
Learning to Mitigate Rowhammer Attacks
Biresh Kumar Joardar, Tyler. K. Bletsch, and Krishnendu Chakrabarty

Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA

Abstract—Rowhammer is a vulnerability that arises due to

the undesirable interaction between physically adjacent rows in

DRAMs. Existing DRAM protections are not adequate to defend

against Rowhammer attacks. We propose a Rowhammer

mitigation solution using machine learning (ML). We show that

the ML-based technique can reliably detect and prevent bit flips

for all the different types of Rowhammer attacks considered

here. Moreover, the ML model is associated with lower power

and area overhead compared to recently proposed Rowhammer

mitigation techniques for 26 different applications from the

Parsec, Pampar, and Splash-2 benchmark suites.

I. INTRODUCTION

Rowhammer is a hardware reliability concern that arises

when an attacker repeatedly accesses (hammers) a few DRAM
rows to cause unauthorized changes in physically adjacent
memory rows [1]. It has been extensively studied for
mounting various types of attacks, including privilege
escalation, sandbox escapes, and breaking cloud isolation
[2][3]. A number of hardware platforms, ranging from edge
devices to datacenter servers, have been shown to be
vulnerable to Rowhammer attacks [3][4][5][6][7]. A number

of Rowhammer mitigation techniques have been proposed in
prior work [3][8][9][11][12][13]. However, existing

mitigation schemes are either ineffective against Rowhammer
or incur high implementation overhead [9][10]. Targeted Row
Refresh (TRR) is one of the latest Rowhammer mitigation

techniques that is used in commercial DRAMs. However,
successful Rowhammer attacks are possible on commercial

DRAMS even with TRR. Hence, Rowhammer still remains a
major security concern for the semiconductor industry.

An effective Rowhammer mitigation mechanism must offer
protection against different types of attacks. Most of the
existing defense mechanisms are ineffective against the
recently proposed N-sided attacks [8]. In addition, the
detection mechanism must be fast while introducing low
hardware overhead. Moreover, different applications exhibit
different DRAM access patterns. This often makes it difficult
to distinguish between an attack and benign memory-access
behavior. A practical Rowhammer solution should be able to
distinguish attacks from other benign applications, i.e., it
should have low false-positive rate. In this paper, we propose
a machine learning (ML)-based technique that is fast and can
detect various types of Rowhammer attacks. Information on

which DRAM rows are being accessed by benign applications
and during a Rowhammer attack is used as input to the ML
model. The model then learns/uncovers patterns in the data to

identify whether an access is benign or malicious (ie.,
whether a Rowhammer attack has been launched). We
evaluate the efficacy of the ML model using popular
Rowhammer implementations, and numerous applications
from the Parsec, Pampar, and Splash2 benchmark suites
[14][15][16]. Experiments shows that the proposed technique

is able to identify Rowhammer attacks and prevent exploitable
bit flips. The key contributions of this paper are as follows:

This research was supported in part by the Semiconductor Research
Corporation (Task ID 2994.001). Biresh Kumar Joardar was also supported
in part by NSF Grant # 2030859 to the Computing Research Association
for the ClFellows Project.

978-3-98 19263-6-1/DATE22/©€)2022 EDAA

¢ To motivate the need for a new mitigation technique,
we demonstrate via experiments that Rowhammer can
cause bit-flips on commercial DDR4 DRAMs.

¢ We develop an ML-based model that can accurately
detect Rowhammer attacks. Once an attack is detected,
we use additional refresh to prevent bit flips.

¢ The ML method prevents bit flips and introduces 5% and
19% lower power overhead than Graphene [17] and
Blockhammer [18] respectively.

II. PRIOR WORK

Rowhammer is a well-known DRAM vulnerability that

causes bit flips. Existing Rowhammer attack variants include
one-location, single-sided, double-sided and the more general
N-sided attacks [8]. The Rowhammer vulnerability has been
utilized to launch many types of attacks on a wide range of
systems. For instance, Rowhammer has been used to
compromise the Linux kernel, break cloud isolation, takeover
browsers, and “root”? mobile devices [2][3][5][25].
Rowhammer attacks can also be successfully mounted over
the network [19]. In this work, we hammered three
commercially available DDR4 DRAMs for desktop

computers and observed up to 1495 bit flips after just two
hours of hammering. These examples show the wide scope
and severity of Rowhammer attacks.

