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Abstract—Protecting kernel control data (e.g., function pointers
and return addresses) has been a serious issue plaguing rootkit de-
fenders. In particular, rootkit authors only need to compromise
one piece of control data to launch their attacks, while defenders
need to protect thousands of such values widely scattered across
kernel memory space. Worse, some of this data (e.g., return ad-
dresses) is volatile and can be dynamically generated at run time.
Existing solutions, however, offer either incomplete protection or
excessive performance overhead. To overcome these limitations, we
present indexed hooks, a scheme that greatly facilitates kernel con-
trol-flow enforcement by thoroughly transforming and restricting
kernel control data to take only legal jump targets (allowed by the
kernel’s control-flow graph). By doing so, we can severely limit the
attackers’ possibility of exploiting them as an infection vector to
launch rootkit attacks. To validate our approach, we have devel-
oped a compiler-based prototype that implements this technique
in the FreeBSD 8.0 kernel, transforming 49 025 control transfer
instructions (~7.25% of the code base) to use indexed hooks in-
stead of direct pointers. Our evaluation results indicate that our
approach is generic, effective, and can be implemented on com-
modity hardware with a low performance overhead (<5% based
on benchmarks).

Index Terms—Intrusion prevention and tolerance, software,
system design and implementation.

I. INTRODUCTION

ODERN operating systems (OSs) are vulnerable to var-
ious types of attacks. In particular, kernel-level rootkits
have been a growing threat [1], [2] due to their stealthy nature
and omnipotent residence on a compromised system. Specifi-
cally, these rootkits typically run at the highest privilege of the
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system (e.g., the root privilege in a UNIX system) and effec-
tively hide themselves inside the system. Facilitated by their
stealthy presence, they are often employed to perform various
nefarious activities, including disabling defense mechanisms,
stealing sensitive personal information, opening remotely con-
trollable back doors, etc.

To address this security threat, there is a need to thoroughly
safeguard the integrity of kernel code and data. Note that static
kernel code and static kernel data are relatively straightforward
to protect due to their read-only nature and well-defined loca-
tions in kernel memory. A number of systems have been ac-
cordingly proposed and implemented. As an example, SecVisor
[3]is a hypervisor-based system that prevents guest kernel code
from being comprised by strictly enforcing the W & X [4] prop-
erty. NICKLE [5] is another example that proposes a separate
code memory to store legitimate kernel code. This code memory
is used to guarantee the kernel code integrity by ensuring that
every instruction running at the kernel mode will be fetched only
from it.

Unfortunately, dynamic kernel data is much harder to protect
due to its unpredictable memory location and volatile nature.
Yet, this data can still be potentially exploited to launch sim-
ilar rootkit attacks. For example, return-oriented programming
[6], [7], or more specifically return-oriented rootkits (RORs) [8],
bypass existing kernel code integrity protection while still per-
forming Turing-complete malicious computation. Specifically,
by hijacking a function pointer or a return address, a return-ori-
ented rootkit redirects execution to its own gadgets, consisting
only of legitimate kernel code, to unfold its payload with unfet-
tered access to kernel memory.

In this paper, we focus on the protection of an important type
of kernel data: kernel control data. In particular, kernel data is
considered control data if it is loaded into the processor’s pro-
gram counter at some point in kernel execution. Accordingly,
there are two main types of kernel control data: function pointers
and return addresses. For ease of presentation, we use the term
kernel control data and kernel hooks interchangeably.

We note that a number of systems have been proposed for
user-level control data protection. For example, Program Shep-
herding [9] uses a dynamic machine-code translation technique
to constrain the control-flow transfer of a running program.
However, its complexity may affect its trustworthiness and
complicate its adoption [10]. Control-flow integrity (CFI) [10]
instead instruments the control-flow transfer instructions of a
program to ensure that the running instance can always jump to
the right instruction when a control-flow transfer occurs. How-
ever, due to additional unique challenges and complexities in
the kernel space, its effectiveness in providing comprehensive
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kernel control data protection still remains to be shown. Some
obvious challenges include the presence of a large number of
dynamic function pointers in contemporary OS kernels [11] as
well as the support for loadable kernel modules (LKMs), which
dynamically spans or shrinks the runtime kernel control-flow
graph.

From another perspective, in order to protect kernel hooks, an
intuitive approach is to systematically identify all of them and
apply hardware-based page-level protection to trap all writes
to those memory pages containing hooks. This approach is ap-
propriate if there are only a few hooks to protect (e.g., in se-
cure active monitoring [12]). However, it cannot be applied di-
rectly to protect a large number of widely scattered hooks in
the OS kernel. The reason is that if hooks are widely scattered
in memory and potentially coexist with other noncontrol data
in the same pages, a direct application of page-level protection
will lead to frequent, expensive page faults [11], thus leading
to excessive performance overhead. HookSafe [11] recognizes
this challenge as the protection granularity gap (where hook
protection requires byte-level granularity while hardware pro-
vides only page-level granularity) and proposes a solution that
relocates kernel hooks to a centralized location and then applies
the hardware’s page-level protection. To allow seamless hook
access, a thin hook indirection layer is introduced to regulate
accesses to them, hence avoiding unnecessary overhead caused
by trapping writes to irrelevant data. However, HookSafe still
suffers from a few significant limitations. For example, it only
protects a given set of function pointers. The system itself is un-
able to exhaustively discover all hooks for protection. Also, it by
design still leaves another type of kernel control data, return ad-
dresses, unattended. As mentioned earlier, these addresses can
be equivalently hijacked for rootkit purposes.

To bridge the protection granularity gap without the above
limitations, we propose a compiler-based approach to compre-
hensively and efficiently safeguard kernel control data. The cen-
tral idea of our approach is the notion of indexed hooks to fa-
cilitate kernel control-flow enforcement. Specifically, our ap-
proach proactively transforms kernel control data into indexes
of read-only jump tables, which contain only legitimate jump
targets allowed by the kernel’s control-flow graph (CFG). As
a result, we can effectively prevent attackers from overwriting
the kernel control data with arbitrary pointers, hence preventing
them from being misused to launch rootkit attacks. Our scheme
is motivated by HyperSafe [13], one of our prior works that aims
to enforce CFI for small, static, and single-threaded Type-I hy-
pervisors (e.g., BitVisor [14]). In this work, we take a step fur-
ther and apply this scheme to the protection of commodity OS
kernels (more specifically, the kernel hooks), which involves ad-
dressing additional nontrivial challenges that are unique to the
OS kernel context. For example, commodity OS kernels by de-
sign support multitasking (instead of single-threaded execution)
and are more dynamic (with their built-in LKM support). These
additional challenges are naturally reflected in our system pro-
totype (Section III).

Our scheme essentially transforms the original control data
into a new form that will take legal values only. This is in
contrast with the existing form of control data, which is blindly
trusted to contain valid jump targets and has been widely
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exploited by attackers to compromise and redirect control
to anywhere they want. Our scheme handles the two types
of kernel control data differently. Specifically, to transform
function pointers, our first step is to systematically locate all
of them. For that, we notice that each function pointer will
be eventually invoked by an indirect call/jmp instruction in
the machine code. As such, we can leverage the compiler to
identify all indirect call/jmp instructions at the intermediate
representation (IR) level. After that, we then locate and in-
strument related control data into indexes so that they can be
properly redirected to their destinations contained in a jump
table or function table. For each indirect call/jmp, its function
table contains all the function entry points it may enter ac-
cording to the CFG. Note that for an indirect call/jmp, the jump
target will be preloaded into a register or a memory location
by a previous instruction (e.g., mov or lea). Fortunately, at
the IR level, such a load instruction will have, as one of its
operands, the function symbol. With that, we can then extend
the compiler to recognize and replace it with an index into the
corresponding function table in the first place. Later on, when
an indirect call is made, its original destination can be naturally
obtained by performing a lookup on its function table. We note
that the function tables are read-only and thus can be protected
with the hardware-based page-level protection.

