Memory Allocation in C

C Programming and

Software Tools

N.C. State Department of Computer Science

[omputer Science

The Easy Way

eJava (JVM)
automatically
allocates and
reclaims
memory for
you, e.g...
Removed object is
implicitly reclaimed

(garbage collected)
when there are no

public class LinkedList {

public void addFirst (Object obj) {
Node newNode = new Node();
newNode .data .-
newNode . next first;
first = newNode;

public Object removeFirst() {

if (first == null)

throw new emptyException();
}

Object obj = first.data;
first = first.next;
return obj;

longer any referenceq - - -

to it

}

€5€230: € and Software Tools © NC State C

2 NC STATE UNIVERSITY

omputer Science Faculty

The Harder Way

C requires you to manually allocate and reclaim
memory’ e.g”. void addFirst (ObjeCt Obj) {

Programmer

explicitly

indicates there

are no

more references

to

the removed

object

Node * newNode =

(Node *) malloc (sizeof(Node));
assert(newNode '= NULL);
newNode->data = ...;
newNode->next = first;
first = newNode;

}

Object removeFirst() {
assert (first != NULL);
Node * old = first;
Object obj = first->data;
first = first->next;

——free (old);
L/////’_——___- return obj;

€SC230: € and Software Tools © NC State (] }

Memory Layout of a Program

e The heap is an area of virtual memory available
for dynamic (runtime) memory allocation

Increasing memory addresses

y

~
Instructions (Code)

> Statically allocated
Static Data

A > Dynamically allocated

The Heap

The Stack

- [omputer Science

€5€230: € and Software Tools © NC State Computer Science Faculty P/Q NC STATE UNIVERSITY

Why Dynamic Memory Allocation?

¢ Don't know how much data will need to be
stored until runtime; choices?

Choice 1: Declare static array of maximum size
that could possibly occur

#define MAXCLASSSIZE 500
struct student { ..definition here.. };
struct student students[MAXCLASSSIZE];

int 1 = 0;
while (more_students && (1 < MAXCLASSSIZE))
readstudents (students[i++]);

€SC230: € and Software Tools © NC State Computer Science Faculty 5 NC STATE UNIVERSITY

Why Dynamic ... (cont’d)

Choice 2: Declare dynamic (auto) array of specific
size needed, at run time

int main (void) {
int maxnum;
printf(“Number of students in class? \n”);
scanf(“%d”, &maxnum);
struct student students[maxnum];

int 1 = 0;

while (more_students && (1 < maxnum))
readstudents (students[i++]);
+

Lamputer dcience

€5€230: € and Software Tools © NC State Computer Science Faculty [3 NC STATE UNIVERSITY

Why Dynamic... (cont’d)

Choice 3: Allocate memory dynamically using a
standard library function (malloc or calloc)

#include <stdio.h>
#include <stdlib.h>

int main(void) {
struct student *sp;
while (more_students) {
sp = (struct student *)
calloc (num, sizeof(struct student));
if (sp = NULL)
readstudents (sp);

The s1zeoT Operator

e Not a function call; a C operator
— returns number of bytes required by a data type

e Return value is of predefined type size t

#include <stdlib._h>

size_t tszl, tsz2, tsz3;

int a;

float b[100];

struct student { ..definition here.. } st;

what are these sizes?

tszl = sizeof (@); /* 4 */
tsz2 = sizeof (b); /* ? */‘L//
tsz3 = sizeof (st); /* ? */

€5€230: € and Software Tools © NC State Computer Science Faculty [NC STATE UNIVERSITY

The cal loc () Standard Library Function

Syntax:
void * |calloc (size_t num, size t sz)
\Generic pointer, must be cast to type of result

