62 SECRET KEY CRYPTOGRAPHY 9.3

.

[8bits | [8bits] [8bits] [8bits| [8 bltsJ [8 bits | 8 blts [8 bltsJ

Eight 8-bit
substitution
e functions
derived from
the key
W | 8 bItSJ rblts | |8 bltsl | 8 bItSI 8 blts

64-| blt |ntermed|ate

64-bit |nput

Divide input
into eight

8-bit pieces

\

Loop for n rounds

Permute
the bits,
possibly
based on
the key

64-bit output |

Figure 3-1. Example of Block Encryption

3.3 DATA ENCRYPTION STANDARD (DES)

DES was published in 1977 by the National Bureau of Standards (since renamed to the National
Institute of Standards and Technology) for use in commercial and unclassified (hmm...) U.S. Gov-
ernment applications. It was designed by IBM based on their own Lucifer cipher and input from
NSA. DES uses a 56-bit key, and maps a 64-bit input block into a 64-bit output block. The key actu-
ally looks like a 64-bit quantity, but one bit in each of the 8 octets is used for odd parity on each
octet. Therefore, only 7 of the bits in each octet are actually meaningful as a key.

DES is efficient to implement in hardware but relatively slow if implemented in software.
‘Although making software implementations difficult was not a documented goal of DES, people
have asserted that DES was specifically designed with this in mind, perhaps because this would
limit its use to organizations that could afford hardware-based solutions, or perhaps because it made
it easier to control access to the technology. At any rate, advances in CPUs have made it feasible to
do DES in software. For instance, a 500-MIP CPU can encrypt at about 30 Koctets per second (and
perhaps more depending on the details of the CPU design and the cleverness of the implementa-
tion). This is adequate for many applications.

33 DATA ENCRYPTION STANDARD (DES) 63

Why 56 bits?

Use of a 56-bit key is one of the most controversial aspects of DES. Even before DES was
adopted, people outside of the intelligence community complained that 56 bits provided inad-
equate security [DENNS2, DIFF76a, DIFF77, HELL79]. So why were only 56 of the 64 bits
of a DES key used in the algorithm? The disadvantage of using 8 bits of the key for parity
checking is that it makes DES considerably less secure (256 times less secure against exhaus-
tive search).

OK, so what is the advantage of using 8 bits of the key for parity? Well, uh, let’s say
you receive a key electronically, and you want to sanity-check it to see if it could actually be
a key. If you check the parity of the quantity, and it winds up not having the correct parity,
then you’ll know something went wrong.

There are two problems with this reasoning. One is that there is a 1 in 256 chance
(given the parity scheme) that even if you were to get 64 bits of garbage, that the result will
happen to have the correct parity and therefore look like a key. That is way too large a possi-
bility of error for it to afford any useful protection to any application. The other problem with
the reasoning is that there is nothing terribly bad about getting a bad key. You’ll discover the
key is bad when you try to use it for encrypting or decrypting.

The key, at 56 bits, is pretty much universally acknowledged to be too small to be
secure. Perhaps one might argue that a smaller key is an advantage because it saves storage—
but that argument doesn’t hold since nobody does data compression on the 64-bit keys in
order to fit them into 56 bits. So what benefits are there to usurping 8 bits for parity that offset
the loss in security?

People (not us, surely!) have suggested that our government consciously decided to
weaken the security of DES just enough so that NSA would be able to break it. We would like
to think there is an alternative explanation, but we have never heard a plausible one proposed.

Advances in semiconductor technology make the key-length issue more critical. Chip speeds
have caught up so that DES keys can be broken with a bit of cleverness and exhaustive search. Per-
haps a 64-bit key might have extended its useful lifetime by a few years. Given hardware price/per-
formance improving about 40% per year, keys must grow by about 1 bit every 2 years. Assuming
56 bits was just sufficient in 1979 (when DES was standardized), 64 bits was about right in 1995,
and 128 bits would suffice until 2123.

64 SECRET KEY CRYPTOGRAPHY 331

How secure is DES?