Increasing the default refresh rate is an early defense
proposed against Rowhammer [20]. Probabilistic refresh and

Error correction codes (ECC) can also be used to prevent bit
flips due to Rowhammer attacks [3]. However, prior
investigations have demonstrated that these methods are
ineffective against Rowhammer attacks [10]. TWiCe is
another promising Rowhammer mitigation technique that uses
counters [12]. However, TWiCe is not efficient for small

HCyi-s¢ values (below 32K), and incurs high area overhead. A

counter-based probabilistic method (referred as ProHit) has
been proposed in [13] to prevent Rowhammer attacks.
However, this method is vulnerable to adversarial attack
patterns [17]. Software-based solutions have been proposed to
prevent Rowhammer [10][11]. However, these methods
require complex hardware implementations. An ML-based
Rowhammer mitigation strategy is presented in [21].
However, it requires 1-2ms for a single inferencing, which is

not suited for real-time Rowhammer detectionas DRAM rows
can be accessed after ~46ns [18]. TRR is deployed on

commercial DDR4s to mitigate Rowhammer. However, TRR
is ineffective for N-sided attacks (where N > 2) [8]. Hence,
there is a need for new Rowhammer mitigation schemes.

IH. ROWHAMMER DETECTION USING ML

A. ML for Rowhammer attack mitigation

Implementing an ML model for detecting Rowhammer
attacks in real-time is challenging as the model should achieve
high prediction accuracy without adding significant area and
power overhead. The choice of the ML model is further

constrained by limited on-chip resources. Typically a

564

Authorized licensed use limited to: Duke University. Downloaded on December 09,2023 at 15:38:00 UTC from IEEE Xplore. Restrictions apply.

Rowhammer detection mechanism is deployed in three ways:
(a) as part of the memory controller (MC) e.g., [17][18]. (b)
inside the DRAM module (e.g., [12]), and (c) off-chip or in
software (e.g., [11][21]). However, as demonstrated in [22],
solutions deployed on the CPU (or off-chip) are slow. Hence,
they are not suited for detecting Rowhammer in real-time.

Deploying the Rowhammer mitigation setup inside the
memory controller (MC) is a popular architectural choice
[17][18]. However, it has the following drawbacks: (a) The
MC must be aware of DRAM row remapping, a technique
used to deal with manufacturing faults in DRAMs. Storing the
row remapping information of all the banks in the MC can be
costly [12], and (b) the hardware implementation in MC must
be provisioned considering the maximum number of DRAM
rows that can be supported by the overall system (i.e., the
worst-case scenario). However, in practice, the DRAM
configuration (such as the number of DIMMs, the capacity of
each DIMM, etc.) can vary based on the user’s choice. This
can lead to a significant wastage of resources. For instance,
our experimental setup includes an MSI motherboard (model
MS-7A70), which can support up to four DIMMs; each
DIMM can have 16 banks. Hence, a Rowhammer mitigation
scheme deployed in the memory controller must include
support for the maximum possible number of banks (64 banks
for the MS-7A70 motherboard) that the user can have. Having
support for fewer banks leaves some of the DIMMs vulnerable
to exploits while supporting all 64 banks can be wasteful if the
user chooses to have one DIMM only.

Therefore, we deploy the proposed Rowhammer solution
inside the DRAM module (on-chip) in this work. However,
this introduces some important design challenges: (a) the
solution should not require extensive changes to existing
DRAM designs, and (b) as the solution is on-chip, the area and
power overhead must be minimal; this requirement further

restricts the choice of the ML algorithm that can be used for
detecting Rowhammer. Large ML models with many weights
(such as RNNs [21]) are not suited for on-chip deployment as
they will introduce high area and power overhead. A suitable
ML model must achieve high prediction accuracy with very
little performance and power overheads. In this work, we use
a linear model with only four trainable parameters (three
weights and one bias) to detect a Rowhammer attack. Linear
models are simple and can be easily implemented using only
an adder and a multiplier. As we show later, the ML model
can detect Rowhammer attacks with high accuracy.

The model is trained offline and then deployed for on-chip
inferencing using dedicated hardware. To train the classifier,
we first prepare the training and testing dataset; we discuss the
creation of training and testing data in a later section. The
training set consists of traces that are randomly sampled from
three benign applications and three variants of Rowhammer
attack. Note that we do not require a large amount of training
data as the proposed ML model has only four trainable
parameters. The handful of parameters can be trained easily:
we did not find any noticeable improvement in prediction
accuracy using more training data. The proposed ML model
has three stages: (a) data pre-processing, (b) Rowhammer

detection, and (c) mitigation to prevent bit flips.

Data-preprocessing: Applications often access DRAM
millions of times between consecutive refreshes. Hence, the
memory access data must be first preprocessed to compress

the long sequence of memory access traces to few
representative features that will be used by the small ML
model. Pre-processing is necessary for both training and
inferencing. As inferencing is done on-chip, we need
hardware support enabled for the data-preprocessing. The
data-preprocessing is implemented using a set of counters.
However, counting the number of times each row is accessed
is also expensive to implement. For instance, each bank in a
typical commercial DRAM has 2'° rows. Counting the
number of times each of these individual rows is accessed will
necessitate 2° counters in each bank, which is prohibitively
expensive. To reduce hardware overhead, we use a Bloom
filter where each counter tracks R rows. The use of Bloom
filters significantly reduces the number of counters required.
We employ H3-class hash functions for the Bloom filters.
Following [18], we alter the hash function periodically to
thwart reverse engineering attempts of uncovering the hash
functions. This is done by replacing the hash function’s seed
value with a randomly generated value.

