

APPENDIX D
RANDOM AND PSEUDORANDOM

NUMBER GENERATION

William Stallings

D.1 THE USE OF RANDOM NUMBERS ... 2	

Randomness .. 2	
Unpredictability .. 4	

D.2 PSEUDORANDOM NUMBER GENERATORS (PRNGS) 4	
Linear Congruential Generators .. 5	
Cryptographically Generated Random Numbers .. 8	

Cyclic Encryption .. 8	
DES Output Feedback Mode ... 10	
ANSI X9.17 PRNG ... 10	

Blum Blum Shub Generator ... 12	
D.3 TRUE RANDOM NUMBER GENERATORS ... 14	

Skew ... 15	
D.4 REFERENCES ... 15	

 Copyright 2014
 Supplement to
 Computer Security, Third Edition
 Pearson 2014
 http://williamstallings.com/ComputerSecurity

D-2

Random numbers play an important role in the use of encryption for various

computer security applications. In this section, we provide a brief overview

of the use of random numbers in computer security and then look at some

approaches to generating random numbers.

D.1 THE USE OF RANDOM NUMBERS

A number of network security algorithms based on cryptography make use

of random numbers. For example,

• Reciprocal authentication schemes such as Kerberos. In such schemes,

random numbers are used for handshaking to prevent replay attacks.

• Session key generation, whether done by a key distribution center or by

one of the principals.

• Generation of keys for the RSA public-key encryption algorithm

(described in Chapter 22).

 These applications give rise to two distinct and not necessarily

compatible requirements for a sequence of random numbers: randomness

and unpredictability.

Randomness

Traditionally, the concern in the generation of a sequence of allegedly

random numbers has been that the sequence of numbers be random in

some well-defined statistical sense. The following two criteria are used to

validate that a sequence of numbers is random:

D-3

• Uniform distribution: The distribution of numbers in the sequence

should be uniform; that is, the frequency of occurrence of each of the

numbers should be approximately the same.

• Independence: No one value in the sequence can be inferred from the

others.

 Although there are well-defined tests for determining that a sequence of

numbers matches a particular distribution, such as the uniform distribution,

there is no such test to "prove" independence. Rather, a number of tests can

be applied to demonstrate if a sequence does not exhibit independence. The

general strategy is to apply a number of such tests until the confidence that

independence exists is sufficiently strong.

 In the context of our discussion, the use of a sequence of numbers that

appear statistically random often occurs in the design of algorithms related

to cryptography. For example, a fundamental requirement of the RSA public-

key encryption scheme discussed in Chapter 22 is the ability to generate

prime numbers. In general, it is difficult to determine if a given large

number N is prime. A brute-force approach would be to divide N by every

odd integer less than N . If N is on the order, say, of 10150, a not

uncommon occurrence in public-key cryptography, such a brute-force

approach is beyond the reach of human analysts and their computers.

However, a number of effective algorithms exist that test the primality of a

number by using a sequence of randomly chosen integers as input to

relatively simple computations. If the sequence is sufficiently long (but far,

far less than 10150), the primality of a number can be determined with near

certainty. This type of approach, known as randomization, crops up

frequently in the design of algorithms. In essence, if a problem is too hard or

D-4

time-consuming to solve exactly, a simpler, shorter approach based on

randomization is used to provide an answer with any desired level of

confidence.

Unpredictability

In applications such as reciprocal authentication and session key generation,

the requirement is not so much that the sequence of numbers be statistically

random but that the successive members of the sequence are unpredictable.

With "true" random sequences, each number is statistically independent of

other numbers in the sequence and therefore unpredictable. However, as is

discussed shortly, true random numbers are seldom used; rather, sequences

of numbers that appear to be random are generated by some algorithm. In

this latter case, care must be taken that an opponent not be able to predict

future elements of the sequence on the basis of earlier elements.

D.2 PSEUDORANDOM NUMBER GENERATORS (PRNGS)

Cryptographic applications typically make use of algorithmic techniques for

random number generation. These algorithms are deterministic and

therefore produce sequences of numbers that are not statistically random.

However, if the algorithm is good, the resulting sequences will pass many

reasonable tests of randomness. Such numbers are referred to as

pseudorandom numbers.

 You may be somewhat uneasy about the concept of using numbers

generated by a deterministic algorithm as if they were random numbers.

Despite what might be called philosophical objections to such a practice, it

generally works. As one expert on probability theory puts it [HAMM91],

D-5

For practical purposes we are forced to accept the awkward
concept of "relatively random" meaning that with regard to the
proposed use we can see no reason why they will not perform as
if they were random (as the theory usually requires). This is
highly subjective and is not very palatable to purists, but it is
what statisticians regularly appeal to when they take "a random
sample" —they hope that any results they use will have
approximately the same properties as a complete counting of the
whole sample space that occurs in their theory.

