
Large Programs:
Linking and make
C Programming and Software Tools
N.C. State Department of Computer Science

Separate Compilation
• In Java, every class is a separate source code file

• In C, the programmer determines how to split a
program up into source code files (modules)

– rules/conventions for doing this?

• Each module is compiled independently to
produce an object (.o) file

– object files are then linked together to produce an
executable application

– all managed by gcc

• Benefits of separate modules?

CSC230: C and Software Tools © NC State Computer Science Faculty 2

Steps in compiling C

Source
(.c)

Expanded
source (.c)

Assembly
language

(.s)

Object file
(.o)

Library (.so)
or

executable

CSC230: C and Software Tools © NC State Computer Science Faculty 3

Compile
(includes tokenizing,

parsing, and

code generation)

Preprocess Assemble Link

gcc -E blah.c

gcc -S blah.c

gcc -c blah.c

Alternately, you can get C mixed with assembler by doing:
gcc -g -Wa,"-ahl=mixed.lst" blah.c

gcc blah.c

This is where
-D flags matter

This is where -Wall

and -std=c99 flags matter

Steps in Compiling

CSC230: C and Software Tools © NC State Computer Science Faculty 4

source:

http://www.eng.hawaii.edu/Tutor/Make/1-2.html

> gcc –Wall –std=c99 green.c blue.c

What Does a Linker Do?

• Integrates (unifies) the address space of the
separately-compiled modules

– creates a single symbol table

– resolves external references between modules

• Compile separately, then link together

CSC230: C and Software Tools © NC State Computer Science Faculty 5

> gcc –Wall –std=c99 –c green.c

> gcc –Wall –std=c99 –c blue.c

> gcc green.o blue.o –o a.out

generate object code, without linking

link object code files together, produce executable

Linking... (cont'd)

• Two types of linkers
– static linking (at compile time)

– dynamic linking (at run time)

• Dynamic: At runtime, link to a function the first
time it is called by the program

• Ex.: common OS functions (API)
– placed into DLL or shared library

– loaded into memory at system boot time

• Benefits (vs. static linking) ?

CSC230: C and Software Tools © NC State Computer Science Faculty 6

Here are some technically possible
but never actually used methods of

writing multi-file programs.

• The goal is to show you WHY you do it the right
way, which will be shown later.

CSC230: C and Software Tools © NC State Computer Science Faculty 7

External Variables in C
• Global variables and functions can be referenced by (are in the

scope of) other modules

• To link to a variable or function declared in another file, use the
keyword extern

• extern declares the variable/function, but doesn’t define it

CSC230: C and Software Tools © NC State Computer Science Faculty 8

#include <stdio.h>

extern int f(int);

int x = 3;

int main() {

 x++;

 printf("%d %d\n",

 x, f(x));

 return 0;

}

File p.c

extern int g (int);

int f (int a) {

 int x = 5;

 return g(x * a);

}

File q.c

int g (int b) {

 return b * 3;

}

File r.c

> gcc p.c q.c r.c –o pgm

External... (cont'd)

CSC230: C and Software Tools © NC State Computer Science Faculty 9

Extern declarations commonly collected in .h files, which are
#include’d at start of.c file
• Warning: make sure names in files don’t conflict

static keyword before global variable x:
• visible only within this module
• information hiding!

 #include <stdio.h>

extern int f(int);

static int x = 3;

int main() {

 x++;

 printf("%d %d\n",

 x, f(x));

 return 0;

}

File p.c
extern int g (int);

int x = 5;

int f (int a) {

 return g(x * a);

}

File q.c

No conflicts – x in p.c different than x in q.c,

even though both are global variables

Header Files

• extern allows for function and variable prototypes
that are shared between C files.
– What happens if a function f declared in foo.c is called in

50 other files?

• Instead, we can include f’s prototype in a header file
and all files that use f can include the header.

– The file that defines f should also include the header file

• Files are named *.h, where * typically matches the
name of the *.c file that contains the function
definitions

CSC230: C and Software Tools © NC State Computer Science Faculty 10

Simple Header File Example

CSC230: C and Software Tools © NC State Computer Science Faculty 11

void make_empty(void);

int is_empty(void);

int is_full(void);

void push(int i);

int pop(void);

#include “stack.h”

int main(void)

{

 make_empty();

 …

}

#include “stack.h”

int contents[100];

int top = 0;

void make_empty(void)

{ … }

int is_empty(void)

{ … }

int is_full(void)

{ … }

void push(int i)

{ … }

int pop(void)

{ … }

stack.h
stack.c

calc.c

Okay, here are the real best
practices for multi-file programs

CSC230: C and Software Tools © NC State Computer Science Faculty 12

Header file rules (1)

• Any C file with content you want to use elsewhere has a corresponding
H file

• Functions:
– “Public” (available in other C files)? Put its prototype in the H file

– “Private” (this C file only)? Declare it “static” in your C file

• Global variables:
– “Public” (available in other C files)?

