Optimization of C Programs

C Programming and Software Tools

N.C. State Department of Computer Science

[]
with material from R. Bryant and D. O’Halloran “Computer Systems: A Programmer’s Eﬂ"]pllier SC] E“EE

Perspective” and Jon Louis Bentley “Writing Efficient Programs”
NC STATE UNIVERSITY

Optimization

e Performance depends on...

1. algorithm / data structure choices

N

coding style

08

. compiler + options

=

programming language (C is a good choice ©)

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 2

Compilers

e Most compilers offer a variety of optimization
choices

e gcc: -0 or-01or-02 or-03 (inorder of
increasing optimization)

e How much can you expect this to help?

e Does it ever hurt?

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 3

Compilers... (cont'd)
All the gcc choices(!) :

-falign-functions=n -falign-jumps=n -falign-labels=n -falign-loops=n -fbounds-
check -fmudflap -fmudflapth -fmudflapir -fbranch-probabilities -fprofile-values
-fvpt -fbranch-target-load-optimize -fbranch-target-load-optimize2 -fbtr-bb-
exclusive -fcaller-saves -fcprop-registers -fcse-follow-jumps -fcse-skip-blocks
-fcx-limited-range -fdata-sections -fdelayed-branch -fdelete-null-pointer-checks
-fearly-inlining -fexpensive-optimizations -ffast-math -ffloat-store -fforce-
addr -ffunction-sections -fgcse -fgcse-1lm -fgcse-sm -fgcse-las -fgcse-after-
reload -floop-optimize -fcrossjumping -fif-conversion -fif-conversion2 -finline-
functions -finline-functions-called-once -finline-limit=n -fkeep-inline-
functions -fkeep-static-consts -fmerge-constants -fmerge-all-constants -fmodulo-
sched -fno-branch-count-reg -fno-default-inline -fno-defer-pop -floop-optimize2
-fmove-loop-invariants -fno-function-cse -fno-guess-branch-probability -fno-
inline -fno-math-errno -fno-peephole -fno-peephole2 -funsafe-math-optimizations
-funsafe-loop-optimizations -ffinite-math-only -fno-trapping-math -fno-zero-
initialized-in-bss -fomit-frame-pointer -foptimize-register-move -foptimize-
sibling-calls -fprefetch-loop-arrays -fprofile-generate -fprofile-use -fregmove
-frename-registers -freorder-blocks -freorder-blocks-and-partition -freorder-
functions -frerun-cse-after-loop -frerun-loop-opt -frounding-math -fschedule-
insns -fschedule-insns2 -fno-sched-interblock -fno-sched-spec -fsched-spec-load
-fsched-spec-load-dangerous -fsched-stalled-insns=n -fsched-stalled-insns-dep=n
-fsched2-use-superblocks -fsched2-use-traces -freschedule-modulo-scheduled-loops
-fsignaling-nans -fsingle-precision-constant -fstack-protector -fstack-
protector-all -fstrength-reduce -fstrict-aliasing -ftracer -fthread-jumps -
funroll-all-loops -funroll-loops -fpeel-loops -fsplit-ivs-in-unroller -
funswitch-loops -fvariable-expansion-in-unroller -ftree-pre -ftree-ccp -ftree-
dce -ftree-loop-optimize -ftree-loop-linear -ftree-loop-im -ftree-loop-ivcanon -
fivopts -ftree-dominator-opts -ftree-dse -ftree-copyrename -ftree-sink -ftree-ch
-ftree-sra -ftree-ter -ftree-lrs -ftree-fre -ftree-vectorize -ftree-vect-loop-
version -ftree-salias -fweb -ftree-copy-prop -ftree-store-ccp -ftree-store-copy-
prop -fwhole-program --param name=value -O -00 -0l1 -02 -03 -Os

UUIllPUlGl ULIGIILG
CSC230: C and Software Tools © NC State Computer Science Faculty 4

Limitations on Optimizing

e Must not change program outputs or results
e May increase code length
e May decrease code readability

e C features that complicate optimization...
— pointers
— functions with side-effects