Linear Congruential Generators

By far, the most widely used technique for pseudorandom number

generation is an algorithm first proposed by Lehmer [LEHM51], which is

known as the linear congruential method. The algorithm is parameterized

with four numbers, as follows:

 m the modulus m > 0

 a the multiplier 0 < a < m

 c the increment 0 ≤ c < m

 X0 the starting value, or seed 0 ≤ X0 < m

 The sequence of random numbers {Xn} is obtained via the following

iterative equation:

Xn+1 = (aXn + c) mod m

If m, a, c, and X0 are integers, then this technique will produce a sequence

of integers with each integer in the range 0 ≤ Xn < m.

D-6

 The selection of values for a, c, and m is critical in developing a good

random number generator. For example, consider a = c = 1. The sequence

produced is obviously not satisfactory. Now consider the values a = 7, c = 0,

m = 32, and X0 = 1. This generates the sequence {7, 17, 23, 1, 7, etc.},

which is also clearly unsatisfactory. Of the 32 possible values, only 4 are

used; thus, the sequence is said to have a period of 4. If, instead, we

change the value of a to 5, then the sequence is {5, 25, 29, 17, 21, 9, 13,

1, 5, etc.}, which increases the period to 8.

 We would like m to be very large, so that there is the potential for

producing a long series of distinct random numbers. A common criterion is

that m be nearly equal to the maximum representable nonnegative integer

for a given computer. Thus, a value of m near to or equal to 231 is typically

chosen.

 [PARK88] proposes three tests to be used in evaluating a random

number generator:

 T1: The function should be a full-period generating function. That is, the

function should generate all the numbers between 0 and m before

repeating.

 T2: The generated sequence should appear random. Because it is

generated deterministically, the sequence is not random. There is a

variety of statistical tests that can be used to assess the degree to

which a sequence exhibits randomness.

 T3: The function should implement efficiently with 32-bit arithmetic.

 With appropriate values of a, c, and m, these three tests can be passed.

With respect to T1, it can be shown that if m is prime and c = 0, then for

certain values of a, the period of the generating function is m – 1, with only

D-7

the value 0 missing. For 32-bit arithmetic, a convenient prime value of m is

231 – 1. Thus, the generating function becomes

Xn+1 = (aXn) mod (231 – 1)

 Of the more than 2 billion possible choices for a, only a handful of

multipliers pass all three tests. One such value is a = 75 = 16807, which was

originally designed for use in the IBM 360 family of computers [LEWI69].

This generator is widely used and has been subjected to a more thorough

testing than any other PRNG. It is frequently recommended for statistical

and simulation work (e.g., [JAIN91], [SAUE81]).

 The strength of the linear congruential algorithm is that if the multiplier

and modulus are properly chosen, the resulting sequence of numbers will be

statistically indistinguishable from a sequence drawn at random (but without

replacement) from the set 1, 2, . . . , m – 1. But there is nothing random at

all about the algorithm, apart from the choice of the initial value X0. Once

that value is chosen, the remaining numbers in the sequence follow

deterministically. This has implications for cryptanalysis.

 If an opponent knows that the linear congruential algorithm is being

used and if the parameters are known (e.g., a = 75, c = 0, m = 231 – 1),

then once a single number is discovered, all subsequent numbers are

known. Even if the opponent knows only that a linear congruential algorithm

is being used, knowledge of a small part of the sequence is sufficient to

determine the parameters of the algorithm. Suppose that the opponent is

able to determine values for X0, X1, X2, and X3. Then

 X1 = (aX0 + c) mod m

 X2 = (aX1 + c) mod m

D-8

 X3 = (aX2 + c) mod m

These equations can be solved for a, c, and m.

 Thus, although it is nice to be able to use a good PRNG, it is desirable to

make the actual sequence used nonreproducible, so that knowledge of part

of the sequence on the part of an opponent is insufficient to determine

future elements of the sequence. This goal can be achieved in a number of

ways. For example, [BRIG79] suggests using an internal system clock to

modify the random number stream. One way to use the clock would be to

restart the sequence after every N numbers using the current clock value

(mod m) as the new seed. Another way would be simply to add the current

clock value to each random number (mod m).

Cryptographically Generated Random Numbers

For cryptographic applications, it makes some sense to take advantage of

the encryption logic available to produce random numbers. A number of

means have been used, and in this subsection we look at three

representative examples.

CYCLIC ENCRYPTION

 Figure D.1 illustrates an approach suggested in [MEYE82]. In this case,

the procedure is used to generate session keys from a master key. A counter

with period N provides input to the encryption logic. For example, if 56-bit

DES keys are to be produced, then a counter with period 256 can be used.