For another type of control data, return addresses, the trans-
formation process is different, as return addresses are dynam-
ically generated. More specifically, these return addresses are
pushed onto the stack by call instructions, either direct or in-
direct, and popped off by ret instructions. As a result, a return
address should point to the next instruction right after the cor-
responding call. Consequently, we can precompute all valid tar-
gets for return instructions and store them into another type of
jump table or return table. For each ret, its return table con-
tains all the return addresses it may return to according to the
CFG. With that, we can leverage the IR to instrument the re-
lated call/ret instructions. Also note that the return tables are
read-only, implying that we can align them at the page boundary
and apply the same hardware-based page-level protection to ef-
ficiently protect them.

To validate our approach, we have implemented a proof-of-
concept prototype based on the open-source LLVM compiler
[15]. As a compiler-based approach, our system requires recom-
piling the OS kernel source code but is capable of safeguarding
all control data in the OS kernel. Specifically, we have used
our system to recompile a protected version of FreeBSD 8.0/
x86-amd64 kernel. The protection is achieved by transforming
49 025 control transfer instructions, which occupy ~7.25% of
the entire kernel code base. After the transformation, our system
enforces them to take only legal jump targets allowed by the
kernel’s control-flow graph. In summary, our paper makes the
following contributions:

1) We recognize the difficulties in comprehensively pro-
tecting kernel control data and accordingly propose
indexed hooks as our solution to proactively transform
and safeguard it. Our scheme effectively prevents rootkits
from using kernel control data as an infection vector.

2) To validate our approach, we have developed a compiler-
based prototype. Specifically, our prototype is based on the
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open-source LLVM compiler and has been used to com-
pile the FreeBSD 8.0 kernel. The compilation process es-
sentially permeates the legitimate kernel CFG information
into every transformed control transfer instruction for en-
forcement. We have so far successfully applied this ap-
proach to enforce FreeBSD kernel control-flow with two
different granularities (Section II).

3) We perform a systematic security analysis and conduct a
number of synthetic attacks against our system. The exper-
imental results show that our system can prevent various
kernel attacks from hijacking control data, including recent
return-oriented ones. Our performance measurement indi-
cates our prototype has a low performance overhead (< 5%
based on benchmarks).

The rest of the paper is organized as follows. First we de-
scribe the design goals, threat model, and our key techniques
in Section II. Then we present the implementation details and
evaluation results in Sections III and IV, respectively. After
that, we discuss possible limitations of our current prototype in
Section V and describe related work in Section VI. Finally, we
conclude our paper in Section VII.

II. SYSTEM DESIGN

In order to provide comprehensive and efficient kernel con-
trol data protection, we have three main design goals. First, our
proposed techniques should be able to recognize and protect all
the control data in the OS kernel, including function pointers
as well as return addresses. Ideally, we aim to have a unified
scheme that effectively defeats recent return-oriented attacks
[6]-[8] and goes a step further from current research efforts [3],
[5] that enforce kernel code integrity.

Second, our proposed techniques should not require re-
designing or dramatically changing the original kernel while
still guaranteeing comprehensive control data protection. In
particular, it should require minimal or ideally no modification
to the modern OS kernel. In other words, our techniques should
be generic and portable to other commodity OSs.

Third, the proposed techniques should be able to be efficiently
implemented and readily deployable on commodity hardware,
i.e., without depending on certain sophisticated hardware sup-
port for additional features or reducing performance overhead.
Given this, the challenge here is to make sure that our proposed
techniques will have a low performance impact.

In this work, we assume that the OS kernel code integrity is
guaranteed by a trustworthy hypervisor (e.g., by SecVisor [3]
or NICKLE [5]). This assumption is necessary as a trustworthy
hypervisor establishes the trusted code base (TCB) of the en-
tire system. Note that there has been wide concern regarding
the feasibility of the hypervisor’s integrity. Fortunately, more
recently, there has been significant progress on reducing the hy-
pervisor code size (e.g., with the Xen domain disaggregation
[16]), formally verifying the hypervisor security properties [17],
as well as enabling hypervisor self-protection from code injec-
tion attacks [13]. In the meantime, we assume the adversary can
obtain the highest privilege inside the OS (e.g., the root privi-
lege in UNIX) and full access to the system memory space (e.g.,
through /dev/mem in Linux). Also we assume the presence of

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 6, NO. 4, DECEMBER 2011

OS kernel vulnerabilities that can be exploited to overwrite the
control data in kernel memory.

We point out that kernel code integrity is essential to our
system. Without that, one simple jump instruction to a spe-
cial destination address can immediately lead to either the ex-
ecution of injected code or the misuse of existing code (e.g.,
in a return-oriented rootkit). Further, if we compare it to the
user-level control-flow integrity (CFI) [10], the two assump-
tions of CFI—NWC (Non-Writable Code) and NXD (Non-Exe-
cutable Data)—are essentially equivalent to the kernel code in-
tegrity in our case.

Based on this threat model, our goal is to prevent the at-
tackers’ possibility of exploiting the kernel control data as an
infection vector (e.g., as demonstrated by the recent return-ori-
ented rootkits [8]). Accordingly, we propose a solution to trans-
form existing kernel control data into its indexes and further
limit the choices from these indexes to legal jump targets only.
To do that, we recognize and instrument all the hook-accessing
instructions in OS kernel, including those control transfer in-
structions (call/jmp/ret). Next, we describe how indexed hooks
can be applied for the protection of function pointers and return
addresses in detail, respectively. We will also examine possible
exceptions and caveats.

A. Transforming Function Pointers

In this subsection, we describe how indexed hooks can be
applied for function pointer protection. A function pointer is
used in an indirect call/jmp instruction. Direct call/jmp instruc-
tions encode the target address (as an absolute address or rel-
ative offset) in the machine code; indirect ones typically need
to preload their jump targets by leveraging a machine register
(or a specific memory location). Specifically, the jump target
will be loaded by an earlier memory load instruction (e.g., mov
or lea) into a register, which is then “consumed” by the indi-
rect call/jmp instruction. With indexed hooks, this memory load
instruction should be recognized and instrumented to load the
corresponding index, instead of the actual jump target or des-
tination. The index can then be used as an offset into a corre-
sponding function table, which contains pointers to the possible
kernel function routines that will be indirectly invoked by an
indirect call/jmp instruction. In other words, we essentially re-
place each function pointer with its own index or, more pre-
cisely, its function table index during an earlier memory load
instruction.

The recognition of such load instructions is greatly facilitated
by the fact that the intermediate representation (IR) of these in-
structions will have the corresponding function symbol as one
of their operands when the code is being compiled; we can then
extend the compiler to recognize them and perform the instru-
mentation accordingly. For the function tables, we reserve a
page-aligned memory area to contain all recognized jump tar-
gets used by these function pointers. The jump targets in the
tables are naturally ordered based on the assigned indexes and
their bases. (Note that each indirect call/jmp instruction can
share or own its function table.) With the function tables, when
an (instrumented) indirect call/jmp is made, its original destina-
tion can be readily obtained by performing a lookup on a func-
tion table. It is important to point out that each function pointer
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calleel: . .. calleel: . ..

int calleel() { ...}

callee2: . .. callee2: . ..
int callee2() { ... } caller: caller:
void caller() .LBB3_0:... .LBB3_0:...
{ .LBB3_1: #if.else .LBB3_1: t#ifelse
. movq S$callee2, 8(%rsp) movq $1, 8(%rsp)
int (*)0: LBB3_2: #if.end LBB3_2: #if.end
int a,b; Guaie

;ﬁ(;vq 8(%rsp), %rl1
shl $0x3, %rl1
call *FuncTable_f(%rl 1

if (a>b) f=calleel; call *8(%rsp)

else f=callee2;

D0

return;

ret ret
.LBB3_3: #if.then .LBB3_3: #if.then
movq Scalleel, 8(%rsp) movq $0, 8(%rsp)
jmp .LBB3_2 f#if.end jmp .LBB3_2 f#if.end

(a) (b) (©)
Fig. 1. Anexample: transforming function pointers. (a) Example.c; (b) original
LLVM IR; (c¢) new IR with indexed hooks.

will point to a valid function in the OS kernel allowed by the
CFG. As aresult, these function tables can be generated offline
and protected at run time with the hardware-based page-level
protection. To ensure the protection of all function pointers,
we note that each function pointer will be eventually invoked
by an indirect call/jmp instruction in the machine code. Conse-
quently, by instrumenting all of these instructions, we can effec-
tively transform and protect all function pointers, including the
volatile ones that are created or removed at runtime as a part of
dynamic kernel objects.

