Integrating C with Other Languages

C Programming and Software Tools

N.C. State Department of Computer Science

[omputer dcience

Why integrate

e | want performance from C
e | want ease of use from higher level languages

e | want low-level control with assembly language

e Sometimes, | want all of these at once!

e Also, sometimes the library | need is only written
for one language.

[omputer Science

CSC230: C and Software Tools © NC State University Computer Science Faculty 2

Language interactions

Perl

U —
Python 229
C# PHP Tl w
Java Ruby S O g
o< C
+ 9 ©
ISENE S
(%]
()
o0
O
>
o0
c
©
©
Q@
Pascal 'S
£
@)
O

Assembly language

Platform-
dependant
machine code

[omputer Science

CSC230: C and Software Tools © NC State University Computer Science Faculty 3

Most common language interactions

Perl
Python
C# PHP
Java Ruby

Interpretted

higher-level
languages

Compiled languages

Assembly language

Most common case:

« Write in higher level language if you can
« Call assembly language if you need to EumpuierScience
 Promote your program to C++ if you need to talk to C++ or do OOP

Platform-
dependant
machine code

Attributes of language interaction

e What direction?
— C calling other, or other calling C?

e \What mechanism?
— Direct call
— Shim layer

e Automatically generated or manually written?
— Inlining foreign code
— Other/weird (shared memory, common caller, etc.)
e Handling language feature mismatches?

— E.g., garbage collection?

[omputer Science

CSC230: C and Software Tools © NC State University Computer Science Faculty 5

Language interactions

Perl = —
Python 229

C# PHP Tl w
Java Ruby S o g
o< C

2 W0 ©

ISENE S

(%)

()

(o]0}

(q°)

-

o0

C

©

©

R

Q

£

@)

o

Platform-
dependant
machine code

[omputer Science

CSC230: C and Software Tools © NC State University Computer Science Faculty 6

Examples: Higher level languages

e Calling C from other languages:

— Direct: Python’s built-in ctypes module can be used to create variables in
C data types and to make calls to C shared libraries

— Shim (manually developed): Homework 6 includes a Python class that
uses ctypes to wrap up calls to your libCTurtle.

— Shim (auto-generated): The Perl tool h2xs generates stubs which call C
library code based on a header file.

— Inline: The Perl Inline::C module is used to write C code directly mixed in
with Perl code. ™

#!/usr/bin/perl

v use Inline C;
#!/usr/bin/python hello inline();
from ctypes import * -
libc = cdll.LoadlLibrary("libc.so.6") END
libc.print£ (T c

"Hello world with C's printf!'\n"); #include <stdio.h>

CSC230:

void hello_inline() {
printf ("Hello World inline!\n");

C and Software Tools © NC State University Computer Science Faculty }

Examples: Higher level languages

e Calling other languages from C:
— Direct: Java JNI allows you to run a JVM from C directly and run code on it.
— Shim (manually developed): You can write a C module using Java JNI.

— Shim (auto-generated): Java has a javah tool to create C header files from
Java classes.

— Inline: Python supports embedding in C via multiple interfaces, such as
the Very High Level (VHL) interface.

Adapted from:
https://docs.python.org/2/extending/embedding.html

#include <Python.h>

int
main (int argc, char *argv[])
{
Py SetProgramName (argv[0]) ;
Py Initialize();
PyRun SimpleString("from time import time,ctime\n"
"print 'Today is', ctime (time())\n");
Py Finalize();
return O;

CSC230: C and Software Tools © NC Statd &

Garbage collection

e When Cis called from a garbage collected
language, you hook the garbage collection
notice to clean up C-based objects.

e This is done in the Homework 6 destructor:

class CTurtle (object):
c = ctypes.cdll.LoadLibrary ("1ibCTurtle.so")
c.get last error.restype = ctypes.c char p

@classmethod

def new(self,w,h):
r = CTurtle()
r.img = self.c.create_image(w,6 h)
return r

‘ def del (self):

self.c.destroy image(self.img)

[omputer Science

CSC230: C and Software Tools © NC State University Computer Science Faculty 9

Language interactions

o —
823

[

S o &

25

£ c—

(%]

()

o

D Go S

=

emmesm———) ORTRAN =
v

Pascal =

£

o

)