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 5

Code Profiling

e To speed up a program, you have to know
where it spends the most time

e To measure execution time, use time utility

time ./program [command line args]

 gprof :atoolfor profiling program
execution
— counts number of times each function is called
— + how much time spent in each function

— Time values only useful for relative, not absolute,
performance measurement

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 6

...Profiling (cont’d)

e To add cycle counting to your program,
compile with -pg flag, e.g.,
gcc —pg pgm.c —O pgm
e \When you run pgm, it produces normal

output, but also generates a file called
gmon.out

e Execute gprof after running the program,,

e.g.,
gprof ./pgm

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 7

gprof Example

cumulative self
seconds seconds

sort words
946596 1lowerl
946596 find ele rec
946596 h add

e Shows number of calls and cumulative time for
each function

e Where would you try to optimize the above
program?

SEMWMmm

Code Motion

e move an expression evaluation outside of a loop
(i.e., execute it fewer times)

Example
_ _ _ k = £();

for (1=.0; i<n; l'l"l.') for (i = 0; i < n; i++) {

for (J = 0; jJ < n; Jj++) int ni = n*i;
a[n*i + j] = £() * b[jl; for (j = 0; j < n; j++)
a[lni + j] =k * b[j];

}
Before optimization After optimization

[omputer Science

9

CSC230: C and Software Tools © NC State Computer Science Faculty

Optimization?

/* Sum neighbors of i,j */

up = val[(i-1)*n + j];

down val[(1+1)*n + j];

left = wval[i*n + j-1];

right = val[i*n + J+1];

sum = up + down + left + right;

[omputer Science
10 NC STATE UNIVERSITY

DRAMATIC PAUSE

Please fill out the course survey,
linked on the course webpage

@ C5C230: Cand Software T x | Y

<« C M [3 courses.ncsu.edu/csc230/lec/051/

=% Apps [Goggles [Print My-Map [Showallimagelinks [Sendtoblog (] J
Links
In-class exercise form
Forum (Piazza)
Gradebook (Wolfware Classic)
Course overview and policy slides
e Jenkins research survey «— ‘
[e ClassEval survey «— 1

7 A —
Schedule
Note: lecture notes are not considered final until they are presented (i.e. I ~p—
material). . ‘

Speedrun exercises are here

Homework «

Date Topic
{11:45pm})

Tue 7/20 Getting Started in C

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 11

Share (Reuse) Expression Results

e “Compute once, use twice”, ex.:

/* Sum neighbors of i,j */
up = val[(i-1)*n + j];
down = wval[(i+l)*n + j];
left = wval[i*n + j-1]; (i+1) *n
right = val[i*n + j+1];

sum = up + down + left + right;

3 different multiplications:
i*n, (i-1)*n,

1 multiplication:

Before optimization N\ i*n
int inj = i*n + j;
up = val[inj - n];
down = wval[inj + n];

left = wval[inj - 1];
right = val[in] + 1];
sum = up + down + left + right;

After optimization ue e

CSC230: C and Software Tools © NC State Computer Science Faculty

Inlining Function Calls

e Replace a function call with equivalent inline
int
prod(int i, int j, int n, int b[n] [n], int c[n] [n])

{

int sum = 0;
for (k = 0; k < n; k++)

sum += b[i] [k] * c[k][j];
return sum;

}

for (1 = 0; i < n; i++)

for (j = 0; 3 < n; j++) N
a[il[j] = prod(i, j, n, b, c);

Before optimization
[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 13

M-I Optimization (cont’d)

After optimization

for (1 = 0; i < n; i++)
\ for (j = 0; j < n; j++) {
sum = 0;
for (k = 0; k < n; k++)
sum += b[i] [k] * c[k]l[j];
afi][J] = sum;

}

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 14

Reordering Tests

e Place frequent case labels or 1 £ conditions
first

— reduces the average number of comparisons

if (height > 84) /* extremely rare */
£1();

else if (height > 72) /* uncommon */
£2();

else /* usually the case */
£3();

N

Before optimization

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 15

Reordering Tests... (cont’d)

\ After optimization
if (height <= 72) /* usually the case */
£3();
else if (height <= 84) /* uncommon */
£2();
else /* extremely rare */
£1() s