Next, we use an example to demonstrate how a function
pointer can be translated into its index. In Fig. 1(a), we show
a simple C source file example.c. In the file, it defines a caller
function and two callee functions, i.e., calleel and callee2,
which will be possibly called by caller through a function
pointer (named as f()) according to the comparison result of
variables ¢ and b. In Fig. 1(b), we show the original LLVM
backend IR for the file. Particularly, caller has been compiled to
four basic blocks: .LBB3 0-.LBB3 3. In basic blocks .LBB3 3
and .LBB3_1, the addresses of calleel and callee? are loaded to
a memory unit 8(%rsp) by two movq instructions. Later on, in
the basic block .LBB3 2, 8(%rsp) is invoked by an indirect call
instruction call *8(%rsp) as the destination operand. From the
IR, we can infer this movgq is actually the previous memory load
instruction as discussed earlier. As the first operand of movq is
the symbol of a callee function ($calleel or $callee?), we can
conveniently recognize it and then replace it with an assigned
function table index (e.g., 0 for calleel and 1 for callee?).

Accordingly, with indexed hooks, we replace call *8(%rsp)
with three instructions. [The instrumented result is shown in
Fig. 1(c).] The first instruction is a movq instruction that loads
the content contained in 8(%rsp) to register »//. It is important
to note that the content of »// has been replaced with a function
table index instead of the original function address. The second
instruction is a shl instruction that changes the index in r// to
the offset of the function table (by multiplying 8). The third
instruction is a call instruction that uses »// as an offset into the
corresponding function table (FuncTable f), obtains the actual
function address or destination, and transfers the control to it.

Based on the above example, in order to transform function
pointers under our scheme, we need to instrument all the indirect
call/jmp instructions, and those instructions that will preload
function pointers with their jump targets. To better understand
how our scheme impacts the control flow transfer, we show a
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C2: transfer
caller callee
stack
R1: pop
Cl pusl‘l\ return address| < . .
calli | | oy
R2: transfer
(@)
function table i
C3: transfer
C2: locate e func addr
caller calee
stack
R1: pop
Rt Pusl;\ ret table index |+ . -
calli | | ey

return table j  R2: locate;
R3: transfer

Y return addr

(b)
Fig. 2. Traditional indirect call versus new indirect call. (Note: call’ /ret’ is the
instrumented version of call/ret.) (a) Traditional indirect call; (b) new indirect
call.

comparison between the traditional control flow transfer and our
new control flow transfer in Fig. 2. Specifically, in the tradi-
tional control flow transfer [Fig. 2(a)], a call pushes a return
address onto the stack (C/:push) and then transfers the con-
trol to its target (C2:transfer). In our new control flow transfer
[Fig. 2(b)], an instrumented call pushes a return table index on
the stack (C1:push), locates the jump target from the function
table (C2:locate), and then transfers control to it (C3.transfer).
The return table and the related return table index in the figure
will be described shortly.

B. Transforming Return Addresses

Next, we describe how to apply indexed hooks for another
type of control data—return addresses. As noted earlier, we
cannot handle return addresses in the same way as we instru-
ment function pointers. The reason is that they are volatile and
dynamically generated at run time. More specifically, by fol-
lowing the function call convention, when there is a call instruc-
tion executed, either directly or indirectly, a return address is
pushed onto the stack and later it is popped off by a ret instruc-
tion.

Inspired by the observation that each return address must
point to the instruction that immediately follows a call instruc-
tion, we can precompute all valid return targets and save them
in another type of jump table called the refurn table. With the
return tables, we then leverage the compiler IR to instrument all
the return address-related instructions by replacing the return
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stack stack

return table

arguments
return address
previous frame
local variables

arguments

ret table index
previous frame |

local variables

return address

Fig. 3. Transforming return addresses.

address with a return table index. Notice that such instrumenta-
tion changes the conventional stack frame organization.

To illustrate the change, we show in Fig. 3 the impact on the
traditional stack frame. In essence, the traditional return address
is replaced with a return table index. In order to locate the return
target, we need a return table for each ref that contains its legit-
imate return targets and the index is used to determine which
target is being used for this particular ret instance. Note that the
return table index will be pushed onto the stack by an earlier call
instruction. Based on the location of the cal/l instruction, we can
uniquely assign a return table index for each return table so that
there is no conflict in the index assignment.

After the return address transformation, the new control flow
is shown in Fig. 2(b). Specifically, when a call is made, the in-
strumented execution pushes a return table index onto the stack
(not the traditional return address—shown as Ci: push in the
figure). The return table index will point to an entry of its return
table and the entry contains the actual return address instead
(i.e., the location of next instruction right after the call). When
executing a ret, instead of popping up a return address from the
stack, the instrumented version obtains an index (R/: pop in the
figure), uses it to lookup the actual return address in the corre-
sponding return table (R2: locate), then transfers control back
to it (R3: transfer). Notice that the return table is static and can
be naturally protected with the hardware-based page-level pro-
tection.

Despite the volatile nature of return addresses, we note that
the return address is generated from call, either direct or indi-
rect, and consumed by ref. As such, by instrumenting all these
related instructions, we can effectively protect all volatile return
addresses by limiting the destinations allowed within these re-
turn addresses to the legal values only.

It is important to note that the transformation of function
pointers affects indirect call/jmp instructions while the transfor-
mation of return addresses affects direct call, indirect call, and
ret instructions.! However, both transformations need to coop-
erate with each other due to the new convention of using the re-
turn table index in a stack frame. Putting everything together, we
obtain the following high-level instrumentation. The detailed al-
gorithm for the instrumentation will be shown in Section III.

* call dst = push 8ret table index; jmp dst

* call * (dst) = push $ret _table index; mov (dst), %oreg; shl

30 x 3, %reg; jmp * FuncTable(%reg)
* ret = pop %reg; shl $0 x 3, %reg; jmp *RetTable(%reg).

IThere is no need to instrument the direct jmp instructions.
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connected component 1

/ function a
call site i

1 ! 1
1 ! 1
1 ! 1
1 ! 1
1 ! 1
i b
| functionb 1 |
I I
¢ call site j v
|

connected component 2

call site x

function x

call site y

Fig. 4. CFG with two disjoint components.

