
Data Structures in C

C Programming and Software Tools
N.C. State Department of Computer Science

Data Structures in C

• The combination of pointers, structs, and
dynamic memory allocation allows for creation
of data structures

– Linked lists

– Trees

– Graphs

CSC230: C and Software Tools © NC State Computer Science Faculty

Data Structures with Arrays

• Without dynamic memory allocation, you could
still create these data structures within an array

struct node list[5];

CSC230: C and Software Tools © NC State Computer Science Faculty

value

next

3 value

next

1 value

next

2 value

next

5 value

next

4

struct node *front

[0] [1] [2] [3] [4]

Array Lists

• Array Lists

– Elements stored in a partially filled array

– Size of collection can quickly identify next place to add
element (if adding at end of the list)

– If size == capacity of array, the array grows
“automatically” through the creation of a new, larger array,
with the elements copied

CSC230: C and Software Tools © NC State Computer Science Faculty

5 20 -3 7 ? ? ? ? ? ?

int array[CAPACITY];

int size = 0; //initialized

array

size 4

Linked Lists

• Linked Lists
– A struct represents a single node in the list

– A node contains a pointer to the next node in the list

– A NULL value represents the end of the list

– If the front of the list is NULL, the list is empty

CSC230: C and Software Tools © NC State Computer Science Faculty

1 2 3 4 list

struct node *list = NULL;

Lists

• When considering any functionality related to a
list collection always consider:

– An empty list

– Beginning of the list

– Middle of the list

– End of the list

CSC230: C and Software Tools © NC State Computer Science Faculty

1 2 3 4 list

Array List vs. Linked List

Characteristic Array-List? Linked-List?

Access any element via an index in the list in constant time.

Easily grow or shrink the list.

Space only allocated for elements currently in the list.

May have unused space.

Linear runtime efficiency to get an item from the list at a
particular index.

Adding or removing an element in the middle of the list
requires a shift of other elements (as appropriate for the
operation).

CSC230: C and Software Tools © NC State Computer Science Faculty

For each of the following characteristics, identify if it describes an Array List or a

Linked List.

Yes 

No 

No 

Yes 

No 
(it’s constant time)

Yes 

No 

Yes 

Yes 

Usually not 

Yes 

No 

Designing a List

CSC230: C and Software Tools © NC State Computer Science Faculty

linked_

list.h

linked_

list.c

includes

List Functionality

(no main)

client.

c

linked_

list_

test.c

Client Program (client)

(main in client.c)

Test Program (linked_list_test)

(main in linked_list_test.c)

includes includes

Declaring a Node Type

• Each node contains data and a pointer to the
next node

– Typically goes in the header file

– Use a struct

– Data can be multiple members of the struct

– Be careful with typedef when defining node type
for a linked list.

CSC230: C and Software Tools © NC State Computer Science Faculty

struct node {

 int value;

 struct node *next;

};

typedef struct node {

 int value;

 struct node *next;

} node;

h

More Complex Node Types

• Put all information a
node has in the node
struct with the pointer

• Abstract the “object” and
the node

CSC230: C and Software Tools © NC State Computer Science Faculty

struct node {

 int value;

 char *name;

 double array[LEN];

 struct node *next;

};

struct object {

 int value;

 char *name;

 double array[LEN];

};

struct node {

 struct object *o;

 struct node *next;

};

struct node {

 struct node *prev;

 int value;

 char *name;

 double array[LEN];

 struct node *next;

};

struct object {

 int value;

 char *name;

 double array[LEN];

};

struct node {

 struct node *prev;

 struct object *o;

 struct node *next;

};

Doubly Linked Lists
• require a pointer to the previous node
• the prev node of the first item in the

list is NULL
Generic Lists
• Use void * and casts

Creating a List
• A list is a pointer to the first node in the
list.
– The list initially is empty (NULL)

• Procedural decomposition of list functionality
– Create functions that represent discrete operations

on a list (similar to the LinkedList and
ArrayList methods)

– add, remove, find, etc.