After each key is produced, the counter is incremented by 1. Thus, the

pseudorandom numbers produced by this scheme cycle through a full

period: Each of the outputs X0, X1, . . . XN–1 is based on a different counter

value and therefore X0 ≠ X1 ≠. . . ≠ XN–1. Because the master key is

D-9

protected, it is not computationally feasible to deduce any of the session

keys (random numbers) through knowledge of one or more earlier session

keys.

D-10

 To strengthen the algorithm further, the input could be the output of a

full-period PRNG rather than a simple counter.

DES OUTPUT FEEDBACK MODE

 The cipher feedback (CFB) mode (Figure 20.7) of DES can be used for

key generation as well as for stream encryption. Notice that the output of

each stage of operation is a 64-bit value, of which the s leftmost bits are fed

back for encryption. Successive 64-bit outputs constitute a sequence of

pseudorandom numbers with good statistical properties. Again, as with the

approach suggested in the preceding subsection, the use of a protected

master key protects the generated session keys.

ANSI X9.17 PRNG

 One of the strongest (cryptographically speaking) PRNGs is specified in

ANSI X9.17. A number of applications employ this technique, including

financial security applications and the secure e-mail program PGP.

 Figure D.2 illustrates the algorithm, which makes use of triple DES for

encryption. The ingredients are as follows:

• Input: Two pseudorandom inputs drive the generator. One is a 64-bit

representation of the current date and time, which is updated on each

number generation. The other is a 64-bit seed value; this is initialized to

some arbitrary value and is updated during the generation process.

• Keys: The generator makes use of three triple DES encryption modules.

All three make use of the same pair of 56-bit keys, which must be kept

secret and are used only for pseudorandom number generation.

D-11

• Output: The output consists of a 64-bit pseudorandom number and a

64-bit seed value.

 Define the following quantities:

 DTi Date/time value at the beginning of ith generation stage

 Vi Seed value at the beginning of ith generation stage

 Ri Pseudorandom number produced by the ith generation stage

 K1, K2 DES keys used for each stage

 Then

D-12

Ri = EDE([K1, K2], [Vi ⊕ EDE([K1, K2], DTi)])

Vi+1 = EDE([K1, K2], [Ri ⊕ EDE([K1, K2], DTi)])

where EDE([K1, K2], X) refers to the sequence encrypt-decrypt-encrypt

using two-key triple DES to encrypt X.

 Several factors contribute to the cryptographic strength of this method.

The technique involves a 112-bit key and three EDE encryptions for a total

of nine DES encryptions. The scheme is driven by two pseudorandom inputs,

the date and time value, and a seed produced by the generator that is

distinct from the pseudorandom number produced by the generator. Thus,

the amount of material that must be compromised by an opponent is

overwhelming. Even if a pseudorandom number Ri were compromised, it

would be impossible to deduce the Vi+1 from the Ri because an additional

EDE operation is used to produce the Vi+1.

Blum Blum Shub Generator

A popular approach to generating secure pseudorandom number is known as

the Blum, Blum, Shub (BBS) generator, named for its developers [BLUM86].

It has perhaps the strongest public proof of its cryptographic strength. The

procedure is as follows. First, choose two large prime numbers, p and q, that

both have a remainder of 3 when divided by 4. That is,

p ≡ q ≡ 3 (mod 4)

This notation, explained more fully in Appendix A, simply means that (p mod

4) = (q mod 4) = 3. For example, the prime numbers 7 and 11 satisfy 7 ≡

11 ≡ 3 (mod 4). Let n = p × q. Next, choose a random number s, such that s

is relatively prime to n; this is equivalent to saying that neither p nor q is a

D-13

factor of s. Then the BBS generator produces a sequence of bits Bi

according to the following algorithm:

 X0 = s2 mod n
 for i = 1 to ∞
 Xi = (Xi–1)

2 mod n
 Bi = Xi mod 2

Thus, the least significant bit is taken at each iteration. Table D.1 shows an

example of BBS operation. Here, n = 192649 = 383 × 503 and the seed s =

101355.

 The BBS is referred to as a cryptographically secure pseudorandom

bit generator (CSPRBG). A CSPRBG is defined as one that passes the next-

bit test, which, in turn, is defined as follows [MENE97]: A pseudorandom bit

generator is said to pass the next-bit test if there is not a polynomial-time

algorithm1 that, on input of the first k bits of an output sequence, can

predict the (k + 1)st bit with probability significantly greater than 1/2. In

other words, given the first k bits of the sequence, there is not a practical

algorithm that can even allow you to state that the next bit will be 1 (or 0)

with probability greater than 1/2. For all practical purposes, the sequence is

unpredictable. The security of BBS is based on the difficulty of factoring n.

That is, given n, we need to determine its two prime factors p and q.