C. Computing Jump Tables From CFG

After describing how the indirect call/jmp and return instruc-
tions are instrumented, next we introduce how to compute their
jump targets from the kernel control-flow graph (CFG). At first
glance, given a CFG, it might seem straightforward to obtain
their jump targets. However, one peculiarity called destination
equivalence [10] makes it more complicated than it appears. To
understand that, we assume there are three indirect call sites, i.€.,
i, j, and k. Each call site has two legitimate targets: funcl and

func2 from the call site ¢; func2 and func3 from j; and funcl

and func3 from k. We may attempt to simply assign {funcl,

func2} to function table of call site 4, {func2, func3} to function

table of j, and {funcl, func3} to function table of £, respec-
tively. However, such assignment can cause problems as func?2
has been assigned two different index values or offsets in func-
tion tables for ¢ and ;. To avoid such conflict, we should assign
instead {funcl, func2, error} to function table ¢, {error, func2,

func3} to function table 5, and {funcl, error, func3} to function

table £, respectively. Here, error denotes a special destination
to trap an impossible control transfer. In other words, since we
can only assign one index to each function or return site, if a
function or a return site appears in more than one jump table, it
needs to be assigned with the same index among these tables.
Specifically, if we view the CFG as an undirected graph, it con-
tains many (possibly small) connected components. Since a ret
instruction can never return to call sites in two disjoint com-
ponents of CFG, we only need to guarantee that return indexes
are unique among all the return sites in one particular connected
component. Fig. 4 shows an example CFG with two connected
components. In this CFG, we can have the following index as-
signment to return sites: call site i: 1, call site j: 2 and call site
x: 1, call site y: 2. Therefore, to assign indexes to return sites in
a function’s return table, we can collect all the return sites in the
connected component of the function in the CFG to one set, and
number them increasingly in the order of their addresses. The
same approach also applies for the indexes in function tables.
We point out that our scheme is orthogonal to the generation
and precision of kernel CFG. That is, the indexed hooks can
be applied with input of either coarse-grained or fine-grained
CFG. In fact, this is exactly what we have demonstrated in our
prototype. For the coarse-grained CFG, we maintain two large
jump tables: one function table and one return table. The func-
tion table is used by all the indirect call/jmp instructions and
it contains the addresses of all the functions that may be in-
directly called. The return table instead is used by all the re-
turn instructions and includes all the legal return addresses. For
the fine-grained CFG, we profile the kernel execution and col-
lect valid jump targets and use these jump targets to refine the
coarse-grained CFG (with proper handling of destination equiv-
alence). As a result, multiple function tables and return tables
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will be created. We stress that the applicability of our scheme
for different granularities is important as we need to handle the
large size of modern kernel source code and accommodate some
“in-the-wild” practices such as pervasive use of inline assembly
and void * pointers, which make existing points-to analysis al-
gorithms hard to be applied. Such applicability will also help
our scheme to directly benefit from any advance the community
is making in improving the scalability and precision of point-to
analysis for OS kernel code [18].

To summarize, as a unified scheme applicable for the protec-
tion of both function pointers and return addresses, our approach
effectively limits jump targets allowed within the control data to
the legal values allowed by the CFG. The downside, however,
is the overhead in initializing and maintaining the jump tables,
and because of them, introducing an extra memory access in the
new instrumented indirect call/jmp and ret instructions. Fortu-
nately, given the static nature of OS kernel text, we can pop-
ulate all entries in these jump tables offline. Also, the tables
are static and thus can be marked as read-only. Although our
scheme introduces one more memory access in the new instru-
mented instructions, our experimental results (Section IV) show
that the performance overhead is low (<5% based on bench-
marks), likely because these tables are relatively small and have
a cache-friendly access pattern.

D. Other Control Data Protection

In addition to function pointers and return addresses, there
are other certain context data that could be similarly used as
control data. Not surprisingly, they are mainly involved with
the OS interface to hardware. For example, hardware regis-
ters such as GDTR, IDTR, SYSENTER, and DR0-DR7 con-
tain system-wide configuration information that will be directly
used or invoked by hardware. Therefore, they also need to be
protected. To do that, we leverage hardware-based virtualization
support to intercept and validate any write attempts to these reg-
isters. Also, related to the hardware register protection, there are
two tables, i.e., GDT and IDT, which contain critical system data
structures and their contents must be protected as well. These
tables, once initialized, can be marked read-only, thus we can
protect them by using the same hardware-based page-level pro-
tection.

There is another subtle issue related to the asynchronous han-
dling of interrupts in commodity OS kernels. In particular, we
cannot predetermine when and where an interrupt may occur.
Once an interrupt occurs, it pauses the execution of current pro-
gram and forces a control transfer to the related interrupt han-
dler. When the hardware pauses the execution of current pro-
gram, it automatically saves the runtime context information
such as CS and IP. Inside the interrupt handler, it might save
additional context information about the interrupted program so
that it can be restored later when the interrupted program is re-
sumed. Consequently, we need to protect such context informa-
tion from being misused as well. Note that since interrupts may
occur at the boundary of almost any instruction, it represents
an important exception to the CFG mode of the kernel code.
Therefore, it is necessary to use a mechanism different from the
indexed hooks to protect the information pushed to the stack by
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the interrupt hardware. In our implementation, we use the hyper-
visor to protect and verify them. The details are in Section III.

III. IMPLEMENTATION

To validate our approach, we have implemented a proof-of-
concept prototype. In this section, we will discuss specific im-
plementation details as well as some additional notes we ob-
served in the process of developing the prototype for the sup-
port of multitasking FreeBSD 8.0 OS kernel.

Our prototype is developed on top of the open-source LLVM
compiler framework [15]. The LLVM framework is extensible
and allows us to add various compiler transformations and op-
timizations at different phases. In particular, our prototype in-
volves the LLVM’s back-end and takes advantage of its built-in
high-quality code generator [19]. More specifically, by taking a
modular design, the LLVM code generator has been divided into
several stages: instruction selection, scheduling and formation,
SSA-based optimization, register allocation, prologue/epilogue
code insertion, late machine code optimization, and code emis-
sion. Our implementation of indexed hooks is at the code emis-
sion phase to avoid causing any conflicts with various heuristics
in the late machine code optimization.

We have used our prototype to compile FreeBSD 8.0/x86-
amd64 and verify its effectiveness in kernel control data pro-
tection. The compiled FreeBSD kernel runs as a guest on top
of the Xen hypervisor [20] (version 3.4.1), which is assumed
to be trusted, in our prototype, to protect kernel code and static
kernel data. Also, it is extended to protect the jump tables, i.e.,
the function tables and the return tables, as well as others (such
as GDT/IDT—Section 11-D).

A. Kernel Control Data Transformation

As mentioned earlier, indexed hooks aim to limit the jump
targets allowed from the control data, including all function
pointers and return addresses. To achieve that, we define a new
target machine class for the new instrumented direct call, indi-
rect call, indirect jmp, ret, as well as related function pointer-ac-
cessing instructions (e.g., mov or lea). In a nutshell, the new
class will traverse every instruction in the IR tree to identify
and substitute the original direct call, indirect call, indirect jmp,
and ret instructions. Also, it will traverse the operands of other
instructions to recognize function pointers so that they can be
replaced with their own indexes. In the meantime, we point out
that for some function pointers which are directly initialized in
global variables or kernel objects, the initialization will not in-
volve any above instructions. In other words, our instrumenta-
tion at the code generation phase will not recognize and replace
them with indexes. Instead, we observe that the initialized func-
tion pointers are contained in the symbol table. Accordingly, we
examine the symbol table to identify and replace them with cor-
responding indexes.