Suppose you have a single block of (plaintext, ciphertext). Breaking DES in this case would
mean finding a key that maps that plaintext to that ciphertext. With DES implemented in soft-
ware, it would take on the order of half a million MIP-years, through brute force, to find the
key. (Is it possible to find the “wrong” key, given a particular pair? Might two different keys
map the same plaintext to the same ciphertext? How many keys on the average map a particu-
lar pair? See Homework Problem 3.)

Often the attacker does not have a {plaintext, ciphertext) block. Instead the attacker has
a reasonable amount of ciphertext only. It might be known, for example, that the encrypted
data is likely to be 7-bit ASCIL. In that case, it is still just about as efficient to do brute-force
search. The ciphertext is decrypted with the guessed key, and if all the 8" bits are zero (which
will happen with an incorrect key with probability 1 in 256), then another block is decrypted.
After several (say ten) blocks are decrypted, and the result always appears to be 7-bit ASCII,
the key has a high probability of being correct.

Current commercial DES chips do not lend themselves to doing exhaustive key
search—they allow encrypting lots of data with a particular key. The relative speed of key
loading is much less than the speed of encrypting data. However, it is straightforward to
design and manufacture a key-searching DES chip.

In 1977, Diffie and Hellman [DIFF77] did a detailed analysis of what it would cost to
build a DES-breaking engine and concluded that for $20 million you could build a million-
chip machine that could find a DES key in twelve hours (given a (plaintext, ciphertext) pair).
In 1998, EFF (Electronic Frontier Foundation) [EFF98] built a special-purpose DES-break-
ing engine, called the EFF DES Cracker, for under $250K. It was designed to find a DES key
in 4.5 days. With the design done, the cost of replicating the engine was under $150K.

There are published papers [BIHA93] claiming that less straightforward attacks can
break DES faster than simply searching the key space. However, these attacks involve the
premise, unlikely in real-life situations, that the attacker can choose lots of plaintext and
obtain the corresponding ciphertext.

Still it is possible to encrypt multiple times with different keys (see §4.4 Mulriple
Encryption DES). It is generally believed that DES with triple encryption is 236 times as diffi-
cult to crack and therefore will be secure for the foreseeable future.

3.3.1 DES Overview

DES is quite understandable, and has some very elegant tricks. Let’s start with the basic structure of
DES (Figure 3-2).

35 DATA ENCRYPTION STANDARD (DES) 65

[e4bitinput | 56-bit key
m< Initial Permutation
i D Generate 16
| | per-round keys
Round 1) A3bi i

sy 48-bit K,
@ 48-bit Kig

swap left and right halves

; ; %; 5%6 Final Permutation

| 64-bitoutput |

Figure 3-2. Basic Structure of DES

The 64-bit input is subjected to an initial permutation to obtain a 64-bit result (which is just
the input with the bits shuffled). The 56-bit key is used to generate sixteen 48-bit per-round keys, by
taking a different 48-bit subset of the 56 bits for each of the keys. Each round takes as input the 64-
bit output of the previous round, and the 48-bit per-round key, and produces a 64-bit output. After
the 16" round, the 64-bit output has its halves swapped and is then subjected to another permuta-
tion, which happens to be the inverse of the initial permutation.

That is the overview of how encryption works. Decryption works by essentially running DES
backwards. To decrypt a block, you’d first run it through the initial permutation to undo the final
permutation (the initial and final permutations are inverses of each other). You’d do the same key
generation, though you’d use the keys in the opposite order (first use K¢, the key you generated
last). Then you run 16 rounds just like for encryption. Why this works will be explained when we
explain what happens during a round. After 16 rounds of decryption, the output has its halves
swapped and is then subjected to the final permutation (to undo the initial permutation).

To fully specify DES, we need to specify the initial and final permutations, how the per round
keys are generated, and what happens during a round. Let’s start with the initial and final permuta-
tions of the data.