OS allocates (num * sz) bytes of contiguous
storage (all bytes initialized to zeros)

struct student * students; *—”’//////
students = (struct student *)

calloc (num, sizeof(struct student));

int * ip;
ip = (int *) calloc (1, sizeof (int));
char *cp; 1C

cp = (char *) calloc (1000, sizeof (char)); im

calloc() (cont'd)

e Return value is starting address of the storage
allocated
e If not enough memory available, returns NULL
— Could also be a unique pointer that could be passed
to free() PS———
failure to-check
— always check for this error

cp = (char *) calloc (1000, sizeof (char));
if (cp == NULL) {
printf(“Cannot allocate memory; exiting\n”);
exit (-1);
} TOT
10, AT

retwrnvalue

€5€230: C and Software Tools © NC State Computer Science Faculty

The mal loc () Std. Lib. Function

e Syntax: void * malloc (size t sz)
e OS allocates sz bytes of contiguous storage
— (uninitialized) i; oo

e Returns starting address of storage

— If size is O, returns NULL or unique pointer that can
be freed

students = (struct student *)
malloc (num * sizeof(struct student));
ip = (int *) malloc (sizeof (int));

cp = (char *) malloc (1000 * sizeof (char));
Lomputer cience
€SC230: € and Software Tools © NC State Computer Science Faculty 11

The real loc () Std. Lib. Function

e Syntax:void * realloc(void * ptr, size_t sz)
e Grows or shrinks allocated memory
— ptr must be dynamically allocated

— Growing memory doesn’t initialize new bytes

If can’t expand, returns NULL
¢ Old memory is unchanged

If ptr is NULL, behaves like malloc
If sz is NULL, behaves like free
Memory shrinks in place

Memory may NOT grow in place

¢ If not enough space, will move to new location and copy contents
¢ Old memory is freed

¢ Update all pointers!!! [umpuim SCIE"EE

€5€230: € and Software Tools © NC State Computer Science Faculty 23 NC STATE UNIVERSITY

The free() Standard Library Function

e Syntax: void free (void * ptr)
— no way to check for errors!

— ptr must have been previously allocated by
malloc() orcalloc()

— no need to specify amount of memory to be freed;
why not?
* Frees (for other uses) memory previously

allocated |free(students);
free (ip);
free (cp);

Why bother freeing up memory? e

wnused memory |
€SC230: € and Software Tools © NC State Computer Science Faculty = !

Dynamic Memory Allocation
Mistakes

* These bugs can really be hard to find and fix

— may run for hours before the bug pops up, and in a
place that appears to have no relationship to the
actual cause of the error

[omputer Science

€5€230: € and Software Tools © NC State Computer Science Faculty VAR NC STATE UNIVERSITY

Mistake M1: Invalid

e Problems?

int i, j, result;
result = scanf (“%d %d”, 1, &j);

char *ptr;

ptr = "A";

*ptr = "BY;

[omputer Science
Lo C STATE UNVERSITY

€SC230: € and Software Tools © NC State Computer Science Faculty

Invalid Pointers (cont’d)

e Problems?

int * £(void)
{

int val;

return &val;

} \/\
\

why is this a problem?

[omputer Science
YL NC STATE UNVERSITY

€5€230: C and Software Tools © NC State Computer Science Faculty

Invalid Pointers (cont’d)

* Problems? Fix?

..dynamically allocate and construct a linked
list.

/* now list is no longer needed,
* free memory
*/
for (p = head; p = NULL; p = p->next)
free(p); "1\

why i his & problem? oy ar Signge
gl 1C STATE UNVERSITY

€SC230: € and Software Tools © NC State Computer Science Faculty

M2: Not Initializing Memory

e Problems?

int * sumptr;
int 1val[100] = { ..initial values here.. };

int 1;
sumptr = (int *) malloc (sizeof(int));

for (i = 0; 1 < 100; i++)
*sumptr += ival[i];

[omputer Science
PG STATE UNVERSITY

€5€230: C and Software Tools © NC State Computer Science Faculty

M3: Stack Buffer Overflows

void bufoverflow (void)

{
char buf[64];

(void) gets(buf);
return;

}

e Problems?

e One of the biggest sources of security problems

€SC230: € and Software Tools © NC State Computer Science Faculty

[omputer Science
19ﬂﬁmﬂmmm

M4: Writing Past End of
Dyn. Allocated Memory

int 1, sz;
int *ip, *jp;

(void) scanf (“%d”, &sz);

..check for errors here..