• Declare it in your C file

• Declare it with the “extern” keyword in your H file

• Try to avoid needing public variables, though.

– “Private” (this C file only)? Declare it “static” in your C file.

• Structs/typedefs/unions:
– “Public” (available in other C files)? Put it in the H file.

– “Private” (this C file only)? Put it in the C file.

CSC230: C and Software Tools © NC State Computer Science Faculty 13

Header file rules (2)

• Surround your H file with “multiple inclusion protection” :
– my_file.h:

#ifndef MY_FILE_H

#define MY_FILE_H

// prototypes and stuff here

#endif // MY_FILE_H

• A C file always includes its own H file, so blah.c has:
#include “blah.h”

• Want to use code/vars from blah.c elsewhere?
#include “blah.h”

• When you’re done, be sure to link the O files from
all these C files together when you make your binary.
gcc -c -o this.o this.c

gcc -c -o that.o that.c

gcc -o myapp this.o that.o

CSC230: C and Software Tools © NC State Computer Science Faculty 14

Review the example program

• See nbody.c and associated files…

CSC230: C and Software Tools © NC State Computer Science Faculty 15

Linking to an External Library

CSC230: C and Software Tools © NC State Computer Science Faculty 16

> gcc pgm.c –L$HOME/lib -lsubs –o pgm

Program
prog.c:

directory that contains

the library

the name of the library

The order of the options can be important (check compiler)!

– -l<libname> may be required to come after the source code files are listed

Using the library

extern int sub1(void), sub2(void);

int main(void) {

 …

 x = sub1();

 y = sub2();

defined in a library of functions

Creating Libraries (1)

• 1: Compiling with Position Independent Code
$ gcc -c -Wall -Werror -fpic foo.c

• 2: Creating a shared library from object file(s)
$ gcc -shared -o libfoo.so foo.o

• 3: Linking with a shared library

– Let’s compile our main.c and link it with libfoo.

– The -lfoo option is not looking for foo.o, but libfoo.so – GCC assumes that all
libraries start with ‘lib’ and end with .so or .a (.so is for shared object or shared
libraries, and .a is for archive, or statically linked libraries).
$ gcc -Wall -o test main.c –lfoo

/usr/bin/ld: cannot find -lfoo

collect2: ld returned 1 exit status

– We need to tell GCC where to find the shared library (current directory doesn’t
count). We do this with -L:
$ gcc -L/home/username/foo -Wall -o test main.c -lfoo

CSC230: C and Software Tools © NC State Computer Science Faculty 17

From: http://www.cprogramming.com/tutorial/shared-libraries-linux-gcc.html

Creating Libraries (2)

• 4: Making the library available at runtime
– Try to run it:

$./test

./test: error while loading shared libraries: libfoo.so:

cannot open shared object file: No such file or directory

– Have to update LD_LIBRARY_PATH environment variable (or for
permanent change, use ldconfig (advanced)):
$ setenv LD_LIBRARY_PATH /home/username/foo:$LD_LIBRARY_PATH

$./test

This is a shared library test...

Hello, I'm a shared library

• NOTE: This stuff is Linux/UNIX specific. On
Windows (except for Cygwin), you use DLLs and
everything’s totally different.

CSC230: C and Software Tools © NC State Computer Science Faculty 18

From: http://www.cprogramming.com/tutorial/shared-libraries-linux-gcc.html

Dependency Checking with make

• Most programming toolsuites (IDEs)…

– keep track of what files are part of a project

– keeps track of the dependencies between files

– use this info to “create a new build” when files are
changed

• make does the same thing, but under manual
control by the programmer

– dependencies and actions are specified in a
Makefile

CSC230: C and Software Tools © NC State Computer Science Faculty 19

…Dependency Checking (cont’d)

• Example:

CSC230: C and Software Tools © NC State Computer Science Faculty 20

p1

p1b.o p1a.o

stuff.h p1b.c p1a.c

“p1 depends on p1a.o and p1b.o”

“p1b.o depends on p1b.c and stuff.h”

etc.