1 A polynomial-time algorithm of order k is one whose running time is

bounded by a polynomial of order k.

D-14

Table D.1 Example Operation of BBS Generator

i Xi Bi i Xi Bi i Xi Bi

0 20749 7 45663 1 14 114386 0

1 143135 1 8 69442 0 15 14863 1

2 177671 1 9 186894 0 16 133015 1

3 97048 0 10 177046 0 17 106065 1

4 89992 0 11 137922 0 18 45870 0

5 174051 1 12 123175 1 19 137171 1

6 80649 1 13 8630 0 20 48060 0

D.3 TRUE RANDOM NUMBER GENERATORS

A true random number generator (TRNG) uses a nondeterministic source to

produce randomness. Most operate by measuring unpredictable natural

processes, such as pulse detectors of ionizing radiation events, gas

discharge tubes, and leaky capacitors. Intel has developed a commercially

available chip that samples thermal noise by amplifying the voltage

measured across undriven resistors [JUN99]. A group at Bell Labs has

developed a technique that uses the variations in the response time of raw

read requests for one disk sector of a hard disk [JAKO98]. LavaRnd is an

open source project for creating truly random numbers using inexpensive

cameras, open source code, and inexpensive hardware. The system uses a

saturated CCD in a light-tight can as a chaotic source to produce the seed.

D-15

Software processes the result into truly random numbers in a variety of

formats.

 There are problems both with the randomness and the precision of such

numbers [BRIG79], to say nothing of the clumsy requirement of attaching

one of these devices to every system in an internetwork. Another alternative

is to dip into a published collection of good-quality random numbers (e.g.,

[RAND55], [TIPP27]). However, these collections provide a very limited

source of numbers compared to the potential requirements of a sizable

network security application. Furthermore, although the numbers in these

books do indeed exhibit statistical randomness, they are predictable,

because an opponent who knows that the book is in use can obtain a copy.

Skew

A true random number generator may produce an output that is biased in

some way, such as having more ones than zeros or vice versa. Various

methods of modifying a bit stream to reduce or eliminate the bias have been

developed. These are referred to as deskewing algorithms. One approach to

deskew is to pass the bit stream through a hash function such as MD5 or

SHA (described in Chapter 21). The hash function produces an n-bit output

from an input of arbitrary length. For deskewing, blocks of m input bits, with

m ≥ n, can be passed through the hash function.

D.4 REFERENCES

BLUM86 Blum, L.; Blum, M.; and Shub, M. "A Simple Unpredictable
Pseudo-Random Number Generator." SIAM Journal on Computing, No.
2, 1986.

BRIG79 Bright, H., and Enison, R. "Quasi-Random Number Sequences

from Long-Period TLP Generator with Remarks on Application to
Cryptography." Computing Surveys, December 1979.

D-16

HAMM91 Hamming, R. The Art of Probability for Scientists and Engineers.

Reading, MA: Addison-Wesley, 1991.

JAIN91 Jain, R. The Art of Computer Systems Performance Analysis:

Techniques for Experimental Design, Measurement, Simulation, and
Modeling. New York: Wiley, 1991.

JAKO98 Jakobsson, M.; Shriver, E.; Hillyer, B.; and Juels, A. "A practical

secure physical random bit generator." Proceedings of The Fifth ACM
Conference on Computer and Communications Security, November
1998.

JUN99 Jun, B., and Kocher, P. The Intel Random Number Generator.

Intel White Paper, April 22, 1999.

LEHM51 Lehmer, D. "Mathematical Methods in Large-Scale Computing."

Proceedings, 2nd Symposium on Large-Scale Digital Calculating
Machinery, Cambridge, MA: Harvard University Press, 1951.

LEWI69 Lewis, P.; Goodman, A.; and Miller, J. "A Pseudo-Random

Number Generator for the System/360." IBM Systems Journal, No. 2,
1969.

MENE97 Menezes, A.; van Oorschot, P.; and Vanstone, S. Handbook of

Applied Cryptography. Boca Raton, FL: CRC Press, 1997.

MEYE82 Meyer, C., and Matyas, S. Cryptography: A New Dimension in

Computer Data Security. New York: Wiley, 1982.

PARK88 Park, S., and Miller, K. "Random Number Generators: Good Ones

are Hard to Find." Communications of the ACM, October 1988.

RAND55 Rand Corporation. A Million Random Digits. New York: The Free

Press, 1955. http://www.rand.org/publications/classics/randomdigits .

SAUE81 Sauer, C., and Chandy, K. Computer Systems Performance

Modeling. Englewood Cliffs, NJ: Prentice Hall, 1981.

TIPP27 Tippett, L. Random Sampling Numbers. Cambridge, England:

Cambridge University Press, 1927.

