Large Programs:
Linking and make

C Programming and Software Tools
N.C. State Department of Computer Science

[omputer Science

Separate Compilation
e In Java, every class is a separate source code file
¢ In C, the programmer determines how to split a
program up into source code files (modules)
— rules/conventions for doing this?
e Each module is compiled independently to

produce an object (.o) file

— object files are then linked together to produce an
executable application

— all managed by gcc

" Benefits of separate modules? [y iy Sigyg

€5€230: € and Software Tools © NC State Computer Science Faculty 23 NC STATE UNIVERSITY

Steps in Compiling C (Again)

Source Code

l preprocessing

Expanded Source Code

l lexical analysis

Tokens

l parsing

Parse Tree

l code generation

(CSC230: C and Software Tools © NC State Computer Science Faculty

#define N 3
a=c+b*N;
a=c+b*3;
a = c¢c + b * 3 ;
ex@n—w
exprfssion ;

idenltifier assignmelnt—operator assignment-expression

a

[omputer Science
3

Steps... (cont’d)

l code generation

A bly L mov ebx, b
ssembly Language imul ebx, ebx, 3

l assembling mov eex, ¢
Object Code 001110010111

R + other

l linking .~ Object Code

Executable Code
0011100101110110101..

€SC230: C and Software Tools © NC State Computer Science Faculty

[omputer Science
4

Steps in Compiling

Compiler
0| N Assembler Linker
green.c i = Executable
- == i Program
‘.h \ green. o
common. h ’
: . 1S - 0 a out
e C blue.o
blue - C source
hm):/'/\Twm,m.emg hawaii.edu/Tutor/Make/1-2.html
Lomputer dcience
€5€230: € and Software Tools © NC State Computer Science Faculty 5

What Does a Linker Do?

¢ Integrates (unifies) the address space of the
separately-compiled modules

— creates a single symbol table
— resolves external references between modules

e Compile separately, then link together

generate object code, without linking

> gcc —Wall —std=c99 —-c green.c
> gcc —Wall —std=c99 —-c blue.c

link object code files together, produce executable

. N

Linking... (cont'd)

e Two types of linkers
— static linking (at compile time)
— dynamic linking (at run time)
e Dynamic: At runtime, link to a function the first
time it is called by the program
e Ex.: common OS functions (API)
— placed into DLL or shared library

— loaded into memory at system boot time

e Benefits (vs. static linking) ?

Lomputer dcience

€SC230: € and Software Tools © NC State Computer Science Faculty 7 NC STATE UNIVERSITY

External Variables in C

e Global variables and functions can be referenced by (are in the
scope of) other modules

¢ To link to a variable or function declared in another file, use the
keyword extern

e extern declares the variable/function, but doesn’t define it

extern int g (int);
Filegc |int F Cint a) {
File p.c int x = 5;

#include <stdio.h> return g(x * a);
extern int fC int); . }
int x = 3; Fnenc i
int mainQ) { int g Cint b) {

X++; return b * 3;

printf("%d %d\n", ||}

x, F()): .

return 0; > gcc p.c §.c r.c —o pgm i

} ience Faculty Q NG STATE UNIVERSITY

External... (cont'd)

Extern declarations commonly collected in .h files, which
are #include'd at start of .c file

* Warning: make sure names in files don't conflict

static keyword before global variable x:
* visible only within this module
* information hiding!
File p.c

- - extern int int);
#include <stdio.h> Fileg.c | int x = 5: g ()
extern int f(int); : Ant £ (int a y {
static int x = 3; return g(x * a):
int mainQ { } ’

X++;
printf('%d %d\n" T~ No conflicts — x in p. c different than x in g.c,
X f(x)): even though both are global variables
e o Lomputer dcience
} ience Faculty 9

Header Files

= extern allows for function and variable prototypes
that are shared between C files.
— What happens if a function ¥ declared in Foo.c is called in
50 other files?
e Instead, we can include F's prototype in a header file
and all files that use T can include the header.