Running make

• First, create a file (using a text editor) called
Makefile

• After that, any time part of the source code
changes, run make to regenerate executable

CSC230: C and Software Tools © NC State Computer Science Faculty 21

$ make [-f makefilename] [options] [target]

Makefiles

• Makefile consists of rules of form:

CSC230: C and Software Tools © NC State Computer Science Faculty 22

target-list: list-of-dependencies-to-check

 list-of-commands-to-execute

There is a tab character here – Required! Won’t work otherwise!

Helpful tips

– blank lines help readability

– lines starting with ‘#’ are comments (ignored)

– lines can be continued with ‘\’ immediately before newline

Order of Rules Important

• Order of rules important

– by default, make generates the first target in the
Makefile

– to accomplish something else: make target

• list-of-commands can be any executable
commands (programs), “shell” commands, etc.

CSC230: C and Software Tools © NC State Computer Science Faculty 23

Example

• Means:
“if p1.c has changed more recently than the last
time the executable p1 was generated, then run
gcc p1.c…”

• i.e., make does the minimum work necessary to
regenerate the target

CSC230: C and Software Tools © NC State Computer Science Faculty 24

sample Makefile for program p1, which

consists of just the file p1.c

Remember: command line *must* start with TAB

p1: p1.c

 gcc –Wall –std=c99 p1.c –o p1 -lm

…Example (cont’d)

• If p1.c is less recent than p1, nothing happens

CSC230: C and Software Tools © NC State Computer Science Faculty 25

$ make p1

make: ‘p1’ is up to date.

$

$ touch p1.c < sets modification time to now

$ make

gcc –Wall –std=c99 p1.c –o p1 –lm

$

Note: to force remake, use touch command

$ make p1

gcc –Wall –std=c99 p1.c –o p1 –lm

$

Dependency “Tree” Example

CSC230: C and Software Tools © NC State Computer Science Faculty 26

p1: p1a.o p1b.o

 gcc p1a.o p1b.o –lm –o p1

p1a.o: p1a.c

 gcc –Wall –std=c99 –c p1a.c -o p1a.o

p1b.o: p1b.c stuff.h

 gcc –Wall –std=c99 –c p1b.c -o p1b.o

Makefile

p1

p1b.o p1a.o

stuff.h p1b.c p1a.c

Dependency “Tree” Example

CSC230: C and Software Tools © NC State Computer Science Faculty 27

p1: p1a.o p1b.o

 gcc p1a.o p1b.o –lm –o p1

.c.o:

 gcc –Wall –std=c99 –c $< -o $@

Makefile

p1

p1b.o p1a.o

stuff.h p1b.c p1a.c

Extension rule

Dependency Trees (cont’d)

CSC230: C and Software Tools © NC State Computer Science Faculty 28

$ make

gcc –Wall –std=c99 –c p1a.c

gcc –Wall –std=c99 –c p1b.c

gcc p1a.o p1b.o –lm –o p1

$

$ vi p1b.c

 ---make some changes to p1b.c---

$ make

gcc –Wall –std=c99 –c p1b.c

gcc p1a.o p1b.o –lm –o p1

$

only recompile p1b.c, and link with other object files

Dependency Trees (cont’d)

• The following defeats the purpose of make

– what’s wrong with this, vs. the previous?

CSC230: C and Software Tools © NC State Computer Science Faculty 29

p1: p1a.c p1b.c stuff.h

 gcc p1a.c p1b.c –o p1 –lm

Automating: Default Rules
• Large set of default (built-in, automatic)

dependencies that make knows about

• Examples:

– “<filename>.o usually depends on
<filename>.c”

– “To regenerate <filename>.o file, you usually run
$(CC) <filename>.c –c”

• So, for example previously given, almost the
complete Makefile is...

CSC230: C and Software Tools © NC State Computer Science Faculty 30

p1: p1a.o p1b.o

p1b.o: stuff.h

…Default (cont’d)

• To see what the complete set of defaults are:

• There are a lot of rules…

• Note that these rules are preconfigured to use
macro variables CFLAGS, LDFLAGS, CC, etc.

CSC230: C and Software Tools © NC State Computer Science Faculty 31

$ make –p –f/dev/null

make Variables
• Way to assign symbolic names to commands,

filenames, and arguments

• Some default variables you can define

– CC (default compiler to use)

– CFLAGS (default compilation flags)

– LDFLAGS (default linking flags)

– TARGET_ARCH (target architecture)

CSC230: C and Software Tools © NC State Computer Science Faculty 32

…Macros (cont’d)

• Example

CSC230: C and Software Tools © NC State Computer Science Faculty 33

CC = gcc

CFLAGS = -Wall -std=c99

LDFLAGS = -lm

OBJECTS = p1a.o p1b.o

SOURCES = p1a.c p1b.c

HEADERS = stuff.h

p1: $(OBJECTS)

 $(CC) $(CFLAGS) $(OBJECTS) $(LDFLAGS) –o p1

p1a.o:

p1b.o: stuff.h
What’s this turn into?

