
Optimization of C Programs

C Programming and Software Tools
N.C. State Department of Computer Science

with material from R. Bryant and D. O’Halloran “Computer Systems: A Programmer’s

Perspective” and Jon Louis Bentley “Writing Efficient Programs”

Optimization

• Performance depends on...

1. algorithm / data structure choices

2. coding style

3. compiler + options

4. programming language (C is a good choice)

CSC230: C and Software Tools © NC State Computer Science Faculty 2

 Compilers

• Most compilers offer a variety of optimization
choices

• gcc: -O or –O1 or –O2 or –O3 (in order of
increasing optimization)

• How much can you expect this to help?

• Does it ever hurt?

CSC230: C and Software Tools © NC State Computer Science Faculty 3

Compilers... (cont'd)

CSC230: C and Software Tools © NC State Computer Science Faculty 4

-falign-functions=n -falign-jumps=n -falign-labels=n -falign-loops=n -fbounds-
check -fmudflap -fmudflapth -fmudflapir -fbranch-probabilities -fprofile-values
-fvpt -fbranch-target-load-optimize -fbranch-target-load-optimize2 -fbtr-bb-
exclusive -fcaller-saves -fcprop-registers -fcse-follow-jumps -fcse-skip-blocks
-fcx-limited-range -fdata-sections -fdelayed-branch -fdelete-null-pointer-checks
-fearly-inlining -fexpensive-optimizations -ffast-math -ffloat-store -fforce-
addr -ffunction-sections -fgcse -fgcse-lm -fgcse-sm -fgcse-las -fgcse-after-
reload -floop-optimize -fcrossjumping -fif-conversion -fif-conversion2 -finline-
functions -finline-functions-called-once -finline-limit=n -fkeep-inline-
functions -fkeep-static-consts -fmerge-constants -fmerge-all-constants -fmodulo-
sched -fno-branch-count-reg -fno-default-inline -fno-defer-pop -floop-optimize2
-fmove-loop-invariants -fno-function-cse -fno-guess-branch-probability -fno-
inline -fno-math-errno -fno-peephole -fno-peephole2 -funsafe-math-optimizations
-funsafe-loop-optimizations -ffinite-math-only -fno-trapping-math -fno-zero-
initialized-in-bss -fomit-frame-pointer -foptimize-register-move -foptimize-
sibling-calls -fprefetch-loop-arrays -fprofile-generate -fprofile-use -fregmove
-frename-registers -freorder-blocks -freorder-blocks-and-partition -freorder-
functions -frerun-cse-after-loop -frerun-loop-opt -frounding-math -fschedule-
insns -fschedule-insns2 -fno-sched-interblock -fno-sched-spec -fsched-spec-load
-fsched-spec-load-dangerous -fsched-stalled-insns=n -fsched-stalled-insns-dep=n
-fsched2-use-superblocks -fsched2-use-traces -freschedule-modulo-scheduled-loops
-fsignaling-nans -fsingle-precision-constant -fstack-protector -fstack-
protector-all -fstrength-reduce -fstrict-aliasing -ftracer -fthread-jumps -
funroll-all-loops -funroll-loops -fpeel-loops -fsplit-ivs-in-unroller -
funswitch-loops -fvariable-expansion-in-unroller -ftree-pre -ftree-ccp -ftree-
dce -ftree-loop-optimize -ftree-loop-linear -ftree-loop-im -ftree-loop-ivcanon -
fivopts -ftree-dominator-opts -ftree-dse -ftree-copyrename -ftree-sink -ftree-ch
-ftree-sra -ftree-ter -ftree-lrs -ftree-fre -ftree-vectorize -ftree-vect-loop-
version -ftree-salias -fweb -ftree-copy-prop -ftree-store-ccp -ftree-store-copy-
prop -fwhole-program --param name=value -O -O0 -O1 -O2 -O3 -Os

All the gcc choices(!) :