— The file that defines ¥ should also include the header file
* Files are named *_h, where * typically matches the

name of the * . C file that contains the function
definitions

(omputer Science
€5€230: C and Software Tools © NC State Computer Science Faculty ST NC STATE UNIVERSITY

Header File Example

stack.h
— - stack.c
void make_empty(void); _
int is_empty(void); #lnclude “stack.h”
int is_full(void); int contents[100];
void push(int i); |nF top = O;)
int pop(void); void make_empty(void)
{1}
¢/ int is_empty(void)
{.} _
#include “stack.h” int is_full(void)
int main(void) { .3}
{ void push(int i)
make_empty(); { .
" int pop(void)
3 {1}
calc.c
€SC230: C and Software Tools © NC State Computer Science Faculty 1 1p

Linking to an External Library

Program |extern int subl(void), sub2(void);
prog.c: [int main(void) {

X = Subl()ezfddmedmahMaonmmmms

y sub2()€///

Using the library

> gcc pgm.c —L$HOME/lib -Isubs —o pgm

the name of the library
directory that contains
the library

The order of the options can be important (check compiler)!
— -I<libname> may be required to come after the source code files are

isted Lomputer Science

€5€230: € and Software Tools © NC State Computer Science Faculty 23 NC STATE UNIVERSITY

Creating Libraries?

e This is very platform-specific, so we'll skip this...

[omputer Science

€SC230: € and Software Tools © NC State Computer Science Faculty 13 NC STATE UNIVERSITY

Dependency Checking with make

e Most programming toolsuites (IDEs)...
— keep track of what files are part of a project
— keeps track of the dependencies between files

— use this info to “create a new build” when files are
changed

= make does the same thing, but under manual
control by the programmer
— dependencies and actions are specified in a
Makefile

[omputer Science

€5€230: € and Software Tools © NC State Computer Science Faculty VAR NC STATE UNIVERSITY

...Dependency Checking (cont’d)

.Example:
[plao |

| pi'a_c | | pib.c | | stuff.h |

"p1 depends on pla.o and p1b.o"

"plb.o depends on plb.c and stuff.h"

etc.

Lomputer dcience

€SC230: € and Software Tools © NC State Computer Science Faculty 15 NC STATE UNIVERSITY

Running make

e First, create a file (using a text editor) called
Makefile

e After that, any time part of the source code
changes, run make to regenerate executable

$ make [-f makefilename] [options] [target]

[omputer Science

€5€230: € and Software Tools © NC State Computer Science Faculty 3 NNC STATE UNIVERSITY

Makefiles

e Makefi e consists of rules of form:

target-list: list-of-dependencies-to-check
1 list-of-commands-to-execute

—

here is a tab character here — Required! Won't work otherwise!

Helpful tips
- blank lines help readability
- lines starting with # are comments (ignored)

- lines can be continued with '\’ immediately before newline
n "
{omputer Science

€SC230: € and Software Tools © NC State Computer Science Faculty 17 NC STATE UNIVERSITY

Order of Rules Important

e Order of rules important

— by default, make generates the first target in the
Makefile

— to accomplish something else: make target

e list-of-commands can be any executable
commands (programs), “shell” commands, etc.

[omputer Science

€5€230: € and Software Tools © NC State Computer Science Faculty oI NC STATE UNIVERSITY

Example

sample Makefile for program pl, which
consists of just the file pl.c
Remember: command line *must* start with TAB

pl: pl.c
gcc —Wall —std=c99 pl.c -0 pl -Im

e Means:
“if p1.c has changed more recently than the
last time the executable p1l was generated, then
rungcc pl.c.”

e i.e., make does the minimum work necessary to

regenerate the target [umpuier clence
€5€230: € and Software Tools © NC State Computer Science Faculty 19

...Example (cont’d)

$ make pl
gcc —Wall —std=c99 pl.c —o pl —Im

$

e If pl.cCisless recent than pl, nothing happens
$ make pl

make: “pl” i1s up to date.
$

Note: to force remake, use touch command

$ touch pl.c sets modification time to now
$ make

gcc —Wall —std=c99 pl.c —o pl —Im
$

€5€230: € and Software Tools © NC STate Computer Science racurty U ntil ey

10

Dependency “Tree” Example

[pla.o |
| pi'a.c | | pib.c | | stuff.h |

Makefile

pl: pla.o plb.o

gcc pla.o plb.o —Im —o0 pl
pla.o: pla.c

gcc —Wall —std=c99 -c pla.c -0 pla.o
plb.o: plb.c stuff.h

gcc —Wall —std=c99 —-c plb.c -0 plb.o

€SC230: € and Software Tools © NC State Computer Science Faculty 21 NC STATE UNIVERSITY