Passing Parameters to make

• We can pass macro values to a makefile by
specifying them on the command line, e.g.

CSC230: C and Software Tools © NC State Computer Science Faculty 34

Processes the makefile with CFLAGS assigned the value
–O1, PAR2 assigned the value sw

Referenced in makefile as $(CFLAGS), $(PAR2)

$ make CFLAGS=“-O1” PAR2=sw

Some “Built-In” Macros

Macro Meaning

$@ The current target

$? The list of dependencies (files the target depends on)
that have changed more recently than current target

$* The “stem” of filenames that match a pattern

$< The first dependency

$^ The list of dependencies

CSC230: C and Software Tools © NC State Computer
Science Faculty

35

p1: $(OBJECTS)

 $(CC) $(OPTIONS) $^ –o $@ -lm

Interpretation?

“Dummy” Targets

• Convenient label for a goal, not a file to generate

CSC230: C and Software Tools © NC State Computer Science Faculty 36

…

p1.tar: Makefile $(HDRS) $(SOURCES)

 tar –uvf $@ $?

clean:

 rm *.o

(Note: make uses the shell to run stuff,
so it understands shell filename expansion, like “*.o”)

update p1.tar with any of the

specified files that have changed

more recently than the last time

p1.tar was updated

…“Dummy” (cont’d)

CSC230: C and Software Tools © NC State Computer Science Faculty 37

Then you can accomplish that target, e.g.,

$ make p1.tar

tar –ucf p1.tar Makefile p1a.c p1b.c stuff.h

…tar output appears here…

$ ---update p1b.c here---

$ make p1.tar

tar –ucf p1.tar p1b.c

…tar output appears here…

$ make clean

rm *.o

$

Review the example Makefile

• See the Makefile for the nbody example

CSC230: C and Software Tools © NC State Computer Science Faculty 38

all

nbody

nbody.o

nbody.c

SimpleGraphics.o

SimpleGraphics.c

clean

CC = gcc

CFLAGS = -Wall -std=c99 -O3 -g

OBJS = nbody.o SimpleGraphics.o

all : nbody

.c.o:

 $(CC) $(CFLAGS) -c $<

nbody : $(OBJS)

 $(CC) $(LIBS) -o $@ $(OBJS)

clean :

 rm -f nbody $(OBJS)

Some make Command-Line Options

Option Meaning

-d Print debugging information

-f file Use file instead of Makefile

-i Ignore all errors (i.e., keep going)

-n Print the commands that would be executed, but don’t
execute them

-s Silent mode; do not print commands, just execute them

CSC230: C and Software Tools © NC State Computer
Science Faculty

39

Example: compare_sorts (1)…

CSC230: C and Software Tools © NC State Computer Science Faculty 40

Makefile to compare sorting routines

BASE = /home/barney/progs

CC = gcc

CFLAGS = -O –Wall

EFILE = $(BASE)/bin/compare_sorts

INCLS = -I$(LOC)/include

LIBS = $(LOC)/lib/g_lib.a \

 $(LOC)/lib/h_lib.a

LOC = /usr/local

OBJS = main.o another_qsort.o chk_order.o \

 compare.o quicksort.o

…

CSC230: C and Software Tools © NC State Computer Science Faculty 41

…

$(EFILE): $(OBJS)

 @echo “linking …”

 @$(CC) $(CFLAGS) –o $@ $(OBJS) $(LIBS)

$(OBJS): compare_sorts.h

 $(CC) $(CFLAGS) $(INCLS) –c $*.c

Clean intermediate files

clean:

 rm *~ $(OBJS)

…compare_sorts (2)

Macro Meaning

$@ The current target

$? The list of dependencies (files the target depends on)
that have changed more recently than current target