– The functions go in the header file

CSC230: C and Software Tools © NC State Computer Science Faculty

struct node *front = NULL;

th

List Considerations
• Global List

– Reference to the list in the header file
• All modules have access to the list

– Reference to the list in the list module
• Access restricted to those that include the *.c file, unless static

– Benefit – Can use return type to signal errors

– Limitation – ONLY ONE LIST!

• Local List
– Reference to the list must be passed into all functions

– Modified list returned from functions

– Benefit – Many lists

– Limitation – Other means for signaling error

CSC230: C and Software Tools © NC State Computer Science Faculty

x = change(x);

h

Best Development Practices

• Getting Started
– Create Makefile from design

– Stub out the program with the appropriate functions
returning something

– Compile with no warnings

– Download the starter zip, which has a linked list
program stubbed out

• Test Driven Development
– Write the tests BEFORE starting development

– Use them to drive development forward

 CSC230: C and Software Tools © NC State Computer Science Faculty

Testing a List
• General Procedure

– Manipulate the list

– See if the manipulations result in the correct list

• Baseline Functions for Testing
– size()

– get_at()

– add_at()

• Considerations
– An empty list

– Beginning of the list

– Middle of the list

– End of the list

CSC230: C and Software Tools © NC State Computer Science Faculty

Create Tests for size()
Inputs List Size

Empty list [] 0

Add 1 to index 0 [1] 1

Add 2 to index 1 [1, 2] 2

Remove 1 from index 0 [2] 1

Remove 2 from index 0 [] 0

CSC230: C and Software Tools © NC State Computer Science Faculty

void test_size()

{

 //Create list

 node *list = NULL;

 check_int("Empty list", 0, size(list)); //Test 1

 //Add element to index 0

 list = add_at(list, 0, 1);

 check_int("Add 1 to index 0", 1, size(list));

 //Add the rest of the tests here

}

Implementing size()

• Algorithm: Traverse the list and count the nodes

• Alternative: Keep track of the nodes as
added/removed

– Requires variable for each list - doesn’t fit with our
design

– Alternative design to accommodate size with the list
later

• Tests will not fully pass until we implement
add_at() and remove_at()

CSC230: C and Software Tools © NC State Computer Science Faculty

Traversing a List

• Algorithm

– Start at first element

– Manipulate data for element

– Move to next element

– If the element is NULL, you’re done

• Make sure you don’t lose your list!

– Create a pointer that you use specifically for
traversing the list

CSC230: C and Software Tools © NC State Computer Science Faculty

Create Tests for add_at()
Inputs List Size

Empty List: add_at(list, 0, 3) [3] 1

Add Front: add_at(list, 0, 2) [2, 3] 2

Add Middle: add_at(list, 1, 7) [2, 7, 3] 3

Add End: add_at(list, 3, 45) [2, 7, 3, 45] 4

CSC230: C and Software Tools © NC State Computer Science Faculty

void test_add_at()

{

 //Create list

 node *list = NULL;

 list = add_at(list, 0, 3);

 //Check size AND contents

 check_int(“Add to empty list", 1, size(list));

 check_int(“Index 0”, 3, get_at(list, 0));

 //Add the rest of the tests here

}

Adding a Node to a List

• Adding a node to a list has three steps
1. Allocating memory for the node

2. Storing data in the node

3. Inserting the node into the list
• Consider empty list, front of the list, middle of the list,

and end of the list

• There may be specializations

• Other Considerations
– If the index is out of bounds, just return the list (for

the moment)

CSC230: C and Software Tools © NC State Computer Science Faculty

Getting a Node from a List

• Getting a node has the following steps:

– Traverse the list until the given index

– Return the value at the index

• What happens if the index is out of bounds?