66 SECRET KEY CRYPTOGRAPHY 332

3.3.2 The Permutations of the Data

DES performs an initial and final permutation on the data, which do essentially nothing to enhance
DES’s security (see Why permute? on page 67). The most plausible reason for these permutations is
to make DES less efficient to implement in software.

The way the permutations are specified in the DES spec is as follows:

Initial Permutation (IP) Final Permutation (IP~")
58 50 42! 34261810 2 40 8 48 16 56 24 64 32
60 52 44 36 28 20 12 4 39 7 47 15 55 23 63 31
62 54 46 38 30 22 14 © 38 6 46 14 54 22 62 30
64 56 48 40 32 24 16 8 37545 B L3 2N 6829
byed 9 418 33 S5 7.5 9] 36 4 44 12 52 20 60 28
59 W5l =43 3527 1913 35 =3 431w 5 191 59 27
61 53 45 37 29 21 13 5 3452849 10850188 58 526
63 E558 4748 39 F 38 23558 7. 335 RIS ORSRA O 7S 6725

The numbers in the above tables specify the bit numbers of the input to the permutation. The
order of the numbers in the tables corresponds to the output bit position. So for example, the initial
permutation moves input bit 58 to output bit 1 and input bit 50 to output bit 2.

The permutation is not a random-looking permutation. Figure 3-3 pictures it. The arrows
indicate the initial permutation. Reverse the arrows to get the final permutation. We hope you

output bit

dai20 BEE4(E50 16157

octet

0 N o A W N =

Figure 3-3. Initial Permutation of Data Block

appreciate the time we spent staring at the numbers and discovering this completely useless struc-
ture.

3433 DATA ENCRYPTION STANDARD (DES) 67

The input is 8 octets. The output is 8 octets. The bits in the first octet of input get spread into
the 8" bits of each of the octets. The bits in the second octet of input get spread into the 7" bits of
all the octets. And in general, the bits of the i octet get spread into the (9—i)” bits of all the octets.
The pattern of spreading of the 8 bits in octet / of the input among the output octets is that the even-
numbered bits go into octets 1-4, and the odd-numbered bits go into octets 5-8. Note that if the
data happens to be 7-bit ASCII, with the top bit set to zero, then after the permutation the entire 5
octet will be zero. Since the permutation appears to have no security value, it seems nearly certain
that there is no security significance to this particular permutation.

Why permute?

Why can’t the initial and final permutations of the data be of security value? Well, suppose
they were important, i.e., if DES did not have them it would be possible to break DES. Let’s
call a modified DES that does not have the initial and final permutation EDS. Let’s say we
can break EDS, i.e., given a (plaintext,ciphertext) EDS pair, we can easily calculate the EDS
key that converts the plaintext into the ciphertext. In that case, we can easily break DES as
well. Given a DES (plaintext,ciphertext) pair (m,c), we simply do the inverse of the initial
permutation (i.e. the final permutation) on m to get m’, and the inverse of the final permuta-
tion (i.e. the initial permutation) on ¢ to get ¢, and feed {(m’,c") to our EDS-breaking code.
The resulting EDS key will work as the DES key for (m,c).

Note that when multiple encryptions of DES are being performed, the permutation
might have some value. However, if encryption with key, is followed by encryption with
key,, then the final permutation following encryption with key,; will cancel the initial permu-
tation for key,. That is one of the reasons people discuss alternating encrypt operations with
decrypt operations (see §4.4 Multiple Encryption DES).

In §3.3.3 Generating the Per-Round Keys, we’ll see there is also a permutation of the
key. It also has no security value (by a similar argument).