$* The “stem” of filenames that match a pattern

$^ The list of dependencies

Larger Example: vi (1) …

CSC230: C and Software Tools © NC State Computer Science Faculty 42

PROG= ex

XPG4PROG= ex

XPG6PROG= ex

LIBPROGS= expreserve exrecover

XD4= exobjs.xpg4

XD6= exobjs.xpg6

EXOBJS= bcopy.o ex.o ex_addr.o ex_cmds.o ex_cmds2.o \

 ex_cmdsub.o ex_data.o ex_extern.o ex_get.o \

 ex_io.o ex_put.o ex_re.o ex_set.o ex_subr.o \

 ex_temp.o ex_tty.o ex_unix.o ex_v.o ex_vadj.o \

 ex_vget.o ex_vmain.o ex_voper.o ex_vops.o \

 ex_vops2.o ex_vops3.o ex_vput.o ex_vwind.o \

 printf.o

EXOBJS_XPG4= $(EXOBJS) compile.o values-xpg4.o

EXOBJS_XPG6= $(EXOBJS) compile.o values-xpg6.o

XPG4EXOBJS= ${EXOBJS_XPG4:%=$(XD4)/%}

XPG6EXOBJS= ${EXOBJS_XPG6:%=$(XD6)/%}

EXRECOVEROBJS= exrecover.o ex_extern.o

…vi (2) …

CSC230: C and Software Tools © NC State Computer Science Faculty 43

OBJS= $(EXOBJS) $(XPG4EXOBJS) $(XPG6EXOBJS) \

 expreserve.o exrecover.o

SRCS= $(EXOBJS:%.o=%.c) expreserve.c exrecover.c

TXTS = READ_ME makeoptions asfix.c70 ex.news \

 port.mk.370 port.mk.70 port.mk.c70 port.mk.usg \

 ovdoprnt.s ovprintf.c rofix

include ../../Makefile.cmd

For message catalogue files

POFILES= $(EXOBJS:%.o=%.po) expreserve.po exrecover.po

POFILE= port.po

Include all XPG4 and XPG4ONLY changes in the XPG4 version

$(XPG4) := CFLAGS += -DXPG4 -DXPG4ONLY

Include all XPG4 changes, but don't include XPG4ONLY in the

XPG6 version

$(XPG6) := CFLAGS += -DXPG4 -DXPG6 -I$(SRC)/lib/libc/inc

…vi (3) …

CSC230: C and Software Tools © NC State Computer Science Faculty 44

CPPFLAGS += -DUSG -DSTDIO -DVMUNIX -DTABS=8 \

 -DSINGLE -DTAG_STACK

CLOBBERFILES += $(LIBPROGS)

ex := LDLIBS += -lmapmalloc -lcurses \

 $(ZLAZYLOAD) -lgen -lcrypt_i $(ZNOLAZYLOAD)

$(XPG4) := LDLIBS += -lmapmalloc -lcurses \

 $(ZLAZYLOAD) -lgen -lcrypt_i $(ZNOLAZYLOAD)

$(XPG6) := LDLIBS += -lmapmalloc -lcurses \

 $(ZLAZYLOAD) -lgen -lcrypt_i $(ZNOLAZYLOAD)

exrecover := LDLIBS += -lmapmalloc -lcrypt_i

lint := LDLIBS += -lmapmalloc -lcurses -lgen -lcrypt

ROOTLIBPROGS= $(LIBPROGS:%=$(ROOTLIB)/%)

…vi (4) …

CSC230: C and Software Tools © NC State Computer Science Faculty 45

hard links to ex

ROOTLINKS= $(ROOTBIN)/vi $(ROOTBIN)/view $(ROOTBIN)/editv \

 $(ROOTBIN)/vedit

ROOTXPG4LINKS= $(ROOTXPG4BIN)/vi $(ROOTXPG4BIN)/view \

 $(ROOTXPG4BIN)/edit $(ROOTXPG4BIN)/vedit

ROOTXPG6LINKS= $(ROOTXPG6BIN)/vi $(ROOTXPG6BIN)/view \

 $(ROOTXPG6BIN)/edit $(ROOTXPG6BIN)/vedit

.KEEP_STATE:

.PARALLEL: $(OBJS)

all: $(PROG) $(XPG4) $(XPG6) $(LIBPROGS)

$(PROG): $(EXOBJS)

 $(LINK.c) $(EXOBJS) -o $@ $(LDLIBS)

 $(POST_PROCESS)

…vi (5) …

CSC230: C and Software Tools © NC State Computer Science Faculty 46

…

$(XD4)/compile.o $(XD6)/compile.o: ../../expr/compile.c

 $(COMPILE.c) -o $@ ../../expr/compile.c

…

$(XD4):

 -@mkdir -p $@

…

install: all $(ROOTPROG) $(ROOTLIBPROGS) $(ROOTLINKS) \

 $(ROOTXPG4PROG) $(ROOTXPG4LINKS) $(ROOTXPG6PROG) \

 $(ROOTXPG6LINKS)

…

clean:

 $(RM) $(OBJS)

lint: lint_SRCS

Autoconf and Automake

• autoconf automates the setting of options
which are system configuration-dependent

• automake automates the generation of large
Makefiles

• Details for another day...

CSC230: C and Software Tools © NC State Computer Science Faculty 47