ip = ip;
for (1 = 0; 1 <= sz i++)
(void) scanf , Jptt);

ip = (int *) calloc (sz, sizeof(int));

why I this a problemr2 LOTIDUTEY Science

€5€230: C and Software Tools © NC State Computer Science Faculty

B9ag v svre Ui

10

[cornorsoueof g |

M5: Freeing Unallocated Memory
Problems?
int i1;
int *ip;
ip = &i;
%ree(ip);
K\,,a\\ |
why is this a problem? Eumpmm SCIE"[:E
€5€230: C and Software Tools © NC State Computer Science Faculty 21

Freeing Unallocated ...(cont’d)

e Problems?
int *ip;

ip = (int *) calloc (1000, sizeof(int));

free(ip);
free(ip);
[omputer Science
€5€230: C and Software Tools © NC State Computer Science Faculty 22

11

M6: Memory Leaks

e Allocated memory is referenced using pointer
returned by allocation

e |f you lose pointers (free them, change to
another address), you can no longer reference
or free allocated memory

e Common problem in large, long-running
programs (think: servers)
— over time, memory footprint of program gets bigger,

bigger, ...
[omputer i
€SC230: € and Software Tools © NC State Computer Science Faculty 23

M6: Memory Leaks

void leak (int n)
{

int * xp;

xp = (int *) malloc (n * sizeof(int));
.memory is used and then no longer needed..
return;

} S

\
why is this a problem?

[omputer Science

€5€230: € and Software Tools © NC State Computer Science Faculty 24 LWRLCTEEIN

12

M6: Memory Leaks

e Valgrind — software tool for detecting memory
leaks on actual program executions
— Compile with —g option
— Arguments: --leak-check=yes

% gcc —Wall —std=c99 —g program.c —0 program
% valgrind —leak-check=yes ./program

Lomputer dcience
€SC230: € and Software Tools © NC State Computer Science Faculty PERll NC STATE UNIVERSITY

==15703== Memcheck, a memory error detector

==15703== Copyright (C) 2002-2012, and GNU GPL"d, by Julian Seward et al.
==15703== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
ommand: ./memory

nvalid write of size 1
at O0x40055E: f (memory.c:9)
by Ox40058E: main (memory.c:15)
Address 0x4c41043 is 0 bytes after a block of size 3 alloc"d
at 0x4A0577B: calloc (vg_replace_malloc.c:593)
by 0x400523: f (memory.c:6)
by Ox40058E: main (memory.c:15)

nvalid read of size 1
at Ox3AF5C480AC: vfprintf (in /1ib64/1ibc-2.12.s0)
by OX3AFSC4F409: printf (in /1ib64/1ibc-2.12.s0)
by 0x400579: f (memory.c:10)
by Ox40058E: main (memory.c:15)
Address 0x4c41043 is 0 bytes after a block of size 3 alloc™d
at 0x4A0577B: calloc (vg_replace_malloc.c:593)
by 0x400523: f (memory.c:6)
==15703== by Ox40058E: main (memory.c:15)
==15703==
String = abc
==15703==

EAP SUMMARY :
in use at exit: 3 bytes in 1 blocks
total heap usage: 1 allocs, 0O frees, 3 bytes allocated

bytes in 1 blocks are definitely lost in loss record 1 of 1
at 0x4A0577B: calloc (vg_replace_malloc.c:593)

by 0x400523: f (memory.c:6)

by Ox40058E: main (memory.c:15)

EAK SUMMARY :
definitely lost: 3 bytes in 1 blocks
==15703== indirectly lost: O bytes in 0 blocks
==15703== possibly lost: 0 bytes in 0 blocks
still reachable: 0 bytes in 0 blocks
suppressed: 0 bytes in 0 blocks

or counts of detected and suppressed errors, rerun with: -v
==15703== ERROR SUMMARY: 3 errors from 3 contexts (suppressed: 6 from 6)

13

Garbage Collection

e Some language run-time systems free up unused
memory automatically for the programmer
— accomplished through "reachability analysis”

Java
Student st = new Student(*'John Smith™);

st = null; // space for student st is
// automatically reclaimed

[omputer Science

€SC230: € and Software Tools © NC State Computer Science Faculty 27 NC STATE UNIVERSITY

14