We show the pseudocode to implement indexed hooks
in Fig. 5. Essentially, a direct call is replaced with push
Sret_table_index; jmp dst (lines 05 and 07) while an indirect
call is replaced with six instructions (lines 12-14, 16-18).
In particular, the instrumentation at the 13th and 14th lines
(marked by ') aims to limit the range of func table_index
(function table index) in case of potential index overflow
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01 for (each instruction /nst in each basic block in func f) {
02 switch (Inst) {

03 case direct call:

04 assign a ret_table_index

05 add push $ret_table_index

06 get dst from Inst

07 add jmp dst

08 delete Inst

09 break;

10 case indirect call i:

11 get dst from Inst

12 add mov (dst), Yoreg

131 add cmp $func_table_size_i, %reg
14 add jg err_handler

15 assign a ret_table_index

16 add push $ret_table_index

17 add shi $0x3, %reg

18 add jmp *FuncTable_i(%reg)

19 delete Inst

20 break;

21 case indirect jmp j:

22 get dst from Inst

23 add mov (dst), Yoreg

247 add cmp $func_table_size_j, %reg
25t add jg err_handler

26 add shl $0x3, %reg

27 add jmp *FuncTlable_j(%reg)

28 delete Inst

29 break;

30 case ret:

31 add pop Yoreg

32f add cmp $ret_table_size_f, Yoreg
33t add jg err_handler

34 add shi $0x3, %reg

35 add jmp *RetTable_f(%oreg)

36 delete Inst

37 break;

38 case others:

39 for (each operand Op of Inst)
40 if (Op is associated with a function symbol)
41 replace Op with a func_table_index
42 break;

43 }

44 )

Fig. 5. Pseudocode for kernel control data transformation and protection.

attacks. An indirect jmp is replaced with five instructions (lines
23-27). Similar to the indirect call case, the 24th and 25th lines
(marked by *) are included to limit the range of function table
index, which is defined by the function table size. Note that we
do not need to instrument any direct jmp instructions because
such instructions will neither invoke a function pointer nor
involve a return address to return back.

Also shown in our pseudocode, a ret instrumented is trans-
formed into five instructions (lines 31-35). Similar to the in-
direct call, the 32nd and 33rd lines (marked by ') are to limit
the range of ret_table _index (return table index), which is cor-
respondingly defined by the size of the return table. Note the
above instrumentation is applied for near ret only, which re-
turns to a procedure located inside the current code segment.
However, there is another return called far return or Iret that re-
turns to a calling procedure in a different segment. Compared to
the near ret, Iret pops a target CS and IP from the stack. If the
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new code segment is less privileged than the current code seg-
ment, the stack pointer is incremented by the number of bytes
indicated by the immediate operand, if present. In other words,
anew SS and SP might also be popped from the stack.

In our running FreeBSD 8.0 kernel, there are 8329 return in-
structions in total. Among them, there are 8328 near rets and one
Iret. The only case of lret occurs in the “Igdt” procedure, which
is used to load the system’s global descriptor table. Specifically,
before returning from “Igdt,” it will reload the code selector by
turning the return into an intersegment return with three instruc-
tions popq %rax; pushq SKCSEL; pushq %rax: namely, it first
pops off the return address from stack with popg %rax; then it
pushes CS and return address through two pushq instructions;
after that, it returns by executing the lretq instruction which pops
both CS and IP from the stack. To instrument this /ret instruc-
tion, we simply replace it with a long jmp instruction. Note that
to prevent /ret instruction from being misused, we have to pro-
tect both the segment selector and the instruction pointer. How-
ever, our scheme is sufficient in this case since the segment se-
lector is fixed at KCSEL, which is the code segment selector for
the FreeBSD kernel.

In order to apply hardware-based page-level protection, the
jump tables are put together and page-aligned. All unoccupied
entries in these tables are filled with the address of an error
handling function to trap invalid indirect calls and returns. In
Fig. 6, we show a real example of our instrumentation. In the
example, in addition to an indirect call and a ret, there is a
lea instruction whose first operand is a function pointer, i.e.,
7607(%rip) that points to Oz f f f f f f f f80146020—the address
of AcpiEvGpeXruptHandler function. This function pointer is
assigned with an index—0 x 48 through a mov instruction. In
our specific FreeBSD 8.0/x86-amd64 kernel, if we can count the
number of related control transfer instructions that have been in-
strumented, we have 38 603 direct call, 2093 indirect call/jmp,
and 8329 ret instructions. Also, among the overall 7852 function
routines in the entire kernel image, 2836 of them are indirectly
invoked.

B. Jump Table Construction

We have mentioned earlier that indexed hooks are orthogonal
to the generation and precision of the CFG input. In our proto-
type, we implemented two schemes of jump tables, which reflect
the kernel CFG with two different granularities. Specifically, the
first scheme is coarse-grained with two large jump tables: one
function table and one return table. The function table is used by
all the indirect call/jmp instructions. It contains the addresses of
all the functions that may be indirectly called. The return table
instead is used by all the return instructions and includes all
the legal return addresses. Note that this scheme can be imple-
mented by collecting indirectly called functions and valid return
addresses during compilation or linear scan of the kernel binary.
Overall, we have 2836 entries in the function table and 40 696
(38603 4+ 2093) entries in the return table.

In the second scheme, we construct a CFG by combining dy-
namic analysis and conservative CFG and then compute jump
tables as described in Section II-C. More specifically, we run
the same FreeBSD virtual machine under QEMU [21] to profile
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48 8d 35b7 1d 00 00 lea 7607(%rip),%rsi
# T8 014b020

4d 8b 5¢ 24 20

49 81 fb £ 0f 00 00
0f 858 1£01 00
68 0 02 00 00
49cl1e303

41 ffa3 00 b4 5b 80

41 ff 54 24 20 callq *0x20(%r12) —>

41 5b

49 81 fb ff f£ 00 00
0f 8f 3¢ 14 00 00
49cl e303

41 ffa3 00 f0 51 80

c3 retq

48 be 48 00 00 00 00 00 00 00 mov $0x48,%rsi

1411

# change to func_table_index

mov 0x20(%r12),%r11

cmp $O0xOfft, %rl1

jg  err_handler

push $0x2f0

shl  $0x3, %rl1

jmpq *Oxfftffr805bb400(%r11)

# load func_table_index
# compare range

# if(>) error

# push ret_table_index
# multiply index by 8

# jmp dst

pop %rll

cmp  $Oxffff,%r11

jg  err_handler

shl  $0x3, %rl1

jmpq *Oxfffff8051f000(%r11)

# pop ret_table_index
# compare range

# if(>) error

# multiply index by 8
# return back

Fig. 6. Instrumentation example.

the targets of indirect calls. As dynamic analysis has an incom-
plete coverage, there are some indirect calls that may not be ex-
ecuted. For these indirect calls, we conservatively assume that
they can reach all the functions that may be indirectly called.
With this CFG as input, we accordingly construct both function
tables and return tables. In particular, there is one function table
for every indirect call/jmp instruction and one return table for
each function. Note that there is no need to use more than one
return table for one function because all the return instructions
in a function have the same targets. Our experiment shows that
893 0f 2093 (42.67%) indirect calls are reached in our profiling,
and 1450 0f2836 (51.13%) indirectly called functions are called
through them. The indirect call with most targets (135 targets)
is in the mi_startup() function responsible for system initializa-
tion. Among the 893 reached indirect calls, 681 of them have
only one target (76.26%). In our prototype, we have reserved
70 MB for all the function/return tables to implement the second
scheme.

In comparison, the first scheme is simpler to implement as the
function table and jump table can be straightforwardly derived
from the kernel source or binary. However, the protection it of-
fers is also less stricter than the second scheme. For example,
in the first scheme, a return instruction can return to any of the
40 696 return sites. Therefore, it might be possible for the at-
tacker to locate some useful gadgets out of them. On the other
hand, the second scheme limits control transfer to the targets
allowed by the CFG, therefore, severely limiting the attacker’s
possibility to locate and make use of gadgets.

C. Additional Prototyping Notes

Interrupt Handling: Like other multitasking UNIX-like
kernels, FreeBSD is designed to give most interrupt handlers
their own thread contexts [22]. This has the benefit in allowing
them to block on locks. To help avoid latency, interrupt threads
run at the real-time kernel priority. However, the interrupt
threads currently in FreeBSD are considered heavyweight
because switching to an interrupt thread involves a full context
switch. To mitigate this, some handlers that are called “fast”
ones execute directly in the primary interrupt context. These
interrupt handlers include clock and serial I/O device interrupts.