Platform-
dependant
machine code

[omputer Science

CSC230: C and Software Tools © NC State University Computer Science Faculty 10

Examples: Other compiled languages

e Direct: You can link C and FORTRAN object files
together

e Inline: n/a my_subsh
void my sub(int, double *);
main.c my_sub.f
#include "my sub.h" MODULE my fortran
USE iso_c binding
int main () { IMPLICIT NONE
double b; CONTAINS
int a=3; SUBROUTINE my subroutine(a,b) BIND(C,name="my sub")
my sub(a,&b) ; INTEGER (c_int) , INTENT (in) ,VALUE :: a
REAL (C_DOUBLE) ,INTENT (out) :: b
} ...
END SUBROUTINE
END MODULE

— — Adapted from:
$ g77 = 2 my—sub — my—sub £ http://stackoverflow.com/questions/7743801/mixed-programming-fortran-and-c

$ gcc —c¢c -o main.o main.c

$ gee —o myapp main.o mylib.o [omputer Science
: 11

University Computer Science Faculty

Language interactions

Interpretted
languages

higher-level

Compiled languages

Assembly language

Platform-
dependant
machine code

[omputer Science

CSC230: C and Software Tools © NC State University Computer Science Faculty 12

Interacting with assembly language

e Calling assembly from C:

— Direct: Can call assembly routines in C directly (just compile
them together)

— Shim: You can wrap ‘em if you want.

— Inline: C lets you put assembly right in your code
(see next slide).

e Calling C from assembly:

— Direct: Just need to put the arguments on the stack properly
and do a call instruction

— Shim: n/a
— Inline: n/a

[omputer Science

CSC230: C and Software Tools © NC State University Computer Science Faculty 13

Inline assembly language

e Literally gets dumped in with the compiler-
generated assembly instructors

e Useful for small tricks and recipes

What does this do?

#include <string.h>

int main() {

char* msg = “Testing!'\n";

asm (
"movg %1, %%rdx\n" // set param 3 (length) to length of msg
"movg %0, %%rcx\n" // set param 2 (buffer) to address of msg
"movg $1, %%rbx\n" // set param 1 (file descriptor) to stdout (1)
"movg $4, %%rax\n" // set syscall number 4 (write)
"int $0x80\n" // ask kernel to do it

: // no outputs

: "r"(msg), "r"(strlen(msg)) // inputs assigned to %0, %1, etc.

: "%rax","$rbx","%rcx","%$rdx" // tell compiler which registers we trashed

e

Language interactions

Interpretted
languages

higher-level

Compiled languages

Platform-
dependant
machine code

[omputer Science

CSC230: C and Software Tools © NC State University Computer Science Faculty 15

Interacting between C and C++

e |Letting C call C++

— C++ is a thin layer of simple tricks on top of C which
create OO-friendly syntax

— To get C to call C++, you just need to cut through the
tricks with extern “C” {..}, which just says

“disable C++ trickery for this part”.
— See next slide

e |Letting C++ call C
— Just do it. No steps necessary.

[omputer Science

CSC230: C and Software Tools © NC State University Computer Science Faculty 16

Adapted from:
http://stackoverflow.com/questions/7281441/elegantly-call-c-from-c

C/C++ example

Duck.h

#ifdef cplusplus
extern "C" {
#fendif

struct Duck;

struct Duck* new Duck(int feet);
void delete Duck(struct Duck* d);

Duck.cpp void Duck quack (struct Duck* d, float volume) ;
extern "C" { _
#include "Duck.h" #ifdef _ cplusplus
} }
ffendif

class Duck {

public:
Duck (int feet) : { .. }
~Duck () { .. }

void quack(float volume) { .. }
};

struct Duck* new Duck(int feet) { return new Duck(feet); }
void delete Duck (struct Duck* d) { delete d; }
void Duck quack (struct Duck* d, float volume) { d->quack(volume); }

Any Questions?

F o e Stop Refresh Home
“ddress @ 1
QL ive Horme Page

Q APPle Compute, @

\
\

/@

i 7220

P F i il e 2

[omputer Science

18
CSC230 - C and Software Tools © NC State University Computer Science Faculty