Dependency Trees (cont’d)

$ make

gcc —Wall —std=c99 —c pla.c
gcc —Wall —std=c99 —c plb.c
gcc pla.o plb.o —Im -0 pl

$

$ vi plb.c

-—--make some changes to plb.c---
$ make
gcc —Wall —std=c99 —c plb.c
gcc pla.o plb.o —Im -0 pl

$
only recompile plb.c, and link with other object files [S .
omputer Jcience
€5€230: € and Software Tools © NC State Computer Science Faculty 22

11

Dependency Trees (cont’d)

¢ The following defeats the purpose of make

— what’s wrong with this, vs. the previous?

pl: pla.c plb.c stuff.h
gcc pla.c plb.c —o pl1 —Im

[omputer Science

€SC230: € and Software Tools © NC State Computer Science Faculty 23 NC STATE UNIVERSITY

Automating: Default Rules

e Large set of default (built-in, automatic)
dependencies that make knows about

e Examples:

— “<Filename>.0 usually depends on
<filename>.c”

— “To regenerate <fFi lename>. o file, you usually run
$(CC) <Filename>.c —-c”
¢ So, for example previously given, almost the
complete Makefile is...
pl: pla.o plb.o

2iLD-92 STl [omputer Science
€5€230: € and Software Tools © NC State Computer Science Faculty 24

12

...Default (cont’d)

e To see what the complete set of defaults are:
$ make —p —Ff/dev/null

e There are a lot of rules...

[omputer Science

€SC230: € and Software Tools © NC State Computer Science Faculty 25 NC STATE UNIVERSITY

make Variables

e Way to assign symbolic names to commands,
filenames, and arguments
e Some default variables you can define
—CC (default compiler to use)
— CFLAGS (default compilation flags)
— LDFLAGS (default linking flags)
— TARGET_ARCH (target architecture)

[omputer Science

€5€230: € and Software Tools © NC State Computer Science Faculty QL INC STATE UNIVERSITY

13

...Macros (cont’d)

e Example
CC = gcc
CFLAGS = -Wall -std=c99
LDFLAGS = -1Im
OBJECTS = pla.o plb.o
SOURCES = pla.c plb.c
HEADERS = stuff.h

pl: $(OBJECTS)
$(CC) $(CFLAGS) $(OBJECTS) $(LDFLAGS) —o p1,

pla.o: Y
plb.o: stuff.h
Lomputer dcience
€SC230: € and Software Tools © NC State Computer Science Faculty 27

Passing Parameters to make

e We can pass macro values to a makefile by
specifying them on the command line, e.g.

$ make CFLAGS=*-01" PAR2=sw

Processes the makefile with CFLAGS assigned
the value —01, PAR2 assigned the value sw

Referenced in makefile as $(CFLAGS), $(PAR2)

[omputer Science

€5€230: C and Software Tools © NC State Computer Science Faculty 28 LRGSR

Some “Built-In” Macros

Macro Meaning

$0 The current target

$? | The list of dependencies (files the target
depends on) that have changed more recently
than current target

$* | The "stem” of filenames that match a pattern

$" | The list of dependencies

pl: $(OBJECTS)
$(CC) $(OPTIONS) $” —0 $@ -Im

. Lomputer ience
€SC€230: € and Software Tools © NC State Computer Sciem!eg}.lg rp retatl 0 n ? ng

“Dummy” Targets

e Convenient label for a goal, not a file to generate

pl.tar: Makefile $(HDRS) $(SOURCES)
tar —uvf $0 $?

T\

update pl.tar with any of the specified files
rm *.o that have changed more recently than the last time
pl.tar was updated

(Note: make understands shell filename expansion, like

e ”
.0%)
Lomputer cience
€5€230: € and Software Tools © NC State Computer Science Faculty {@ L NC STATE UNIVERSITY

15

. “Dummy” (cont’d)

Then you can accomplish that target, e.g.,

$ make pl.tar

tar —ucf pl.tar Makefile pla.c plb.c stuff.h
.tar output appears here..