– Can’t ONLY return -1 or 0, because that could be a
value in the list

CSC230: C and Software Tools © NC State Computer Science Faculty

Using the errno.h Library

• Library for signaling errors

– Special return type signals a check for possible error

– If error, errno is set to constant value

– Reset errno to 0 after the check to find the next
error

CSC230: C and Software Tools © NC State Computer Science Faculty

int get_at(node *list, int idx)

{

 if (idx < 0 || idx >= size(list)) {

 errno = EIDXOUTOFBOUNDS;

 return -1;

 }

 //Implement get_at() for valid indices

}

Testing Error Paths

CSC230: C and Software Tools © NC State Computer Science Faculty

/* Checks the errno against the expected errno when testing

 * error paths. The test function should get the value out of

 * errno immediatly after a function call that should generate

 * an error and pass it into the check.

 * The errno is reset to 0 after a call to this function.

 */

void check_errno(char * description, int exp, int act)

{

 printf("%60s %20d %20d %4s\n", description, exp, act,

 assert_equals(exp, act));

 errno = 0;

}

void test_get_at()

{

 node *list = NULL;

 errno = 0;

 int rtn = get_at(list, -3);

 int my_errno = errno;

 check_int("Index -3 in empty list", -1, rtn);

 check_errno("Index -3 in empty list", EOUTOFBOUNDS, my_errno);

}

Cleaning Up Memory

• Run Valgrind on our test program

– Lots of leaked memory!!!

• If you create it, you must destroy it

– Implement remove_at() and call for every node
created in the tests

– Implement a free_all() and call at the end of
every test function (if needed)

• Run Valgrind again – No Leaks!

CSC230: C and Software Tools © NC State Computer Science Faculty

valgrind –-leak-check=yes ./linked_list_test

Trailing Pointer Technique
• Checking that the current node or the current’s next

node is NULL isn’t sufficient

– Instead, we want to stop at or maintain a pointer to the node
BEFORE the one we want to delete while moving on to the
next

– “Trailing pointer” technique (see book Section 17.5)

CSC230: C and Software Tools © NC State Computer Science Faculty

void free_all(node *list)

{

 if (list == NULL) return;

 node *cur = list;

 while (cur->next != NULL) {

 node *p = cur; //Trailing pointer

 cur = cur->next;

 printf("%d\n", p->value);

 free(p); //Saved so we can free previous node

 }

 printf("%d\n", cur->value);

 free(cur);

}

Removing a Node from a List
• Removing a node from a list has three steps

1. Locate the node to be deleted

2. Alter the previous node so that it “bypasses” the deleted node

3. Free the memory to reclaim space of deleted node

• Other Considerations
– If the index is out of bounds, set errno to EOUTOFBOUNDS and

return NULL

• WARNING: When a client of remove_at(), you should not store the
result of remove_at() to your list immediately! Instead, you should
create a temp, check for NULL, and then store.

• Updates
– Update add_at() to have the same check

CSC230: C and Software Tools © NC State Computer Science Faculty

Specialized Data Structures

• More efficient on add/remove/search operations

• Sorted list

– Faster search – can quit earlier if can’t find value

• Stacks

– Add and remove from same end

• Queues

– Add at one end and remove from the other end

– Optimize speed of access by creating a doubly linked list and
maintaining a reference to the front and back of the list

CSC230: C and Software Tools © NC State Computer Science Faculty

Doubly Linked Lists

• A node maintains a pointer to the node before and
after it in the list.

• All list operations need to update appropriate prev
and next pointers.

• Can maintain a pointer to the back of the list

CSC230: C and Software Tools © NC State Computer Science Faculty

struct node {

 struct node *prev;

 int value;

 struct node *next;

};

struct node

 prev

data next

struct node

data next

struct node

data next

prev
prev

…

Further Generalizing the List

CSC230: C and Software Tools © NC State Computer Science Faculty

struct list

front back

struct node

 prev

data next

struct node

data next

struct node

data next

prev
prev

…

element
(can be any struct)

element
(can be any struct)

element
(can be any struct)

struct list {

 void *front;

 void *back;

 int size;

};

struct node {

 struct node *prev;

 void *data;

 struct node *next;

};