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 16

Pass Large Parameters by Reference

e Avoid passing large structs as arguments to

functions.

struct mystruct {

. many members, incl. array(s)..
} bigstruct;

int r f (bigstruct) ;

int f(struct mystruct bigstruct) {

} \\,A
Before optimization

CSC230: C and Software Tools © NC State Computer Science Faculty 17

[omputer Science

Pass Large ... (cont’d)

N\ After optimization

int r f (&§bigstruct) ;

int f(const struct mystruct *sp) {

}

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 18

Cache Optimization

e Caching speeds up memory access

— store in the (small, expensive) cache the
data/instructions that are accessed most frequently

instructions msi“:j(;ttlsns
- data Main Memory
Processor > <l Cache <>
fast \ /

slow

The program design / data layout can improve cache
performance substantially in some cases

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 19

Multi-Core

e Getting optimal performance from multi-core
processors also requires careful attention to
coding

— current tools don't help that much

Mefmory Comtroller

&
=4
=
&
~
o
=
g
2]
7

CSC230: C and Software Tools © NC State Computer Science Faculty 20

Recommendations from
GNOME Project

e “If you want to optimize your program, the first
step is to profile the program running with real
life data and collect profiling information.”

e “Do not write code that is hard to read and
maintain if it is only to make the code faster.”

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 21

Bentley’s Fundamental Rules for
Optimization

e Code Simplification
— Fast programs are typically simple programs

e Problem Simplification

— Example: simplify loop by moving some work outside of the
loop

e Relentless Suspicion

— Question every part of the data structure and algorithm
bottleneck areas

e Early Binding

— Do some work as early as possible and only once

CSC230: C and Software Tools © NC State Computer Science Faculty 22

[omputer

clence

Test!!]

e Optimizations should NEVER change
functionality

— Test your program to ensure no regression in
behavior!!l

— Test after each optimization

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 23

EXAMPLE (TIME PERMITTING)

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 24

An Exercise
e Test case: an image processing program

e Digital images are composed of pixels
— each is an integer value, representing brightness
— 0 = black, 255 = white (grayscale picture)

This example shows an image with a portion greatly enlarged, inwhich the
individual pixels are rendered as little sguares and can easily be seen.

e How many pixels in an image?

O

¢

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 25

Exercise... (cont’d)

e Image filtering: blurring, edge detection, ...

example of smoothing
(blurring)

e How is (FIR) filtering done? /

— image convolution with a kernel

| FYAR S0 FEI0 STIR SE30 AT1R ST20 ST1N AT
T2y | Taz| T23| X2a| X2s| Q26| Q27| 25| Lo
Is1|Isz| T3s|Dsa| I3s| Xa6| Da7| I3s| L3o
Tar|Daz| Tas|Naa| Las|Tas| Daz| Tas| Lao
Isi|Isz| Iss|Isa| Iss|Ise| Is7| Iss| Iso
To1|Toz| o3| Xoa| Los| Doo| 7| Los| oo

Kl.l KI.I K13
KZI KZZ K23

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 26

Exercise ... (cont’d)

e Quadruply-nested loop!

for each row 1 of "old" image {
for each column j of "old" image {
newpix[i] [j] = O;
for (k = -n/2; k < n/2; k++)
for (1 = -m/2; 1 < m/2; 1l++)
newpix[i] [j] +=
oldpix[i+k] [J+1] *
kern([k] [j];

[omputer
27 NC STAT

clence

sobel edge filter

CSC230: C and Software Tools © NC State Computer Science Faculty

Optimizations

1. (Base version)

2. Swap inner and outer loops, better caching

3. Use code motion (pointer arithmetic)

4. Skip processing of boundaries of image

5. Exploit distributivity of multiplication over addition,
and specific kernel values

6. fwrite row of pixels instead of putc each pixel

7. Streamline reading of image, less pointer arithmetic

8. Use —03 optimization in gcc

real Om4d .502s real Oml.450s
user Omd .401S ——p USEr OmO.354s
SYS OmO.07%s SYS Om0.119s

[omputer Science

CSC230: C and Software Tools © NC State Computer Science Faculty 29

