
Everything Else
C Programming and Software Tools
N.C. State Department of Computer Science

BOOLEANS

CSC230: C and Software Tools © NC State University Computer Science Faculty 2

Booleans

• In C99, bools are included! Sort of!

 _Bool b = 1;

• Why so ugly? To not conflict with existing code.

• But if you want “nice” bools plus “true” and
“false”, ask for them by name:

 #include <stdbool.h>

 bool b = true;

 bool c = false;

CSC230: C and Software Tools © NC State University Computer Science Faculty 3

stdbool.h

CSC230: C and Software Tools © NC State University Computer Science Faculty 4

#ifndef _STDBOOL_H

#define _STDBOOL_H

#ifndef __cplusplus

#define bool _Bool

#define true 1

#define false 0

#else /* __cplusplus */

/* Supporting <stdbool.h> in C++ is a GCC extension. */

#define _Bool bool

#define bool bool

#define false false

#define true true

#endif /* __cplusplus */

/* Signal that all the definitions are present. */

#define __bool_true_false_are_defined 1

#endif /* stdbool.h */

CONST & CONST POINTERS

CSC230: C and Software Tools © NC State University Computer Science Faculty 5

Const pointer - summary

• Commonly used in argument/return types:
char *strcpy(char *dest, const char *src);

CSC230: C and Software Tools © NC State University Computer Science Faculty 6

The const Keyword...

Indicates to the compiler that a value should not
change during program execution

– should be initialized, but not changed

CSC230: C and Software Tools © NC State Computer Science Faculty 7

 const int twopowfive = 32;

 const float pi = 3.14159;

 twopowfiv = 64; /* ERROR */

 pi = 6.3; /* ERROR */

... (cont’d)

Is this better than macros?

CSC230: C and Software Tools © NC State Computer Science Faculty 8

#define TWOPOWFIV 32

#define PI 3.14159

Derived types can be const also

struct pet {

 char *name;

 unsigned short weight;

 unsigned char age;

 unsigned char type;

};

const struct pet mypet =

 { “Fluffy”, 30, 5, DOG };

const and Pointers...

Is it the pointer that cannot be changed, or the
thing it points at?

CSC230: C and Software Tools © NC State Computer Science Faculty 9

Constant pointer to changeable character

char * cp = &c;

cp++ = ‘A’; / no problems */

char * const cp = &c;

cp = ‘Q’; / No problems */

cp = &d ; /* ERROR, changes pointer */

Changeable pointer to changeable character:

... (cont'd)

CSC230: C and Software Tools © NC State Computer Science Faculty 10

Changeable pointer to constant character

Constant pointer to constant character

const char * cp = &c;

cp = ‘Z’ ; / ERROR, changes value

 * pointed to */

c = ‘Z’; /* But this is OK! */

cp = &d; /* No problems */

const char * const cp = &c;

cp++ = ‘Z’ ; / ERROR, changes both */

Considered good practice; use whenever possible (particularly
pointers passed to functions)

Commonly used in argument/return types:

char *strcpy(char *dest, const char *src);

ENUMS:
THE ENUMERATED DATA TYPE

CSC230: C and Software Tools © NC State University Computer Science Faculty 11

Enumerated Data Type…

• Use for variables with small set of possible
values, where actual encoding of value is
unimportant

CSC230: C and Software Tools © NC State Computer Science Faculty 12

enum colors {red, blue, green, white, black};

enum colors mycolor;

mycolor = blue;

...

if ((mycolor == blue) || (mycolor == green))

 printf("cool color\n");

… (cont’d)
• Don’t compare variables of different enumerated

types - results not what you expect!

CSC230: C and Software Tools © NC State Computer Science Faculty 13

enum {blue, red, green, white, black}

 primarycolor;

enum {black, brown, orange, yellow}

 halloweencolor;

primarycolor = black;

halloweencolor = black;

if (primarycolor == halloweencolor)

 printf("Same color\n");

Although you can interpret enumerated data types as
integers, I don’t recommend it

What will print?

… (cont’d)
Compared to macros…?

CSC230: C and Software Tools © NC State Computer Science Faculty 14

#define BLUE 0

#define RED 1

#define GREEN 2

#define WHITE 3

#define BLACK 4

int primarycolor;

primarycolor = RED;

…

if (primarycolor == RED) …

GNOME: “If you have a list of possible values for a variable, do not
use macros for them; use an enum instead and give it a type name”

TYPEDEF

CSC230: C and Software Tools © NC State University Computer Science Faculty 15

Typedef

• Make an alias for a type:

CSC230: C and Software Tools © NC State University Computer Science Faculty 16

typedef unsigned char byte;

typedef int* int_pointer;

byte x = 5;

int q = 12;

int_pointer pq = &q;

Typedef structs (1)

• Commonly used with structs:

CSC230: C and Software Tools © NC State University Computer Science Faculty 17

typedef struct {

 char name[64];

 int age;

} Person;

Person bob = {“Bob”, 65};

struct Person sue;

No such type!