3.3.3 Generating the Per-Round Keys

Next we’ll specify how the sixteen 48-bit per-round keys are generated from the DES key. The DES
key looks like it’s 64 bits long, but 8 of the bits are parity. Let’s number the bits of the DES key
from left to right as 1, 2,...64. Bits 8, 16,...64 are the parity bits. DES performs a function, which
we are about to specify, on these 64 bits to generate sixteen 48-bit keys, which are K, K5, ...K 16:

First it does an initial permutation on the 56 useful bits of the key, to generate a 56-bit output,
which it divides into two 28-bit values, called Cy and D,,. The permutation is specified as

68 SECRET KEY CRYPTOGRAPHY 333

CO DO
57 49 41 33 25 17 9 635574 398 i 23 5
1 58 50 42 34 26 18 7 621054 463830 D2
i|[QNEDESLGREE, I A3 W35 DN 14 6 EGiIER 53R LS 37AD0
19 {18 360 52 B44 H36 phb s el L5y 2T al0) B el |

The way to read the table above is that the leftmost bit of the output is obtained by extracting
bit 57 from the key. The next bit is bit 49 of the key, and so forth, with the final bit of D, being bit 4
of the key. Notice that none of the parity bits (8, 16,...64) is used in C, or D,

This permutation is not random. Figure 3-4 pictures it. Feel free to draw in any arrows or
other graphic aids to make it clearer.

Figure 3-4. Initial Permutation of Key

The initial and final permutations of the bits in the key have no security value (just like the
initial and final permutations of the data), so the permutations didn’t have to be random—the iden-
tity permutation would have done nicely.

Now the generation of the K; proceeds in 16 rounds (see Figure 3-5). The number of bits
shifted is different in the different rounds. In rounds 1, 2, 9, and 16, it is a single-bit rotate left (with

= o e |

rotate left rotate left

i | & o [B

loop back
for next round

G e L]

Figure 3-5. Round i for generating K;

3.3.4 DATA ENCRYPTION STANDARD (DES) 69

the bit shifted off the left end carried around and shifted into the right end). In the other rounds, it is
a two-bit rotate left.

The permutations in this case are likely to be of some security value.

The permutation of C; that produces the left half of X; is the following. Note that bits 9, 18,
22, and 25 are discarded.

14 17 11 24 1 5
3% 23E 158 6 RO ()
23819 12584226 8
(678807 58 D087

permutation to obtain the left half of K;:

The permutation of the rotated D;_; that produces the right half of K; is as follows (where the
bits of the rotated D;_; are numbered 29, 30,...56, and bits 35, 38, 43, and 54 are discarded).

41 5202313747 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

permutation to obtain the right half of K;:

Each of the halves of K; is 24 bits, so K; is 48 bits long.

3.3.4 A DES Round

Now let’s look at what a single round of DES does. Figure 3-6 shows both how encryption and
decryption work.

In encryption, the 64-bit input is divided into two 32-bit halves called L, and R,,. The round
generates as output 32-bit quantities L,..; and R, ;. The concatenation of L, and R, is the 64-
bit output of the round.

L4y 1s simply R,. R, is obtained as follows. First R, and K, are input to what we call a
mangler function, which outputs a 32-bit quantity. That quantity is ©’d with L, to obtain the new
R,,11- The mangler takes as input 32 bits of the data plus 48 bits of the key to produce a 32-bit out-
put.

Given the above, suppose you want to run DES backward, i.e. to decrypt something. Suppose
you know L, ,; and R, ;. How do you get L, and R,,?

Well, R, is just L,,,;. Now you know R, L, R, and K,,. You also know that R, equals
L, ® mangler(R,, K;,). You can compute mangler(R,,, K,,), since you know R,, and K,,. Now @ that
with R, .. The result will be ,. Note that the mangler is never run backwards. DES is elegantly
designed to be reversible without constraining the mangler function to be reversible. This design is

70 SECRET KEY CRYPTOGRAPHY k)

| 64-bit input | | 64-bit output 1

32-bit L,

Mangler
Function

&

32-bit Rpeq

~— K,

30l 32-bit R,y 32-bit L, 1

| 64-bit output | B 64-bit input |

Encryption Decryption
Figure 3-6. DES Round

due to Feistel [FEIS73]. Theoretically the mangler could map all values to zero, and it would still
be possible to run DES backwards, but having the mangler function map all functions to zero would
make DES pretty unsecure (see Homework Problem 5).