As the control data involved in the normal interrupt threads
will be transparently protected by our scheme, no additional

processing will be needed. However, the “fast” interrupts exe-
cute in the primary interrupt context and their context informa-
tion, which is automatically saved onto the stack by hardware,
needs to be protected (Section II-D). In our current prototype,
there are eight such interrupt handlers: Xtimerint for clock, and
Xapic_isrl-Xapic_isr7 for I/O devices. Rather than having one
entry point for each I/O interrupt source, FreeBSD 8.0 uses one
common entry point in the interrupt handler. To support nested
interrupts, we use a FILO (first in, last out) queue to record and
verify guest interrupt contexts in Xen. Specifically, in our cur-
rent prototype, a hypercall is made at the time of an interrupt
occurs. The hypervisor then saves the CS/IP pair to the FILO
queue. Later, before the iret instruction is called to return from
the interrupt handling, another hypercall is made for the hyper-
visor to verify the correctness of CS/IP pair by comparing them
to the head of the FILO queue. The hypervisor pops the latest
CS/IP pair from the queue after verification. Note that there
might exist a small window of race condition from the other
processors if the guest is running on an SMP machine. How-
ever, this window is small and largely unpredictable. Also, there
is no need to worry about unintended modification of CS/IP on
the local CPU as the interrupts are disabled before the CS/IP is
pushed onto the stack.

Kernel Extension Support: One important issue of kernel ex-
tension support is related to the loading of trusted kernel mod-
ules only. Fortunately, this has been addressed by existing ap-
proaches such as SecVisor [3] and our prior work NICKLE [5].
In our implementation, we simply integrate NICKLE’s module
loading scheme to prevent untrusted or malicious kernel mod-
ules from being loaded. As a result, we focus our discussion on
the additional challenges that indexed hooks meet to support dy-
namic module loading.

In particular, the main challenge comes from unifying jump
tables in current kernel and loaded/unloaded LKMs. As de-
scribed in Section III-B, in order to derive the jump tables, we
need to obtain the kernel control-flow graph that is now affected
by loading or unloading a kernel module. To provide better flex-
ibility in supporting LKMs, the base kernel and modules may
be separately compiled. To accomplish that, when a module is
being compiled, we produce module-specific function tables
and return tables. Instead of being populated with absolute
memory addresses, the tables contain only relative offsets from
the module base address. When the module is loaded, a fix-up
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routine runs to reflect the current module base address in these
tables. To incorporate the module’s jump tables to the kernel,
we first merge the two CFGs, then compute the new jump tables
from the merged CFG. The indexes of kernel’s control data
are assigned first to keep them from being changed across the
merge. In the merging process, we might need to relocate the
affected jump table if its size increases beyond that allocated
for it. As a result, by merging the jump tables of the module and
the base kernel, we can still obtain a unified view of the jump
tables.2 On the other hand, when a module is unloaded, its index
values in the base kernel are temporarily replaced with the error
handling routines to capture now defunct or illegitimate control
transfers. We could eliminate these unused entries from the
base kernel’s jump tables by removing all the external indexes
and remerging existing kernel modules’ jump tables. However,
we never find it necessary during our experiments. Note that the
fix-up routine is security-critical. Our current prototype relies
on the hypervisor to prevent its execution from being tampered
with. Also, the fix-up routine can only be legitimately invoked
when a module is being loaded or unloaded and thus can be
safely rejected at any other time.

Context Switches and User Signal Trampoline: Due to the
changed stack frame convention, our scheme inevitably affects
some assembly instructions that are written based on the tradi-
tional stack frame convention. There are two primary examples:
one is in the CPU context switch code and another is in the user
signal trampoline routine.

Specifically, in the case of a context switch, before a new
process can switch in for execution, the state of the current (or
old) process will be saved so that it can be restored later to
continue execution. The saved state includes all the machine
registers that the process may be using, such as the program
counter and other OS-specific states. As a concrete example,
in the FreeBSD 8.0/x86-amd64 kernel, the function responsible
for performing context switch is cpu_switch. When it is called
by the scheduler, it will store the state of the current previous
process into the process control block (PCB) by a series of movg
instructions. Among them, the program counter of the process
will be saved by two instructions: movg (%rsp), %rax; movg
%rax, PCB_RIP(%r8). Later on, when this process is resumed,
it restores the saved state from its PCB with several similar movg
instructions but in an opposite direction. With the changed stack
frame, this becomes problematic because the saved program
counter is now a return table index. In our prototype, we, there-
fore, add a translation instruction right before loading the pro-
gram counter (IP) for the next process, which essentially con-
verts the return table index back to the original return address
form.

Similarly, for the user signal trampoline case, a signal
handler is defined as a user-mode routine that the kernel will
invoke when the signal is received. In particular, when a signal
is being delivered, the kernel first places a signal context as
well as a kernel signal-handler context frame on the user’s
stack. After that, it starts to run the signal trampoline code,

2In our current prototype, we support separate compilation of LKMs from the
base kernel. The prototype so far allows for the coarse-grained CFG protection
(Section III-B), but not the fine-grained CFG, which has an additional need to
fix up the base kernel code (for every module loading).
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which eventually executes an indirect call instruction (call
*SIGF _HANDLER(%rsp)) to invoke the user’s signal handler.
Once it is finished, the user signal handler returns and calls
the sigreturn system call to restore the previous signal context,
hence resuming the user’s process at the point where it was
running before the signal occurred. As mentioned earlier, the
indirect call instruction, i.e., call *SIGF _HANDLER(%rsp),
is involved in the above process, and by default it will be
accordingly instrumented. Unfortunately, to our surprise, this
causes many processes to exit. There are two reasons for this
problem: First, the content stored in *SIGF _HANDLER (%rsp)
is a function address in user space but not a function pointer
in the kernel. Second, this call instruction will return back
from a user signal handler with a real return address, but not a
return table index. In our current prototype, we choose not to
instrument this particular instruction and essentially stick to the
traditional stack frame convention in the user signal trampoline
code. This risk is acceptable, because this jump only occurs
in the user context, so it cannot be used as a kernel infection
vector.

IV. EVALUATION

In this section, we perform security analysis and present the
performance measurement results.

To locate all the control data and transform it into indexes, our
prototype has added about 2600 lines of C++ code to LLVM’s
back-end. Also, due to the stack frame changes (Section II-B),
there is also a need to modify some of the FreeBSD 8.0 source
code that may reference the stack frame according to the
traditional convention. Fortunately, the changes are small and
limited to six assembly files. We note that no C files have been
modified (thus satisfying our second design goal—Section II).
Within these assembly files, we have replaced 54 assembly
instructions with 203 other instructions to reflect the changed
stack frame convention. When compared to the original kernel
image, our prototype image file size increased from 4370 704
bytes to 4 850 828 bytes (~11.0%) and the number of instruc-
tions increased from 675763 to 764 837 (~13.2%). Overall,
our transformation of control transfer instructions to provide
kernel control data protection involves ~7.25% of the entire
kernel code base.

We point out that our prototype so far focuses on the support
ofthe FreeBSD kernel. However, as a compiler-based approach,
we believe that our scheme is generic and can be applied to other
commodity operating systems as well. In particular, when future
releases of LLVM support other OSs (e.g., Linux), it is expected
that the scheme described in this paper can be naturally applied.

A. Security Analysis

When performing the security analysis, it is important to
note that our system assumes a trustworthy hypervisor, which
properly establishes and enforces guest kernel code integrity.
Under this assumption, to launch a kernel attack, the attackers
are forced to misuse existing kernel code that is considered
legitimate, such as in a typical return-oriented attack. In our
evaluation, we consider any attack that is constructed by gad-
gets (that consist of only legitimate code) as a return-oriented
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attack, regardless whether the gadgets are based on ret [6]-[8]
or other ret-like instructions [23].