We use two sets of counters to track both the short-term
and long-term DRAM access behavior by different
applications. The two sets of counters work as follows: The
short-term counters track the DRAM usage for C consecutive
clock cycles, after which they are reset. The long-term
counters are incremented only if the short-term counts exceed
a threshold. The long-term counters are refreshed every 64ms.
Here, we choose the number of counters and the bit width of
each counter such that we can detect Rowhammer attack
attempts with more than 99% accuracy after only HCyj-.¢/4

accesses (we define HCyi;s: aS the minimum number of

hammers required to flip a bit in any of the adjacent victim
rows). Such early detection enables us to proactively thwart
Rowhammer attempts. The prediction accuracy increases to
100% long before HC;;,;,/2 number of accesses for all

Rowhammer attacks considered in this work. We discuss the
choice of the design parameters in Section IV.A.

Rowhammer detection: The data from the counters is
used by the ML model as input to determine whether there is
a Rowhammer attack. The data is collected for inference every
C cycles (before the short-term counters are reset). The inputs
to the ML model include: (a) short-term count, (b) the sum of
all the short-term counts (recall that we have many short-term
counters per bank), and (c) the long-term count. Our
experiments indicate that these three features are sufficient to
reliably identify Rowhammer attacks. Memory accesses
during a Rowhammer attack exhibit anomalous behavior,
where only a handful of counters will have high short-term
counts. This happens as Rowhammer attack requires repeated
access to the same row(s). Hence, only a handful of counters
will have excessively high counts. The ML model can easily
identify such behavior/pattern by comparing the short-term
counts and the total counts. However, as mentioned earlier,
short term counters are reset frequently. To preserve the
access behavior during a long period of time, the long-term
counts are necessary as another input feature. Overall, the ML
model combines these input features with its learnt parameters
(weights) to detect whether there is a Rowhammer attack.

Rowhammer mitigation: Upon detection of an attack, we
use a probabilistic refresh mechanism to prevent bit flips:
every time a target row is accessed, its neighboring rows are
refreshed with a non-zero probability p [1]. Each DRAM row
(except the edges) has neighboring rows on two sides. Hence,

Design, Automation and Test in Europe Conference (DATE 2022) 565

Authorized licensed use limited to: Duke University. Downloaded on December 09,2023 at 15:38:00 UTC from IEEE Xplore. Restrictions apply.

566

No
.

of

D
R
A
M

Table I: Details on the DRAMs used in this work
ize

1 41GU6AFR8N-TF GB

1 43CB2-CRC GB
143EB1-CPB GB

IRx8
IRx8

the neighboring row on either side has a p/2 probability
(individually) of being refreshed whenever the target row is
activated. As mentioned earlier, Rowhammer attacks involve
repeatedly hammering a handful of rows. Hence, we can
choose p, such that there is an extremely high chance that the
victim rows will be refreshed at least once during this interval
(preventing bit flips) while keeping the overall number of
added refreshes (and hence the performance impact) low [1].

In this work, we aim to have a bit error rate of less than 10~*°
when a Rowhammer attack is sustained for an hour.

A similar technique using probabilistic refresh was
proposed in [1]; it is referred as PARA. However, PARA lacks

Rowhammer detection capability and therefore introduces
additional refreshes in all DRAM banks even under normal
conditions. This is inefficient as the additional refreshes will
stall the normal DRAM read/write operations leading to
higher execution times [9]. In this work, we solve this by
activating the probabilistic refresh only when the ML model
detects an attack. By applying the probabilistic refresh
selectively, the proposed technique greatly reduces the
number of additional refresh operations compared to PARA.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We use the GemS simulator to simulate a four-core system
[22]. Each core is a CPU based on the Intel x86 architecture
with an operating frequency of 2GHz. The CPUs include a
private 64KB L1 cache. The IMB L2 is shared among all the
four CPUs and is the last level cache in our setup. The DRAM
consists of 16 banks, each bank with ~65K rows and operates
at 2400 MHz. For evaluation, we use 26 different applications
from the Parsec!, Pampar? and Splash-2? benchmark suites
[14][15][16]. We refer to the applications from the Parsec,
Pampar and Splash-2 benchmark suites as “benign
applications” as these applications do not cause bit-flips. We
use two popular Rowhammer implementations for evaluation,
(a) the implementation by Google (we refer this as G-hammer
[2]) and TRRespass [8]. We use a linear ML model with three
weights and one bias. The model is implemented using the
sklearn library. For data preprocessing, we choose the
parameter values (such as the number of counters, counter bit-
widths as discussed in Section III) using a grid search. Based
on the results of the grid search, we use 300 counters in each
bank. The counters are reset every C = 90 us. The values of
these variables can also be chosen by the hardware designer.