If you examine Figure 3-6 carefully, you will see that decryption is identical to encryption
with the 32-bit halves swapped. In other words, feeding R, {|L, into round n produces R, |L, as
output.

3.3.5 The Mangler Function

The mangler function takes as input the 32-bit R,,, which we’ll simply call R, and the 48-bit K,,
which we’ll call K, and produces a 32-bit output which, when @’d with L,,, produces R, (the next
R).

The mangler function first expands R from a 32-bit value to a 48-bit value. It does this by
-breaking R into eight 4-bit chunks and then expanding each of those chunks to 6 bits by taking the

STl 7 DATA ENCRYPTION STANDARD (DES) 71

adjacent bits and concatenating them to the chunk. The leftmost and rightmost bits of R are consid-
ered adjacent.

4
i\
\

\\‘
\\\
\
/
/

e

Figure 3-7. Expansion of R to 48 bits

The 48-bit K is broken into eight 6-bit chunks. Chunk i of the expanded R is ®’d with chunk i
of K to yield a 6-bit output. That 6-bit output is fed into an S-box, a substitution which produces a

chunk 7 of R chunk i of K

S-Box i

Pid

Figure 3-8. Chunk Transformation

4-bit output for each possible 6-bit input. Since there are 64 possible input values (6 bits) and only
16 possible output values (4 bits), the S-box clearly maps several input values to the same output
value. As it turns out, there are exactly four input values that map to each possible output value.
There’s even more pattern to it than that. Each S-box could be thought of as four separate 4-bit to 4-

72 SECRET KEY CRYPTOGRAPHY Sk

bit S-boxes, with the inner 4 bits of the 6-bit chunk serving as input, and the outer 2 bits selecting
which of the four 4-bit S-boxes to use. The S-boxes are specified as follows:

Input bits 1 and 6 Input bits 2 thru 5

1 |0000]000100100011/0100J0101|0110|0111]1000|1001|1010[1011[1100]1101] 1110|1111
00 [1110/0100[1101/0001]0010[1111]1011]1000[0011[1010[0110[1100/0101]1001]/0000[0111
-010000|1111]0111]0100[1110[0010[1101|0001(1010/0110|1100|1011|1001|0101/0011{1000
10 [0100/0001|1110|1000|1101|0110{0010[1011|1111|1100{1001/0111|0011|1010|0101|0000
11 [1111/1100{1000|0010|0100|1001|0001(0111|0101|1011/00111110|1010|0000|0110| 1101

Figure 3-9. Table of 4-bit outputs of S-box 1 (bits 1 thru 4)

Input bits 7 and 12 Input bits 8 thru 11 [
L |0000]00o1|0010jo011]o100]0101|0110]0111]1000/1001|1010[1011]1100|11011110] 1111
00 [1111]00o1]1000[1110[0110[1011]0011]0100[1001[0111]0010[1101]1100[0000[0101[1010
——01 (0011/1101|0100|0111{1111|0010[1000[1110/11000000|{0001|1010|0110[1001|1011/0101
10 [0000[1110|0111{1011/1010{0100[1101|0001|0101/1000|1100/0110{1001|0011{0010| 1111
11 [1101/1000{10100001|0011|1111|0100{0010[1011|0110/01111100]0000|0101| 1110|1001

Figure 3-10. Table of 4-bit outputs of S-box 2 (bits 5 thru 8)

Input bits 13 and 18 y Input bits 14 thru 17
1 |0000]0001/0010J0011/0100|0101|0110|0111]1000[1001|1010[1011[1100]1101]1110]1111
00 [1010]0000[1001[1110]0110[0011]1111]0101/0001[1101]1100[0111[1011]0100]0010[1000
' __01[1101(0111/0000/1001/0011/01Q0|0110|1010{0010[1000(0101|1110[1100/1011|1111/0001
10 [1101/0110|0100|1001{1000|1111|0011(0000[1011|0001/0010|1100|0101|1010| 1110|0111
110001|1010|1101|0000|0110[1001(1000/0111/0100|1111|1110{0011|1011|0101{0010{1100