Limitations on Optimizing

• Must not change program outputs or results

• May increase code length

• May decrease code readability

• C features that complicate optimization...
– pointers

– functions with side-effects

CSC230: C and Software Tools © NC State Computer Science Faculty 5

Code Profiling

• To speed up a program, you have to know
where it spends the most time

• To measure execution time, use time utility

time ./program [command line args]

• gprof : a tool for profiling program
execution

– counts number of times each function is called

– + how much time spent in each function

– Time values only useful for relative, not absolute,
performance measurement

CSC230: C and Software Tools © NC State Computer Science Faculty 6

...Profiling (cont’d)

• To add cycle counting to your program,
compile with -pg flag, e.g.,

 gcc –pg pgm.c –o pgm

• When you run pgm, it produces normal
output, but also generates a file called
gmon.out

• Execute gprof after running the program, ,
e.g.,
 gprof ./pgm

CSC230: C and Software Tools © NC State Computer Science Faculty 7

gprof Example

• Shows number of calls and cumulative time for
each function

• Where would you try to optimize the above
program?

CSC230: C and Software Tools © NC State Computer Science Faculty 8

 % cumulative self

 time seconds seconds calls

 ----- ------- ------- ------

 86.60 8.21 8.21 1 sort_words

 5.80 8.76 0.55 946596 lower1

 4.75 9.21 0.45 946596 find_ele_rec

 1.27 9.33 0.12 946596 h_add

Code Motion

• move an expression evaluation outside of a loop
(i.e., execute it fewer times)

CSC230: C and Software Tools © NC State Computer Science Faculty 9

for (i = 0; i < n; i++)

 for (j = 0; j < n; j++)

 a[n*i + j] = f() * b[j];

k = f();

for (i = 0; i < n; i++) {

 int ni = n*i;

 for (j = 0; j < n; j++)

 a[ni + j] = k * b[j];

}

Example

Before optimization After optimization

Optimization?

CSC230: C and Software Tools © NC State Computer Science Faculty 10

/* Sum neighbors of i,j */

up = val[(i-1)*n + j];

down = val[(i+1)*n + j];

left = val[i*n + j-1];

right = val[i*n + j+1];

sum = up + down + left + right;

DRAMATIC PAUSE

Please fill out the course survey,
linked on the course webpage

CSC230: C and Software Tools © NC State Computer Science Faculty 11

Share (Reuse) Expression Results

• “Compute once, use twice”, ex.:

CSC230: C and Software Tools © NC State Computer Science Faculty 12

/* Sum neighbors of i,j */

up = val[(i-1)*n + j];

down = val[(i+1)*n + j];

left = val[i*n + j-1];

right = val[i*n + j+1];

sum = up + down + left + right;

int inj = i*n + j;

up = val[inj - n];

down = val[inj + n];

left = val[inj - 1];

right = val[inj + 1];

sum = up + down + left + right;

3 different multiplications:
i*n, (i–1)*n,

(i+1)*n

1 multiplication:
i*n Before optimization

After optimization

Inlining Function Calls

• Replace a function call with equivalent inline
code

CSC230: C and Software Tools © NC State Computer Science Faculty 13

int

prod(int i, int j, int n, int b[n][n], int c[n][n])

{

 int sum = 0;

 for (k = 0; k < n; k++)

 sum += b[i][k] * c[k][j];

 return sum;

}

…

for (i = 0; i < n; i++)

 for (j = 0; j < n; j++)

 a[i][j] = prod(i, j, n, b, c);

Before optimization

M-I Optimization (cont’d)

CSC230: C and Software Tools © NC State Computer Science Faculty 14

for (i = 0; i < n; i++)

 for (j = 0; j < n; j++) {

 sum = 0;

 for (k = 0; k < n; k++)

 sum += b[i][k] * c[k][j];

 a[i][j] = sum;

 }

After optimization

Reordering Tests

• Place frequent case labels or if conditions
first

– reduces the average number of comparisons

CSC230: C and Software Tools © NC State Computer Science Faculty 15

if (height > 84) /* extremely rare */

 f1();

else if (height > 72) /* uncommon */

 f2();

else /* usually the case */

 f3();

Before optimization

Reordering Tests… (cont’d)

CSC230: C and Software Tools © NC State Computer Science Faculty 16

if (height <= 72) /* usually the case */

 f3();

else if (height <= 84) /* uncommon */

 f2();

else /* extremely rare */

 f1();

After optimization

Pass Large Parameters by Reference

• Avoid passing large structs as arguments to
functions.

