
Memory Allocation in C
C Programming and Software Tools
N.C. State Department of Computer Science

The Easy Way

•Java (JVM)
automatically
allocates and
reclaims
memory for
you, e.g...

CSC230: C and Software Tools © NC State Computer Science Faculty 2

public class LinkedList {

 ...

 public void addFirst (Object obj) {

 Node newNode = new Node();

 newNode.data = ...;

 newNode.next = first;

 first = newNode;

 }

 public Object removeFirst() {

 if (first == null)

 throw new emptyException();

 Object obj = first.data;

 first = first.next;

 return obj;

 }

...

}

Removed object is

implicitly reclaimed

(garbage collected)

when there are no

longer any references

to it

The Harder Way
C requires you to manually allocate and reclaim
memory, e.g...

CSC230: C and Software Tools © NC State Computer Science Faculty 3

void addFirst (Object obj) {

 Node * newNode =

 (Node *) malloc (sizeof(Node));

 assert(newNode != NULL);

 newNode->data = ...;

 newNode->next = first;

 first = newNode;

}

Object removeFirst() {

 assert (first != NULL);

 Node * old = first;

 Object obj = first->data;

 first = first->next;

 free (old);

 return obj;

}

Programmer

explicitly

indicates there

are no

more references

to

the removed

object

Memory Layout of a Program

• The heap is an area of virtual memory available
for dynamic (runtime) memory allocation

CSC230: C and Software Tools © NC State Computer Science Faculty 4

Instructions (Code)

The Heap

The Stack

Static Data
Statically allocated

Dynamically allocated

In
c
re

a
s
in

g
 m

e
m

o
ry

 a
d
d

re
s
s
e
s

Why Dynamic Memory Allocation?

• Don't know how much data will need to be
stored until runtime; choices?

CSC230: C and Software Tools © NC State Computer Science Faculty 5

 #define MAXCLASSSIZE 500

 struct student { …definition here… };

 struct student students[MAXCLASSSIZE];

 int i = 0;

 while (more_students && (i < MAXCLASSSIZE))

 readstudents (students[i++]);

Choice 1: Declare static array of maximum size that could
possibly occur

Why Dynamic … (cont’d)

Choice 2: Declare dynamic (auto) array of specific
size needed, at run time

CSC230: C and Software Tools © NC State Computer Science Faculty 6

int main (void) {

 int maxnum;

 printf(“Number of students in class? \n”);

 scanf(“%d”, &maxnum);

 struct student students[maxnum];

 int i = 0;

 while (more_students && (i < maxnum))

 readstudents (students[i++]);

}

Why Dynamic… (cont’d)

CSC230: C and Software Tools © NC State Computer Science Faculty 7

Choice 3: Allocate memory dynamically using a standard
library function (malloc or calloc)

#include <stdio.h>

#include <stdlib.h>

…

int main(void) {

 struct student *sp;

 while (more_students) {

 sp = (struct student *)

 calloc (num, sizeof(struct student));

 if (sp != NULL)

 readstudents (sp);

 }

}

The sizeof Operator

• Not a function call; a C operator

– returns number of bytes required by a data type

• Return value is of predefined type size_t

CSC230: C and Software Tools © NC State Computer Science Faculty 8

#include <stdlib.h>

size_t tsz1, tsz2, tsz3;

int a;

float b[100];

struct student { …definition here… } st;

tsz1 = sizeof (a); /* 4 */

tsz2 = sizeof (b); /* ? */

tsz3 = sizeof (st); /* ? */

what are these sizes?

The calloc() Standard Library Function

Syntax:

CSC230: C and Software Tools © NC State Computer Science Faculty 9

struct student * students;

students = (struct student *)

 calloc (num, sizeof(struct student));

int * ip;

ip = (int *) calloc (1, sizeof (int));

char *cp;

cp = (char *) calloc (1000, sizeof (char));

Generic pointer, must be cast to type of result

void * calloc (size_t num, size_t sz)

OS allocates (num * sz) bytes of contiguous storage (all
bytes initialized to zeros)

(Sometimes optional on modern compilers)

calloc() (cont’d)

• Return value is starting address of the storage
allocated

• If not enough memory available, returns NULL

– Could also be a unique pointer that could be passed
to free()

– always check for this error

CSC230: C and Software Tools © NC State Computer Science Faculty 10

cp = (char *) calloc (1000, sizeof (char));

if (cp == NULL) {

 printf(“Cannot allocate memory; exiting\n”);

 exit (-1);

