Optimization of C Programs

C Programming and Software Tools
N.C. State Department of Computer Science

[omputer Science

Optimization

e Performance depends on...
1. algorithm / data structure choices

g

coding style

b

compiler + options

&

programming language (C is a good choice ©)

[omputer Science

€5C230: C and Software Tools © NC State Computer Science Faculty 3 NC STATE UNIVERSITY

Compilers

e Most compilers offer a variety of optimization
choices

e gcc: -0 or—01or—02 or—-03 (in order of
increasing optimization)

e How much can you expect this to help?

e Does it ever hurt?

[omputer Science

€5€230: C and Software Tools © NC State Computer Science Faculty K NC STATE UNIVERSITY

Compilers... (cont'd)
All the gcc choices(!) :

—-falign-functions=n -falign-jumps=n -falign-labels=n -falign-loops=n -fbounds-
check -fmudflap -fmudflapth -fmudflapir -fbranch-probabilities -fprofile-values
-fvpt -fbranch-target-load-optimize -fbranch-target-load-optimize2 -fbtr-bb-
exclusive -fcaller-saves -fcprop-registers -fcse-follow-jumps -fcse-skip-blocks
—-fcx-limited-range -fdata-sections -fdelayed-branch -fdelete-null-pointer-checks
-fearly-inlining -fexpensive-optimizations -ffast-math -ffloat-store -fforce-
addr -ffunction-sections -fgcse -fgcse-Im -fgcse-sm -fgcse-las -fgcse-after-
reload -floop-optimize -fcrossjumping -fif-conversion -fif-conversion2 -finline-
functions -finline-functions-called-once -finline-limit=n -fkeep-inline-
functions -fkeep-static-consts -fmerge-constants -fmerge-all-constants -fmodulo-
sched -fno-branch-count-reg -fno-default-inline -fno-defer-pop -floop-optimize2
—fmove-loop-invariants -fno-function-cse -fno-guess-branch-probability -fno-
inline -fno-math-errno -fno-peephole -fno-peephole2 -funsafe-math-optimizations
nsafe-loop-optimizations -ffinite-math-only -fno-trapping-math -fno-zero-
initialized-in-bss -fomit-frame-pointer -foptimize-register-move -foptimize-
sibling-calls -fprefetch-loop-arrays -fprofile-generate -fprofile-use -fregmove
-frename-registers -freorder-blocks -freorder-blocks-and-partition -freorder-
functions —frerun—cse—after—looE -frerun-loop-opt -frounding-math -fschedule-
insns -fschedule-insns2 -fno-sched-interblock -fno-sched-spec -fsched-spec-load
-fsched-spec-load-dangerous -fsched-stalled-insns=n -fsched-stalled-insns-dep=n
—-fsched2-use-superblocks -fsched2-use-traces -freschedule-modulo-scheduled-loops
-fsignaling-nans -fsingle-precision-constant -fstack-protector -fstack-
protector-all -fstrength-reduce -fstrict-aliasing -ftracer -fthread-jumps -
funroll-all-loops -funroll-loops -fpeel-loops -fsplit-ivs-in-unroller -
funswitch-loops -fvariable-expansion-in-unroller -ftree-pre -ftree-ccp -ftree-
dce -ftree-loop-optimize -ftree-loop-linear -ftree-loop-im -ftree-loop-ivcanon -
fivopts -ftree-dominator-opts -ftree-dse -ftree-copyrename -ftree-sink -ftree-ch
-ftree-sra -ftree-ter -ftree-Irs -ftree-fre -ftree-vectorize -ftree-vect-loop-
version -ftree-salias -fweb -ftree-copy-prop -ftree-store-ccp -ftree-store-copy-
prop -fwhole-program --param name=value -0 -00 -01 -02 -03 -Os

€SC230: C and Software Tools © NC State Computer Science Faculty 4 | NG STATE UNIVEHSITY)

Limitations on Optimizing

Must not change program outputs or results
May increase code length
May decrease code readability

C features that complicate optimization...
— pointers
— functions with side-effects

[omputer Science

€5€230: C and Software Tools © NC State Computer Science Faculty [NC STATE UNIVERSITY

Code Profiling

e To speed up a program, you have to know
where it spends the most time
e To measure execution time, use time utility
time ./program [command line args]
e gprof :atool for profiling program
execution
— counts number of times each function is called
— + how much time spent in each function
— Time values only useful for relative, not absolute,
performance measurement :
[omputer Science

€5C230: C and Software Tools © NC State Computer Science Faculty [-3 NC STATE UNIVERSITY

...Profiling (cont’d)

e To add cycle counting to your program,
compile with —pg flag, e.g.,
gcc —pg pgm.c —0 pgm
e When you run pgm, it produces normal
output, but also generates a file called
gmon.out

e Execute gprof after running the program, ,

e.g.,
gprof ./pgm

[omputer Sience
7 (TR

gprof Example

% cumulative self
time seconds seconds calls

sort_words

946596 lowerl
946596 find _ele rec
946596 h_add

e Shows number of calls and cumulative time for
each function

e Where would you try to optimize the above

program?