CSC230: C and Software Tools © NC State Computer Science Faculty 17

struct mystruct {

 … many members, incl. array(s)…

} bigstruct;

…

int r = f(bigstruct);

…

int f(struct mystruct bigstruct) {

…

}

Before optimization

Pass Large … (cont’d)

CSC230: C and Software Tools © NC State Computer Science Faculty 18

…

int r = f(&bigstruct);

…

int f(const struct mystruct *sp) {

…

}

After optimization

Cache Optimization

• Caching speeds up memory access

– store in the (small, expensive) cache the
data/instructions that are accessed most frequently

CSC230: C and Software Tools © NC State Computer Science Faculty 19

The program design / data layout can improve cache
performance substantially in some cases

Processor Cache
Main Memory

instructions

+ data

instructions

+ data

fast

slow

Multi-Core

• Getting optimal performance from multi-core
processors also requires careful attention to
coding

– current tools don't help that much

CSC230: C and Software Tools © NC State Computer Science Faculty 20

Recommendations from
GNOME Project
• “If you want to optimize your program, the first

step is to profile the program running with real
life data and collect profiling information.”

• “Do not write code that is hard to read and
maintain if it is only to make the code faster.”

CSC230: C and Software Tools © NC State Computer Science Faculty 21

Bentley’s Fundamental Rules for
Optimization
• Code Simplification

– Fast programs are typically simple programs

• Problem Simplification

– Example: simplify loop by moving some work outside of the
loop

• Relentless Suspicion

– Question every part of the data structure and algorithm
bottleneck areas

• Early Binding

– Do some work as early as possible and only once

CSC230: C and Software Tools © NC State Computer Science Faculty 22

Test!!!

• Optimizations should NEVER change
functionality

– Test your program to ensure no regression in
behavior!!!

– Test after each optimization

CSC230: C and Software Tools © NC State Computer Science Faculty 23

EXAMPLE (TIME PERMITTING)

CSC230: C and Software Tools © NC State Computer Science Faculty 24

An Exercise
• Test case: an image processing program
• Digital images are composed of pixels

– each is an integer value, representing brightness
– 0 = black, 255 = white (grayscale picture)

• How many pixels in an image?

CSC230: C and Software Tools © NC State Computer Science Faculty 25

Exercise… (cont’d)

• Image filtering: blurring, edge detection, ...

• How is (FIR) filtering done?

– image convolution with a kernel

CSC230: C and Software Tools © NC State Computer Science Faculty 26

example of smoothing

 (blurring)

Exercise … (cont’d)

• Quadruply-nested loop!

CSC230: C and Software Tools © NC State Computer Science Faculty 27

for each row i of "old" image {

 for each column j of "old" image {

 newpix[i][j] = 0;

 for (k = -n/2; k < n/2; k++)

 for (l = -m/2; l < m/2; l++)

 newpix[i][j] +=

 oldpix[i+k][j+l] *

 kern[k][j];

 }

}

Outputs?

CSC230: C and Software Tools © NC State Computer Science Faculty 28

original

smoothed

sobel edge filter

Optimizations
1. (Base version)
2. Swap inner and outer loops, better caching
3. Use code motion (pointer arithmetic)
4. Skip processing of boundaries of image
5. Exploit distributivity of multiplication over addition,

and specific kernel values
6. fwrite row of pixels instead of putc each pixel
7. Streamline reading of image, less pointer arithmetic
8. Use –O3 optimization in gcc

CSC230: C and Software Tools © NC State Computer Science Faculty 29