$ ---update plb.c here---

$ make pl.tar

tar —ucf pl.tar plb.c
.tar output appears here..
$ make clean

rm *.o
$
.
Lomputer dcience
€5€230: € and Software Tools © NC State Computer Science Faculty 31

Some make Command-Line Options

Option Meaning
-d Print debugging information
-f file |Use file instead of Makefile
-1 Ignore all errors (i.e., keep going)
-n Print the commands that would be executed, but
don't execute them
-s Silent mode; do not print commands, just
execute them
[omputer Science
€5€230: C and Software Tools © NC State Computer Science Faculty 32

16

Example: compare_sorts(1)...

Makefile to compare sorting routines

BASE = /home/barney/progs

cC = gcc

CFLAGS = -0 —Wwall

EFILE = $(BASE)/bin/compare_sorts
INCLS = -1$(LOC)/include

LIBS $(LOC)/1ib/g_lib.a \
$(LOC)/1ib/h_lib.a

LOC /usr/local

OBJS

main.o another_gsort.o chk _order.o \
compare.o quicksort.o

T
€5C230: C and Software Tools © NC State Computer Science Faculty 33 NC STATE UNIVERSITY

..compare_sorts (2)

$(EFILE): $(OBJS)
@echo “linking ..”
@$(CC) $(CFLAGS) —o $0@ $(OBJIS) $(LIBS)

$(0BJS): compare_sorts.h
$(CC) $(CFLAGS) $(INCLS) —c $*.c

Clean intermediate fTiles [wmew Meaning
clean: e
rm *~ $(0BJS)

The current target

depends on) that have changed more recently
than current target

$* The “stem” of filenames that match a pattern

" The list of dependencies E

€5€230: C and Software Tools © NC State Computer Science Faculty ST

$? The list of dependencies (files the target |

17

Larger Example: vi (1) ...

PROG= ex

XPG4PROG= ex

XPG6PROG= ex

LIBPROGS= expreserve exrecover
XD4= exobjs.xpg4

XD6= exobjs.xpg6

EXOBJS= bcopy.o ex.o ex_addr.o ex _cmds.o ex_cmds2.0 \
ex_cmdsub.o ex_data.o ex_extern.o ex _get.o \
ex_10.0 ex_put.o ex_re.o ex_set.o ex_subr.o \
ex_temp.o ex_tty.o ex _unix.o ex_v.o ex _vadj.o \
ex_vget.o ex_vmain.o ex_voper.o ex_vops.o \
ex_Vvops2.0 ex_vops3.0 ex_vput.o ex_vwind.o \
printf.o

EXOBJS_XPG4= $(EXOBJS) compile.o values-xpg4.o
EXOBJS_XPG6= $(EXOBJS) compile.o values-xpg6.o0
XPG4EXOBJS= ${EXOBJS_XPG4:%=$(XD4)/%}

XPGBEXOBJS= ${EXOBJS_XPG6:%=$(XD6)/%}

EXRECOVEROBJS= exrecover.o ex_extern.o

€SC230: € and Software Tools © NC State Computer Science Faculty 3 5 NC STATE UNIVERSITY

VL (2) ...

0BJS= $(EXOBJS) $(XPG4EXOBJS) $(XPGEEXOBJIS) \
expreserve.o exrecover.o

SRCS= $(EXOBJS:%.0=%.C) expreserve.c exrecover.c

TXTS = READ_ME makeoptions asfix.c70 ex.news \
port.mk.370 port.mk.70 port.mk.c70 port.mk.usg \
ovdoprnt.s ovprintf.c rofix

include ../../Makefile.cmd

#

For message catalogue files

#

POFILES= $(EXOBJS:%.0=%.p0) expreserve.po exrecover.po
POFILE= port.po

Include all XPG4 and XPG4ONLY changes in the XPG4 version
$(XPG4) := CFLAGS += -DXPG4 -DXPG4ONLY

Include all XPG4 changes, but don"t include XPG4ONLY in the
XPG6 version
$(XPG6) := CFLAGS += -DXPG4 -DXPG6 -1$(SRC)/lib/libc/inc

A%

18

VI (3) ..