More specifically, to launch a return-oriented attack, an at-
tacker needs to perform two steps. The first step is to control the
stack and preload it with addresses of those return-oriented gad-
gets. The second step is to hijack a piece of control data (e.g., a
function pointer or return address) to jump to the starting gadget.
According to our current threat model (Section II), we assume
that the attacker can successfully accomplish the first step. (This
is due to the presence of exploitable software bugs in the OS ker-
nels.) However, the attack will be blocked in the second step.
The reason is that all the control data in the kernel have been
converted to indexes and they are enforced in only taking al-
lowed jump targets from either the function tables or the return
tables.

In order to examine the effectiveness of our techniques, we
ported Wilander’s buffer overflow benchmark test-suite [24]
and used it to perform several realistic attacks to hijack the con-
trol data in our system. As there are no publicly available re-
turn-oriented rootkits, what we did is try to simulate a return-ori-
ented rootkit. We chose three pieces of control data as our hi-
jacking targets, one in a function table, one in a dynamic kernel
object, and the other one a return address in the kernel’s stack.
Our experimental results show that our system successfully pre-
vented all of them.

Specifically, in the first attack to overwrite one entry in a func-
tion table, since all the jump tables are marked as read-only
and protected by the Xen hypervisor, the write attempt imme-
diately triggered a page fault exception with the error code 0 x
03. The error code indicates that an attempt is made to write
to a read-only page. The second attack attempts to overwrite
the fork return function pointer in the pcb2 kernel object with
another instruction address (e.g., Oz fffff[fff8023¢380) in
kernel space to hijack the control flow. Note that fork return
will be invoked by fork exit routine through an indirect call
to accomplish the fork procedure. This overwrite operation can
be performed successfully because the memory that stores the
pcb?2 object is writable. However, as fork _return has been in-
strumented to use an index, the control data overwrite was cap-
tured by the range check (Fig. 5) right before it is branched to a
predefined error handler. Similarly, the third attack to overwrite
the return address in the stack was blocked and trapped to the
error handler. To further locate the instruction that causes the
trap in the second and third attacks, our error handler will dump
the machine context for later analysis. As a result, our prototype
thwarts all these attacks that attempt to compromise the kernel
control data, thus achieving our first design goal (Section II).

B. Performance

To evaluate the performance overhead of our system,
we have performed benchmark-based measurements. These
measurements include three application-level benchmarks
and one micro-benchmark. They are: 1) a compilation task
of the Apache server package [25], 2) a compilation task
of the FreeBSD kernel, 3) a network throughput test using
ApacheBench [26], and 4) a standard system micro-benchmark
toolkits—LMbench [27].
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TABLE I
SOFTWARE CONFIGURATIONS FOR EVALUATION
Item Version Configuration
Apache Compiling | 2.2.13 configure & make
Kernel Compiling 8.0 make buildkernel
Apache Server 2.2.13 default configuration
ApacheBench 2.0.40-dev | ab -¢ 3 -n 1000000 <url>
LMbench 3-alphal default configuration
TABLE II
APPLICATION-LEVEL BENCHMARK RESULTS
Item Original New-c New-f
Apache Build (s) 50.107 | 52.134 (3.86%) | 51.925 (3.44%)
Kernel Build(s) 106.576 | 411.727 (1.27%) | 410.524 (0.97%)
ApacheBench (req/s) | 3534.47 | 3392.18 (4.03%) | 3412.24 (3.46%)
6% T T T T T T T T
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Performance Overhead
w
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Fig. 7. Micro-benchmark results with LMbench.

Our tests were performed on a Dell Optiplex 740 PC with an
AMDG64 X2 5200+ CPU and 2-GB memory. For each bench-
mark, we load the FreeBSD 8.0 kernel with three versions: the
original version (Original), the new kernel with coarse-grained
jump tables (New-c), and the new kernel with fine-grained
jump tables (New-f). Table I lists the configurations of the
software used in our evaluation. In the ApacheBench test, we
run an Apache server on the tested kernel and execute the
ApacheBench program on a Linux client which is directly
connected to our system. For each test, we ran ten times and
calculated the average. The 95% confidence interval results
show that the deviations among these runs are small (<2%).

Table II shows the results of three application-level bench-
marks. The results indicate that the overheads are less than 5%,
with the maximum overhead being 4.03% in the ApacheBench
test for coarse-grained kernel control data protection. Interest-
ingly, the New-f kernel not only provides better protection, but
also has lower performance overhead. This is possibly due to
the better locality and improved cache utilization in the fine-
grained jump tables. Fig. 7 shows the performance overhead
of ten different kernel tasks in LMbench. The tasks include
process creation, basic arithmetic operation, context switch, file
system operation, local communication, and memory latency.
Among these results, the maximum overheads are 4.78% and
4.10% when doing heavyweight full context switch for coarse-
grained and fine-grained protection, respectively. The task of
performing basic arithmetic operations incurs the lowest over-
head, which is nearly zero.

To further quantify the direct impacts of instruction transfor-
mation, we apply our approach to a simple test program and
measure the performance overhead. The test program simply
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executes 3 million times of an indirect call to a dummy func-
tion that immediately returns. Our results show that the perfor-
mance overhead from the transformation is about 33.08%. This
result is expected because our approach introduces two addi-
tional memory accesses for the measured indirect call and func-
tion return (one to load the entry point of the indirectly called
function and one to retrieve the return address from the jump
table). This experiment represents an extreme case in terms of
performance overhead.

In summary, the evaluation results show that our system in-
troduces low performance overhead (<5% with benchmarks)
based on commodity hardware support, therefore satisfying our
third design goal (Section II).

V. DISCUSSION

In this section, we discuss possible limitations of our system
and suggest future refinements. First, to provide comprehensive
kernel control data protection, we have taken a compiler-based
approach, which requires access to the kernel source code. As
a result, our approach does not support precompiled third-party
drivers. Although an ideal approach would avoid such a require-
ment, we believe a compiler-based approach is necessary to en-
able the identification of all control data and then apply trans-
formations to protect them. Without source code access, it has
been shown [11], [28] that dynamic analysis-based approaches
suffer from one common limitation: they cannot identify all the
kernel hooks for protection. The completeness is important as
rootkit authors only need to compromise one piece of control
data to launch their attacks.

Second, it is important to note that this system does not pre-
vent the attacker from overwriting a return table index or func-
tion table index; rather, it drastically reduces the expressiveness
of this exploit, because the attacker can only choose from valid
function entry points and postcall instructions allowed by the
CFG. More importantly, our scheme is independent from the
generation and precision of the CFG. It can take either coarse-
grained or fine-grained CFG as its input. Our initial investiga-
tion shows that the wide use of void * in commodity OS ker-
nels complicates the CFG generation. Also, it is a challenge
to scale current points-to analysis approaches (so that they are
applicable for the analysis of commodity OS kernels) and en-
hance it for better precision (with the support of field-and-con-
text-sensitive points-to analysis for example). Note that some
promising progresses in this direction have been made by ex-
isting research efforts [ 18], [29], [30]. As mentioned before, our
work can readily benefit from the advance in this area.

Third, it is worth mentioning that in the OS source code, we
observe that a field inside a single object is not defined as a
function pointer but might be later used as a function pointer.
One example is the integer-based function pointer, which loads
a function’s address to it as an integer and later uses it as a func-
tion pointer. As pointed out in [18], this could be problematic
for traditional points-to analysis approaches. Our approach does
not have this problem as it automatically recognizes all function
pointers. Specifically, these function pointers will be eventually
used by an indirection call/jmp instruction, and our prototype
will transform each and every such instruction.
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Fourth, by converting control data into indexes, indexed
hooks changes the semantics of function pointers and return
addresses. Therefore, it might break the protected OS kernel if
these data are used in the general computation, for example to
serve as the base address to index into the kernel code section.
Although we did not encounter such cases in our prototype, we
could recover the original control data from the index before
such uses.