}

 common source of bugs 
failure to check

return value

The malloc() Std. Lib. Function

• Syntax: void * malloc (size_t sz)

• OS allocates sz bytes of contiguous storage

– (uninitialized)

• Returns starting address of storage

– If size is 0, returns NULL or unique pointer that can
be freed

CSC230: C and Software Tools © NC State Computer Science Faculty 11

students = (struct student *)

 malloc (num * sizeof(struct student));

ip = (int *) malloc (sizeof (int));

cp = (char *) malloc (1000 * sizeof (char));

 common source of bugs 
malloc() does not
initialize memory

The realloc() Std. Lib. Function
• Syntax: void * realloc(void * ptr, size_t sz)

• Grows or shrinks allocated memory
– ptr must be dynamically allocated

– Growing memory doesn’t initialize new bytes

– If can’t expand, returns NULL
• Old memory is unchanged

– If ptr is NULL, behaves like malloc

– If sz is NULL, behaves like free

– Memory shrinks in place

– Memory may NOT grow in place
• If not enough space, will move to new location and copy contents

• Old memory is freed

• Update all pointers!!!

CSC230: C and Software Tools © NC State Computer Science Faculty 12

The free() Standard Library Function

• Syntax: void free (void * ptr)

– no way to check for errors!

– ptr must have been previously allocated by
malloc() or calloc()

– no need to specify amount of memory to be freed;
why not?

• Frees (for other uses) memory previously
allocated

CSC230: C and Software Tools © NC State Computer Science Faculty 13

free(students);

free (ip);

free (cp);

Why bother freeing up memory?

 common source of bugs 
failure to free

unused memory

Dynamic memory function summary

• void *malloc(size_t size);

– Give me size bytes, don’t initialize them

• void *calloc(size_t nmemb, size_t size);

– Give me nmemb*size bytes, initialize them to 0

• void *realloc(void *ptr, size_t size);

– Take this pointer and make the space it refers to bigger/smaller (moving it
if necessary).

• void free(void *ptr);

– I’m done using the memory here,
you can have it back.

CSC230: C and Software Tools © NC State Computer Science Faculty 14

Dynamic Memory Allocation
Mistakes
• These bugs can really be hard to find and fix

– may run for hours before the bug pops up, and in a
place that appears to have no relationship to the
actual cause of the error

CSC230: C and Software Tools © NC State Computer Science Faculty 15

Mistake M1: Invalid Pointers

• Problems?

CSC230: C and Software Tools © NC State Computer Science Faculty 16

char *ptr;

…

ptr = 'A';

…

*ptr = 'B';

 common source of bugs 

int i, j, result;

result = scanf (“%d %d”, i, &j);

Invalid Pointers (cont’d)

• Problems?

CSC230: C and Software Tools © NC State Computer Science Faculty 17

int * f(void)

{

 int val;

 …

 return &val;

}

why is this a problem?

 common source of bugs 

Invalid Pointers (cont’d)

• Problems? Fix?

CSC230: C and Software Tools © NC State Computer Science Faculty 18

…dynamically allocate and construct a linked

list…

…

/* now list is no longer needed,

 * free memory

 */

for (p = head; p != NULL; p = p->next)

 free(p);

why is this a problem?

 common source of bugs 

M2: Not Initializing Memory

• Problems?

CSC230: C and Software Tools © NC State Computer Science Faculty 19

int * sumptr;

int ival[100] = { …initial values here… };

int i;

sumptr = (int *) malloc (sizeof(int));

for (i = 0; i < 100; i++)

 *sumptr += ival[i];

 common source of bugs 

M3: Stack Buffer Overflows

• Problems?

• One of the biggest sources of security problems

CSC230: C and Software Tools © NC State Computer Science Faculty 20

void bufoverflow (void)

{

 char buf[64];

 gets(buf);

 return;

}

 common source of bugs 

M4: Writing Past End of
Dyn. Allocated Memory

CSC230: C and Software Tools © NC State Computer Science Faculty 21

int i, sz;

int *ip, *jp;

scanf (“%d”, &sz);

ip = (int *) calloc (sz, sizeof(int));

…check for errors here…

jp = ip;

for (i = 0; i <= sz; i++)

 scanf (“%d”, jp++);

why is this a problem?

 common source of bugs 

M5: Freeing Unallocated Memory

Problems?