Figure 3-11. Table of 4-bit outputs of S-box 3 (bits 9 thru 12)

Input bits 19 and 24 Input bits 20 thru 23
L |0000|ooo1]oo10lo011/o100]0101|0110]0111]1000/1001]1010[1011]1100|11011110] 1111
00 [o111[1101[1110[0011]0000]0110[1001]1010[0001]0010[1000[0101[1011]1100]0100[1 111
~ 011101[1000[1011|0101/0110[1111|{0000/0011/0100|0111/0010[1100|0001|1010{1110| 1001
— 10[1010/0110[1001|0000[1100[1011|0111|1101|1111|0001/0011|1110{0101/0010|1000/0100
11 |0011/1111/0000|0110|1010|0001|1101{1000[1001(0100/0101[1011|1100]0111|0010| 1110

Figure 3-12. Table of 4-bit outputs of S-box 4 (bits 13 thru 16)

3.8.5 DATA ENCRYPTION STANDARD (DES) 73

Input bits 25 and 30 Input bits 26 thru 29 {
1 |oooo|ooo1|oo10jo011]o100]0101|0110]0111[1000]1001]1010]1011]1100|1101]1110]1111
00 [0010[1100[0100/00010111[1010[1011]0110[1000[0101]0011[1111[1101[0000]1170]1001
01 {1110[1011/0010/11000100|0111{1101|0001/0101|0000(1111[1010/00111001| 1000|0110
~10[0100|0010|0001|1011{1010|1101{0111(1000[1111(1001|1100|0101|0110|0011(0000(1110
11 [1011/1000|1100|0111|0001|1110|0010[1101|0110[1111/0000|1001|1010|0100|0101{0011

Figure 3-13. Table of 4-bit outputs of S-box 5 (bits 17 thru 20)

Input bits 31 and 36 Input bits 32 thru 35 J
1 |oooo|ooo1|0o10/0011|o100|0101/0110[0111|1000[1001]1010[1011|1100[1101|1110}1111
00 [{1100]0001[1010[1111]1001]0010[0110[1000[0000[1101]0011]0100[1110[0111[0101[1011
01[1010|1111/0100/0010(0111|1100|1001/0101(0110[0001|1101|1110|0000|1011(0011|1000
—10[1001/1110|1111/0101/0010|1000|1100|00110111(0000|0100|1010|0001|1101|1011[0110
11 |0100[0011|0010|1100]1001|0101[1111{1010|1011/1110/0001(0111{0110|0000| 1000|1101

Figure 3-14. Table of 4-bit outputs of S-box 6 (bits 21 thru 24)

Input bits 37 and 42 i Input bits 38 thru 41
L |00oo|ooot]ooto]oot1]o100jo101)0110]0111[1000]1001]1010]1011]1100]1101[1110/1111
—00[0100[1011]0010[1110[1111]0000[10001101[0011]1100[1001]0111]0101[1010[0110[0001
01 {1101/0000[1011/0111/01001001/0001{1010|1110|0011/0101(1100/00101111/1000]0110
10 [0001(0100|1011/1101|1100{0011|0111{1110[1010[1111|0110[1000/0000/0101{1001|0010
11 |0110[1011/1101/1000|0001|0100|1010|0111{1001|0101|0000/1111/1110/0010{0011{1100

Figure 3-15. Table of 4-bit outputs of S-box 7 (bits 25 thru 28)

Input bits 43 and 48 Input bits 44 thru 47
1 |oooo|ooo1|0010j0011]0100]0101)0110]o111]1000}1001]1010]1011[1100]1101]1110]1111
00 [1101Joo10[1000[0100[0110[1111[1011]0001]1010[1001]0011[1110[0101[0000[1100[0111
01{0001/1111/1101(1000[1010|0011/0111/0100[1100|0101|0110|1011/0000[1110[1001/0010
10 [0111{1011|0100]0001(1001|1100[1110|0010|{0000/0110[1010(1101{1111/0011/0101|1000
~110010/0001/1110|0111/0100|1010|1000/1101|1111|11001001/0000|0011/0101[0110[1011

Figure 3-16. Table of 4-bit outputs of S-box 8 (bits 29 thru 32)

The 4-bit output of each of the eight S-boxes is combined into a 32-bit quantity whose bits
are then permuted. A permutation at this point is of security value to DES in order to ensure that the
bits of the output of an S-box on one round of DES affects the input of multiple S-boxes on the next
round. Without the permutation, an input bit on the left would mostly affect the output bits on the
left.