Fifth, in this work, we assume that kernel code integrity is
provided by a trustworthy hypervisor. However, we do assume
the presence of exploitable vulnerabilities in the protected OS
kernel. Notice that our goal here is to comprehensively protect
control data of the base kernel and trusted extensions so that
they always fall within the provided CFG. In the meantime, we
point out that there are some promising solutions [31], [32] that
are proposed to load but securely isolate untrusted kernel exe-
cutions. As a result, our scheme can be naturally integrated with
them for the combined benefits of ensuring the CFG of trusted
kernel and isolating untrusted kernel extensions.

Finally, our goal in this paper is the protection of kernel con-
trol data, not other noncontrol data (including those branch con-
dition data). In order to compromise noncontrol data, the at-
tackers typically need to inject their own specific code or misuse
existing kernel code. In either case, they must hijack the normal
kernel control flow. As a result, our system can be naturally
combined with existing systems [3], [5] for kernel code integrity
to impede or prevent this attack.

VI. RELATED WORK

Kernel Rootkit Detection and Prevention: The first area of
related work covers recent efforts that aim to detect and/or pre-
vent kernel rootkits. For example, Copilot [33] uses a trusted
PCI card to grab a runtime OS image and infer if the kernel has
been compromised by rootkits. The follow-up efforts extend to
examine the violation of kernel data integrity [34] or state-based
kernel control flow integrity [35]. Livewire [36] proposes the
notion of virtual machine introspection to inspect the inner state
of a guest OS to detect malware. Strider GhostBuster [37] and
VMwatcher [38] leverage the self-hiding nature of rootkits to
infer rootkit presence by detecting discrepancies between the
views of a system from different perspectives. Other systems
such as SecVisor [3] and NICKLE [5] aim to guarantee that
only authenticated code can execute in the kernel space, thus
providing kernel code integrity.

Closely related to our system, there are some other systems
that have been proposed to protect the control data from being
hijacked in either user or kernel space. For example, StackGuard
[39], StackShield [40], and others [41], [42] protect the return
addresses from being hijacked or misused. Lares [12] and others
[11] instead protect a subset of function pointers in kernel space.
In contrast, our system proposes a unified scheme that compre-
hensively protects all kernel control data, which includes both
function pointers and return addresses. Specifically, by trans-
forming them into their indexes, our scheme makes their pro-
tection feasible and efficient, as demonstrated in our prototype
and evaluation.
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Control-Flow Integrity Enforcement: There are several
control-flow integrity enforcement systems proposed to pro-
tect the control data in the user space. For example, program
shepherding [9] uses a dynamic machine-code translation
technique (or interpreter) to constrain software’s control-flow
transfer. However, as pointed out in [10], the complexity of
its interpreter may affect its trustworthiness and complicate
its adoption. CFI [10] instead leverages a label authentication
technique to guarantee that the application can jump or return
to the right location for each control-flow transfer. More specif-
ically, CFI implants certain labels at the beginning of each
indirectly called function and right after each call instruction.
When a control-flow transfer occurs (e.g., through an indirect
call or ret), the application will compare the prestored label
with the implanted label in the code to validate its correctness.

The above systems mainly target user-level applications.
However, due to additional unique challenges and complexities
in the OS kernel, their effectiveness in providing comprehen-
sive kernel control data protection still remains to be shown.
Also notice that CFI implants labels as code in the appli-
cation binary, and later uses it as data to compare with its
corresponding prestored value. Such an operation is not CPU
cache-friendly and will likely introduce extra performance
overhead (the highest overhead is more than 40% in the eval-
uation results of [10]). In comparison, our approach avoids
this overhead by keeping the jump tables as static data and
storing them separately from code. From another perspective,
our approach essentially achieves a kernel-level control-flow
integrity, which is made possible by proactively transforming
kernel control data with their indexes.

Also, as mentioned earlier, our scheme is motivated from one
of our prior works called HyperSafe [13], which enforces CFI
for small Type-I hypervisors (e.g., BitVisor [14]). The fact that
these hypervisors are designed to contain only static code and
run as a single thread significantly simplifies the overall system
design and implementation. In other words, for the protection
of commodity OS kernel hooks, we need to accommodate the
dynamic nature and address the multitasking support of com-
modity OS kernels, which introduce qualitative differences. As
detailed in Section III, two representatives are: 1) The kernel
extension support requires embedding and unifying jump tables
(from the loaded kernel modules) while there is no such need
in the typer-1 hypervisor (as it only consists of static code); the
unification process accordingly needs to intelligently handle po-
tential conflicts in the index assignment. The reason is that it is
an independent process for different kernel modules to assign
their own indexes and, therefore, it is possible that same indexes
can be assigned. 2) Our approach also needs to consider and
gracefully handle rather frequent context switching events and
interrupts, which is not the case in the single-threaded type-I hy-
pervisor.

Other Memory Safety Protection: The third area of related
work includes a number of systems to enforce memory safety
for user-level applications or kernel extensions. For example,
compared to CFI [10], DFI [43] further imposes the data-flow
integrity to protect noncontrol data in user-level applications.
XFI [44] combines static analysis with inline software guards
and a two-stack execution model to perform fine-grained
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memory access control and it has been applied to software such
as device drivers and multimedia codecs. WIT [45] combines
static analysis and runtime instrumentation to prevent memory
error exploits. BGI [46] uses a new software fault isolation
technique to constrain the memory address space of Windows
device drivers and ensure their type safety. Other systems
are proposed to ensure spatial or temporal memory safety
by preventing out-of-bound memory access. For example,
CCured [47] and Cyclone [48] are based on fat-pointers. Each
fat-pointer carries the pointer’s base and bound address for
run-time check. Softbound [49] goes a step further by recording
base and bound information for every pointer as disjoint meta-
data, thus not requiring changes to source code. Others [50],
[51] track allocated regions of memory as bounded objects
and then map or limit pointers based on the bound information
associated with the corresponding objects. SVA [52] instead
proposes a new low-level, typed instruction set so that various
memory safety properties can be compactly encoded as exten-
sions to the SVA type system. To take advantage of the new
typed instruction set, OS kernel and application code need to be
ported to SVA. Most recently, it has been extended to account
for the behavior of low-level software/hardware interactions
such as memory-mapped I/O and MMU configuration [53].
Our system complements the above systems by proposing a
scalable and efficient way to transform kernel control data for
its protection and our evaluation indicates our approach incurs
a low performance overhead.

In the same category, there also exists a long stream of re-
searches in software fault isolation (SFI) [54]-[58]. SFI sys-
tems employ software technologies (e.g., code instrumentation,
binary translation) or hardware support (e.g., segmentation in
x 86 architecture) to limit the data and instruction accesses of
untrusted code to logically isolated parts of the host applica-
tion’s address space. For example, PittSFleld [56] enforces arti-
ficial alignment rules to x 86 instructions and verifies the safety
of untrusted code at load time to reduce the TCB. Vx32 [57]
uses dynamic instrumentation to confine instruction accesses
and isolates data access with segments on the x 86 architecture.
SFI provides effective sandbox of untrusted code, but typically
suffers from high performance overhead (especially on the x 86
architecture [10]). By converting control data to indexes, our
scheme could effectively protect a large number of control data
with much smaller performance overhead.

VII. CONCLUSION

In this paper, we have presented indexed hooks, a scheme that
comprehensively and efficiently transforms kernel control data
into indexed hooks, which allows us to effectively limit them
to take only the legal jump targets allowed by the CFG. Based
on the observation that existing control data have a set of legit-
imate jump targets, we can precalculate them into (protected)
jump tables and then replace these control data with their in-
dexes to these tables. We have implemented a compiler-based
approach to transform all control data in FreeBSD 8.0 kernel.
Our prototyping experience and experiments with a number of
synthetic attacks indicate that our scheme is generic, effective,
and can be implemented on commodity hardware with a low
performance overhead (< 5% based on benchmarks).
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