CSC230: C and Software Tools © NC State Computer Science Faculty 22

int i;

int *ip;

ip = &i;

…

free(ip);

why is this a problem?

 common source of bugs 

Freeing Unallocated …(cont’d)

• Problems?

CSC230: C and Software Tools © NC State Computer Science Faculty 23

int *ip;

ip = (int *) calloc (1000, sizeof(int));

…

free(ip);

…

free(ip);

 common source of bugs 

M6: Memory Leaks

• Allocated memory is referenced using pointer
returned by allocation

• If you lose pointers (free them, change to
another address), you can no longer reference
or free allocated memory

• Common problem in large, long-running
programs (think: servers)

– over time, memory footprint of program gets bigger,
bigger, …

CSC230: C and Software Tools © NC State Computer Science Faculty 24

 common source of bugs 

M6: Memory Leaks

CSC230: C and Software Tools © NC State Computer Science Faculty 25

void leak (int n)

{

 int * xp;

 xp = (int *) malloc (n * sizeof(int));

 …memory is used and then no longer needed…

 return;

}

why is this a problem?

 common source of bugs 

M6: Memory Leaks

• Valgrind – software tool for detecting memory
leaks on actual program executions

– Compile with –g option

– Arguments: --leak-check=yes

CSC230: C and Software Tools © NC State Computer Science Faculty 26

% gcc –Wall –std=c99 –g program.c –o program

% valgrind –leak-check=yes ./program

CSC230: C and Software Tools © NC State Computer Science Faculty 27

==15703== Memcheck, a memory error detector

==15703== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.

==15703== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info

==15703== Command: ./memory

==15703==

==15703== Invalid write of size 1

==15703== at 0x40055E: f (memory.c:9)

==15703== by 0x40058E: main (memory.c:15)

==15703== Address 0x4c41043 is 0 bytes after a block of size 3 alloc'd

==15703== at 0x4A0577B: calloc (vg_replace_malloc.c:593)

==15703== by 0x400523: f (memory.c:6)

==15703== by 0x40058E: main (memory.c:15)

==15703==

==15703== Invalid read of size 1

==15703== at 0x3AF5C480AC: vfprintf (in /lib64/libc-2.12.so)

==15703== by 0x3AF5C4F409: printf (in /lib64/libc-2.12.so)

==15703== by 0x400579: f (memory.c:10)

==15703== by 0x40058E: main (memory.c:15)

==15703== Address 0x4c41043 is 0 bytes after a block of size 3 alloc'd

==15703== at 0x4A0577B: calloc (vg_replace_malloc.c:593)

==15703== by 0x400523: f (memory.c:6)

==15703== by 0x40058E: main (memory.c:15)

==15703==

String = abc

==15703==

==15703== HEAP SUMMARY:

==15703== in use at exit: 3 bytes in 1 blocks

==15703== total heap usage: 1 allocs, 0 frees, 3 bytes allocated

==15703==

==15703== 3 bytes in 1 blocks are definitely lost in loss record 1 of 1

==15703== at 0x4A0577B: calloc (vg_replace_malloc.c:593)

==15703== by 0x400523: f (memory.c:6)

==15703== by 0x40058E: main (memory.c:15)

==15703==

==15703== LEAK SUMMARY:

==15703== definitely lost: 3 bytes in 1 blocks

==15703== indirectly lost: 0 bytes in 0 blocks

==15703== possibly lost: 0 bytes in 0 blocks

==15703== still reachable: 0 bytes in 0 blocks

==15703== suppressed: 0 bytes in 0 blocks

==15703==

==15703== For counts of detected and suppressed errors, rerun with: -v

==15703== ERROR SUMMARY: 3 errors from 3 contexts (suppressed: 6 from 6)

Garbage Collection
• Some language run-time systems free up unused

memory automatically for the programmer

– accomplished through "reachability analysis”

CSC230: C and Software Tools © NC State Computer Science Faculty 28

Student st = new Student("John Smith");

…

st = null; // space for student st is

 // automatically reclaimed

Java

Reminder: Go to course web page for link to exercise form.
Paste code into ideone.com and submit the link.

Exercise 18a:

• Write a program that allocates memory
infinitely, 1kB at a time.

• Print a counter for each allocation.

• See how much you can allocate before ideone
kills it.

• Don’t run it on a shared NCSU system!

CSC230 - C and Software Tools © NC State University Computer Science Faculty

29

Crash ideone