Typedef structs (2)

• Sometimes you need it to be a named struct
too, though…

CSC230: C and Software Tools © NC State University Computer Science Faculty 18

typedef struct Node {

 int id;

 struct Node *next;

} Node;

typedef struct Node {

 int id;

 Node *next;

} Node;

Node is undefined

at this time!





Typedef structs (3)

• It’s common to typedef a pointer to a struct to
make a “class-like thingy”:

CSC230: C and Software Tools © NC State University Computer Science Faculty 19

struct Person {

 char name[64];

 int age;

};

typedef struct Person* Person;

Person create_person(char* name, int age)

{

 …

}

Person bob = create_person(“Bob”,65);

Typedef arrays?

• typedefs help make programs portable

– to retarget a program for a different architecture,
just redefine the typedefs and recompile

• Usually, typedefs are collected in a header file
that is #include’d in all source code modules

CSC230: C and Software Tools © NC State Computer Science Faculty 20

typedef int values[20];

values tbl1, tbl2; /* two arrays, each with

 * 20 ints */

Even arrays can be typedefs

UNIONS

CSC230: C and Software Tools © NC State University Computer Science Faculty 21

The union Statement

• Defined like a struct, but only stores exactly
one of the named members

– motivation: use less memory

• Nothing in the union tells you which member
is stored there!

– usually, another variable indicates what is stored in
the union

CSC230: C and Software Tools © NC State Computer Science Faculty 22

union Example

CSC230: C and Software Tools © NC State Computer Science Faculty 23

/* animal can have only one of the following */

union properties {

 unsigned short speed_of_flight; // bird

 bool is_freshwater; // fish

 enum {VERY, SOME, NONE} hairiness; // mammal

};

struct {

 unsigned char type;

 char * name;

 union properties info;

} animals[10];

animals[0].type = MAMMAL;

animals[0].name = "Polar Bear";

animals[0].info.hairiness = VERY;

Unions can decompose types
(Like a pointer cast without the pointer, or the cast)

CSC230: C and Software Tools © NC State University Computer Science Faculty 24

union flippable_int {

 unsigned char bytes[4];

 int value;

};

int main() {

 union flippable_int x = { .value = 100000 };

 printf("value = %d (0x%08x)\n", x.value, x.value);

 printf("bytes = {%02x,%02x,%02x,%02x}\n",

 x.bytes[0], x.bytes[1], x.bytes[2], x.bytes[3]);

 // convert to big endian

 unsigned char t;

 t = x.bytes[0]; x.bytes[0] = x.bytes[3]; x.bytes[3] = t;

 t = x.bytes[1]; x.bytes[1] = x.bytes[2]; x.bytes[2] = t;

 printf("value = %d (0x%08x)\n", x.value, x.value);

 printf("bytes = {%02x,%02x,%02x,%02x}\n",

 x.bytes[0], x.bytes[1], x.bytes[2], x.bytes[3]);

}

value = 100000 (0x000186a0)

bytes = {a0,86,01,00}

value = -1601830656 (0xa0860100)

bytes = {00,01,86,a0}

VARIABLE NUMBER OF
ARGUMENTS

CSC230: C and Software Tools © NC State University Computer Science Faculty 25

Functions with a
Variable Number of Arguments...
• Example: printf(char *fmt, …)

– the first argument (char *fmt, the named
argument) indicates how many, and what type, of
unnamed arguments to expect

– the ... (the unnamed arguments) stands for an
arbitrary list of arguments provided by the calling
program

CSC230: C and Software Tools © NC State Computer Science Faculty 26

… (cont’d)
• Requires macros defined in <stdarg.h>

• In function f():

1. Declare a variable of type va_list

2. Call va_start; returns pointer to the first
unnamed argument

3. Call va_arg to return pointer to each successive
unnamed argument

4. Call va_end to end processing

CSC230: C and Software Tools © NC State Computer Science Faculty 27

… (cont’d)

• How many unnamed parameters?

– this has to be indicated by the named parameter

• What are types of unnamed parameters?