CPPFLAGS += -DUSG -DSTDIO -DVMUNIX -DTABS=8 \
-DSINGLE -DTAG_STACK
CLOBBERFILES += $(LIBPROGS)
ex := LDLIBS += -Imapmalloc -lIcurses \

$(ZLAZYLOAD) -lIgen -lcrypt_i $(ZNOLAZYLOAD)
LDLIBS += -Imapmalloc -lIcurses \

$(ZLAZYLOAD) -lgen -lcrypt_i $(ZNOLAZYLOAD)
LDLIBS += -Imapmalloc -lIcurses \

$(ZLAZYLOAD) -lgen -lcrypt_i $(ZNOLAZYLOAD)
exrecover := LDLIBS += -Imapmalloc -lcrypt_i
lint := LDLIBS += -Imapmalloc -lcurses -lgen -lIcrypt

$(XPG4) :

$(XPG6) :

ROOTLIBPROGS= $(L 1BPROGS :%=$(ROOTL 1B)/%)

Lomputer dcience

€5C230: C and Software Tools © NC State Computer Science Faculty 37 NC STATE UNIVERSITY

VI (4) ...

hard links to ex

ROOTLINKS= $(ROOTBIN)/vi $(ROOTBIN)/view $(ROOTBIN)/editv \
$(ROOTBIN)/vedit

ROOTXPGAL INKS= $(ROOTXPG4BIN)/vi $(ROOTXPG4BIN)/view \
$(ROOTXPG4BIN)/edit $(ROOTXPG4BIN)/vedit
ROOTXPG6L INKS= $(ROOTXPGEBIN)/vi $(ROOTXPGEBIN)/view \
$(ROOTXPGEBIN)/edit $(ROOTXPGEBIN)/vedit

.KEEP_STATE:
_PARALLEL: $(0OBJS)
all: $(PROG) $(XPG4) $(XPG6) $(LIBPROGS)
$(PROG) : $(EXOBJS)

$(LINK.c) $(EXOBJIS) -0 $@ $(LDLIBS)
$(POST_PROCESS)

[omputer Science

€5€230: C and Software Tools © NC State Computer Science Faculty CJ-J NC STATE UNIVERSITY

19

VI (5)..

%(XD4)/compile.o $(XD6)/compile.o: ../../expr/compile.c
$(COMPILE.c) -0 $@ -./-./expr/compile.c

%(XD4):
-@mkdir -p $@

install: all $(ROOTPROG) $(ROOTLIBPROGS) $(ROOTLINKS) \
$(ROOTXPG4PROG) $(ROOTXPGALINKS) $(ROOTXPGBPROG) \
$(ROOTXPG6L INKS)

Elean:
$(RM) $(OBJIS)

lint: lint SRCS

Lomputer dcience

€SC230: € and Software Tools © NC State Computer Science Faculty 39 NC STATE UNIVERSITY

AutoconT and Automake

= autoconT automates the setting of options
which are system configuration-dependent

e automake automates the generation of large
Makefiles

¢ Details for another day...

[omputer Science

€5€230: € and Software Tools © NC State Computer Science Faculty P:Yg i INC STATE UNIVERSITY

20

Building Java Projects: Ant

e Provides tasks for compiling, assembling, testing
and running Java applications
— XML based that calls Task objects that run the task
— Cross-platform

— Can also be used to build non-Java applications like C
or C++ applications

— If you would also like dependency management,
combine with Apache lvy

[omputer Sience
€SC230: € and Software Tools © NC State Computer Science Faculty PER NC STATE UNIVERSITY

Building Java Projects: Maven

¢ Building and managing any Java-based project

— Uses a Project Object Model (POM) and plug-ins
shared by all projects to build a project

— Provides additional information like change logs,
mailing lists, dependency lists, test coverage

— Easy way to share libraries (as JARs) across several
projects
* The JARs don’t have to be maintained in the project itself

(omputer Science
€SC230: € and Software Tools © NC State Computer Science Faculty PRIl NC STATE UNIVERSITY

21

