstr(const char *s1, const char

*s2);

– Pointer to first occurrence of s2 in s1

• char *strtok(char * restrict s1, const char

* restrict s2);

– Scans s1 for the non-empty sequence of characters that

are not in s2

– Use to tokenize strings

CSC230: C and Software Tools © NC State University Computer Science Faculty 27

<string.h>: Other

Functions
• void *memset(void *s, int c, size_t n);

– Stores copy of c to area of memory of size n

• size_t strlen(const char *s);

– Length of the string, not counting the null

character

CSC230: C and Software Tools © NC State University Computer Science Faculty 28

Command Line Arguments

• To use command line arguments, define main
as:

int main(int argc, char *argv[]) {}

– argc: argument count

• Includes the program itself

– argv: argument vector

• Array of pointers to command line arguments stored as
strings

• argv[0]: name of program

• argv[1]-argv[argc-1]: other arguments

• argv[argc]: null pointer

CSC230: C and Software Tools © NC State University Computer Science Faculty 29

Processing Command Line Args

• Using arrays
for (int i = 1; i < argc; i++)

 printf(“%s\n”, argv[i]);

• Using pointers
for (char **p = &argv[1]; *p != NULL; p++)

 printf(“%s\n”, *p);

CSC230: C and Software Tools © NC State University Computer Science Faculty 30