– either this is fixed (implicit), or the named parameter
must explicitly indicate

– example: the printf() format specifier

CSC230: C and Software Tools © NC State Computer Science Faculty 28

Example...
• A function sumup(num, …) which returns the

sum of a list of num arguments, all of type int

• Calling sumup():

CSC230: C and Software Tools © NC State Computer Science Faculty 29

#include <stdio.h>

#include <stdarg.h>

int sumup(int, …);

int main(void)

{

 int i = 295, j = 3, k = 450, res;

 res = sumup(3, i, j, k);

 …

} Number of unnamed arguments
List of unnamed arguments

… (cont’d)

• Definition of sumup():

CSC230: C and Software Tools © NC State Computer Science Faculty 30

int sumup(int num, …) {

 int sum;

 va_list ap;

 va_start(ap, num);

 sum = 0;

 for(int i = 0; i < num; i++)

 sum += va_arg(ap, int);

 va_end(ap);

 return sum;

}

Declare pointer to arguments

Makes ap point to first

unnamed argument

Read unnamed arguments,
all of type int

Clean up before exiting

Another Example...
• Function sumup(char *fmt, …), where fmt

specifies type and number of unnamed arguments

– one character per unnamed argument

– types = ‘i’ (int), ‘d’ (double), and ‘c’ (char)

– Ex.: if fmt[] equals “iddic” 
there are 5 unnamed arguments,
first and fourth are type int,
second and third are type double,
fifth is type char

CSC230: C and Software Tools © NC State Computer Science Faculty 31

float sumup(char *fmt, …);
…
 float res;
 res = sumup(“cid”, (char) ‘Q’, 2500, 3.141);

… (cont’d)

CSC230: C and Software Tools © NC State Computer Science Faculty 32

float sumup(char *fmt, …) {

 int i;

 float sum = 0, d;

 char c;

 va_list ap;

 va_start(ap, fmt);

 for(; *fmt != ‘\0’; fmt++)

 if (*fmt == ‘c’)

 sum += va_arg(ap, char));

 else if (*fmt == ‘i’)

 sum += va_arg(ap, int));

 else if (*fmt == ‘d’)

 sum += va_arg(ap, double));

 va_end(ap);

 return sum;

}

ENVIRONMENT VARIABLES

CSC230: C and Software Tools © NC State University Computer Science Faculty 33

Environmental Variables

• A way for a user to customize the execution
environment of programs

• Ex.:

CSC230: C and Software Tools © NC State Computer Science Faculty 34

cmd> echo $HOME

/home/jerry

cmd> HOME=/home/linda

cmd> echo $HOME

/home/linda

Common environment variables:

TERM

SHELL

USER

PATH

HOME

MAIL

GROUP

LANG

EDITOR

PRINTER

Reading / Writing E.V.’s in C

CSC230: C and Software Tools © NC State Computer Science Faculty 35

Read using getenv() (#include <stdlib.h>)

char *string = getenv(“HOME”);

printf(“$HOME=%s\n”, string);

And setenv() if you want to change them

setenv(“HOME”, "/home/new", 1);

BIT FIELDS

CSC230: C and Software Tools © NC State University Computer Science Faculty 36

8. Bit Fields in C

• Way to pack bits into a single word; useful?

• Bit fields of a word are defined like members of
a structure

CSC230: C and Software Tools © NC State Computer Science Faculty 37

Bit Fields Example... (http://www.cs.cf.ac.uk/Dave/C/)

• Frequently devices and OS communicate by
means of a single word

CSC230: C and Software Tools © NC State Computer Science Faculty 38

struct Disk_register {

 unsigned ready:1;

 unsigned error_occurred:1;

 unsigned disk_spinning:1;

 unsigned write_protect:1;

 unsigned head_loaded:1;

 unsigned error_code:8;

 unsigned track:9;

 unsigned sector:5;

 unsigned command:5;

};

...(cont’d)

CSC230: C and Software Tools © NC State Computer Science Faculty 39

struct Disk_register * dr =

 (struct Disk_register *) MEMADDR;

/* Define sector and track to start read */

dr->sector = new_sector;

dr->track = new_track;

dr->command = READ;

/* ready will be true when done, else wait */

while (! dr->ready) ;

if (dr->error_occurred) /* check for errors */

 {

 switch (dr->error_code)

 }

Warnings About Bit Fields

• Recommendation: always make bit fields
unsigned

• # of bits determines maximum value

• Restrictions
1. no arrays of bit fields

• Danger: files written using bit-fields are non-
portable!
– order in which bit-fields stored within a word is

system dependent

CSC230: C and Software Tools © NC State Computer Science Faculty 40

Any Questions?

CSC230 - C and Software Tools © NC State University Computer Science Faculty 41