74 SECRET KEY CRYPTOGRAPHY : 3:3:6

The actual permutation used is very random looking (we can’t find any nice patterns to make
the permutation easy to visualize—it’s possible a non-random looking permutation would not be as
secure).

[16] 7 [oof1[es[12]28]17] 1 [15[23]e6] 5 [18]31]10] 2 [8 [24]14[32]27] 3] 9 [19]13[30] 6 [22[11] 4 |25

Figure 3-17. Permutation of the 32 bits from the S-boxes

The way to read this is that the 1 bit of output of the permutation is the 16" input bit, the 2"¢
output bit is the 7" input bit,...the 32" output bit is the 257 input bit.

3.3.6 Weak and Semi-Weak Keys

We include this section mainly for completeness. There are sixteen DES keys that the security com-
munity warns people against using, because they have strange properties. But the probability of
randomly generating one of these keys is only 16/2°°, which in our opinion is nothing to worry
about. It’s probably equally insecure to use a key with a value less than a thousand, since an
attacker might be likely to start searching for keys from the bottom.

Remember from §3.3.3 Generating the Per-Round Keys that the key is subjected to an initial
permutation to generate two 28-bit quantities, C, and D,,. The sixteen suspect keys are ones for
which C; and Dy, are one of the four values: all ones, all zeroes, alternating ones and zeroes, alter-
nating zeroes and ones. Since there are four possible values for each half, there are sixteen possibil-
ities in all. The four weak keys are the ones for which each of Cj and Dy, are all ones or all zeroes.
Weak keys are their own inverses.* The remaining twelve keys are the semi-weak keys. Each is the
inverse of one of the others.

3.3.7 What’s So Special About DES?

DES is actually quite simple, as is IDEA (which we’ll explain next). One gets the impression that
anyone could design a secret key encryption algorithm. Just take the bits, shuffle them, shuffle them
some more, and you have an algorithm. In fact, however, these things are very mysterious. For
example, the S-boxes seem totally arbitrary. Did anyone put any thought into exactly what substitu-
tions each S-box should perform? Well, Biham and Shamir [BIHA91] have shown that with an
incredibly trivial change to DES consisting of swapping S-box 3 with S-box 7, DES is about an
order of magnitude less secure in the face of a specific (admittedly not very likely) attack.

*Two keys are inverses if encrypting with one is the same as decrypting with the other.

3.4 INTERNATIONAL DATA ENCRYPTION ALGORITHM (IDEA) 7

It is unfortunate that the design process for DES was not more public. We don’t know if the
particular details were well-chosen for strength, whether someone flipped coins, for instance, to
construct the S-boxes, or even whether the particular details were well-chosen to have some sort of
weakness that could only be exploited by someone involved in the design process. The claim for
why the design process was kept secret, and it is a plausible claim, is that the DES designers knew
about many kinds of cryptanalytic attacks, and that they specifically designed DES to be strong
against all the ones they knew about. If they publicized the design process, they’d have to divulge
all the cryptanalytic attacks they knew about, which would then further educate potential bad guys,
which might make some cryptographic standards that were designed without this knowledge vul-
nerable.

In the hash algorithms designed by Ron Rivest (MD2, MD4, MDS5), in order to eliminate the
suspicion that they might be specifically chosen to have secret weaknesses, constants that should be
reasonably random were chosen through some demonstrable manner, for instance by being the dig-
its of an irrational number such as +/2 .