Lomputer dcience
Bl st e

Code Motion

* move an expression evaluation outside of a loop
(i.e., execute it fewer times)

Example
— — k =T0O;

for (i =0; ¥ <n; i+H) Jfor (i =0; i <n; i) {

for (=05 § <0 i+ T Tjng ni = n*i;
afn*i + j1 = fO * bljl; for G = 0; j < n; j++)
a[ni + j] = k * b[j];

+
Before optimization After optimization

[omputer Science
St s

€SC230: C and Software Tools © NC State Computer Science Faculty

Optimization?

/* Sum neighbors of 1,jJ */

up = val[(1-D)*n + j];

down = val[(i+1)*n + j];

left = val[i*n + J-1];

right = val[i1*n + j+1];

sum = up + down + left + right;

[omputer Science
I 10

€SC230: C and Software Tools © NC State Computer Science Faculty

Share (Reuse) Expression Results

e “Compute once, use twice”, ex.:

/* Sum neighbors of i,j */
up = val[(i-1)*n + j];

3 different multiplications:
i*n, (i-1)*n,

down = val[(i+1)*n + j];)
left = val[i*n + j-1]; (i+1)*n
right = val[i*n + j+1];
sum = up + down + left + right;
. 1 multiplication:
Before optimization A i*n
int inj = i*n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;

€SC230: C and Software Tools © NC State Computer Science Faculty

nmenee

After optimization

Inlining Function Calls

e Replace a function call with equivalent inline

int
prod(int i, int j, int n,
{

int sum = 0;
for (k = 0; k < n; k++)

return sum;

}

for (i = 0; i < n; i++)

int b[n][n], int c[n][n])

sum += b[i][k] * c[KILil:

€SC230: C and Software Tools © NC State Computer Science Faculty

for G = 0; j < n; j++) N
alillj] = prod(i, j, n, b, c);
Before optimization El]ﬂl[lllil!l Ccience

J . NC STATE UNIVERSITY

M-I Optimization (cont’d)

After optimization
for (1 = 0; 1 < nj; I++)
\ for (j =0; jJ <n; j++) {
sum = O;
for (k = 0; k < n; k++)
sum += bLi][k] * c[k]Lil;
a[i]li] = sum;

€5€230: C and Software Tools © NC State Computer Science Faculty JE L NC STATE UNIVERSITY

Reordering Tests

* Place frequent case labels or 1T conditions
first
— reduces the average number of comparisons

if (height > 84) /* extremely rare */
f10:;
else if (height > 72) /* uncommon */
20;
else /* usually the case */
30: R
N\

Before optimization
[omputer Science

€5€230: C and Software Tools © NC State Computer Science Faculty JW NC STATE UNIVERSITY

Reordering Tests... (cont’d)

\ After optimization
it (height <= 72) /* usually the case */
30;
else if (height <= 84) /* uncommon */
20;
else /* extremely rare */
f10;
[omputer Science
$C230: C and Software Tools © NC State Computer Science Faculty 15

Pass Large Parameters by Reference

e Avoid passing large structs as arguments to
functions.

struct mystruct {

. many members, incl. array(s)..

} bigstruct;

int r = F(bigstruct);
int f(struct mystruct bigstruct) {

i

R COmputer Cience
cccccc : C and Software Tools © NC StECoem.[uloer Src‘iﬁe Faocule tl m I Zat I 0 n 16

Pass Large ... (cont’d)

N After optimization

int r = F(&bigstruct);

int f(const struct mystruct *sp) {

€SC230: C and Software Tools © NC State Computer Science Faculty 17 NC STATE UNIVERSITY

Cache Optimization

e Caching speeds up memory access

— store in the (small, expensive) cache the
data/instructions that are accessed most frequently

instruction

instructions q
+data + data
Processor 4—}_ <=

fast

slow

The program design / data layout can impr'ove

cache performance substantially in soEne ca

€5€230: C and Software Tools © NC State Computer Science Faculty 13 NC STATE UNIVERSITY

Multi-Core

e Getting optimal performance from multi-core

processors also requires careful attention to
coding

— current tools don't help that much

[omputer Science

€5€230: C and Software Tools © NC State Computer Science Faculty FE-J NC STATE UNIVERSITY

Recommendations from
GNOME Project

e “If you want to optimize your program, the first
step is to profile the program running with real
life data and collect profiling information.”

e “Do not write code that is hard to read and
maintain if it is only to make the code faster.”

[omputer Science

€5C230: C and Software Tools © NC State Computer Science Faculty Yo NC STATE UNIVERSITY

10

Bentley’s Fundamental Rules for
Optimization

e Code Simplification
— Fast programs are typically simple programs
* Problem Simplification

— Example: simplify loop by moving some work outside of the
loop

e Relentless Suspicion

— Question every part of the data structure and algorithm
bottleneck areas

e Early Binding

— Do some work as early as possible and only once

[omputer Science

€5C230: C and Software Tools © NC State Computer Science Faculty PR NC STATE UNIVERSITY

Test!!!

e Optimizations should NEVER change
functionality

— Test your program to ensure no regression in
behavior!!!

— Test after each optimization

€5C230: C and Software Tools © NC State Computer Science Faculty PPRll NC STATE UNIVERSITY

11