sr LL
C

mi
ss

N wu

Table II: Observations after hammering for ~2 hours

Make HCrirse |Successful attacks} Rowhammer attacks

Hynix (H1) 50K 12 12,13,15,16,28-sided
Samsung (S1) 20K 24 26,28,30-sided

Samsung (S2) 30K 1495 30 > N27 -sided

B. Preparing training/inferencing dataset

For training the ML model, we must first have sufficient
data that includes memory-access behavior generated by
benign applications and Rowhammer attacks. However, such
a dataset is not available publicly. Hence, we must first
prepare a sufficiently large and diverse data set that includes
both Rowhammer attacks and benign applications. For this
purpose, we collect memory-access traces using cycle-
accurate simulations on Gem5 [22][26]. The memory access
information (which address was accessed at what time) during
an application’s lifetime is recorded for preparing the dataset.
For training and evaluating the ML model, we use a mix of
benign applications, and real Rowhammer attacks.

Benign applications: We simulate applications from the
Splash-2, Parsec and Pampar benchmark suites, using Gem5
full system simulations with a real Linux kernel. Fig. 1 shows

the memory-access behavior for all these 26 applications
considered in this work. For comparison, we also show the
memory-access behavior during a 8-sided Rowhammer attack
(abbreviated as ‘RH’ and shown in red in Fig. 1); other N-
sided attacks exhibit similar memory access behavior. Fig.
1(a) shows the cache miss percentage while Fig. 1(b) shows
the overall DRAM access rate (number of DRAM accesses
per unit time) for the different benign applications and during
a Rowhammer attack. As shown in Fig. 1, the benign

applications exhibit a varying degree of cache miss and
memory access rates, which is representative of a real-world
scenario; we assume that the user(s) will run different types of
workloads on the target hardware platform. This diverse
behavior enables us to evaluate the ML-based Rowhammer
detector under different levels of DRAM usage.

Rowhammer attacks: Next, we must obtain data from
attacks that have been demonstrated to cause bit flips on
commercial DRAMs. To obtain the data from real
Rowhammer attacks, we evaluate existing attack
implementations on three commercial DRAMs. Table I lists
the details of the three commercially available DRAMs used
for the experiments in this work. We perform all our
experiments on an Intel i5-7500 processor mounted on an MSI
motherboard (model MS-7A70). Each DIMM is hammered
for approximately two hours using both the G-hammer and
TRRespass implementations. Table II lists the outcome of our
experiments. As shown in Table II, DDR4s are susceptible to
different N-sided attacks. For instance, H1 is susceptible to the

BL BO CA DE FL FR ST SW x2 DFT DJ DP GS HA JA MM OE SH TR FF LU OC RA RY VO WA RH
Applications

. 1.E+08

ae
85 @ 1.£+06
ne &

ge 5 [Dial 32 1.6404

(b)
BL BO CA DE FL FR ST SW x2 DFT DJ DP GS HA JA MM OE SH TR FF LU OC RA RY VO WA RH

Applications

Fig. 1: Memory access behavior of benign applications represented using (a) Last level cache (LLC) miss percentage, and (0) DRAM access rate (number of

DRAM access per second). The red bar “RH” represents the Rowhammer attack

'Blackscholes (BL), Bodytrack (BO), Canneal (CA), Dedup (DE), Fluidanimate (FL), Freqmine (FR), Streamcluster (ST), Swaptions (SW), x264 (x2)
> DFT (DF), Dijkstra’s shortest path (DJ), Dot-product (DO), Gram-Schmidt (GS), Harmonic sum (HS), Jacobi method (JA), Matrix multiply (MM), Odd-
even sort (OE). Histogram similarity (HS), Turing Rin
3 Fast Fourier Transform (FF), LU factorization (

(TR).
U), Scean (OC), Radix (RA), Raytrace (RY), Volrend (VO) and Water (WA).

Design, Automation and Test in Europe Conference (DATE 2022)

Authorized licensed use limited to: Duke University. Downloaded on December 09,2023 at 15:38:00 UTC from IEEE Xplore. Restrictions apply.

m Blockhammer m Graphene
3 1

g , 08
= 0 0.6
= 2 0.4
5 S$ 0.2
2 0

Area Power

Fig. 2: Area and power overhead of proposed method compared to
Blockhammer and Graphene.

12, 13, 15, 16 and 28-sided attacks, while S2 is vulnerable to
all possible N-sided attacks where 30 > N > 7. Since we have
demonstrated that these attacks cause bit flips on commercial
DRAMs, we test our model using these attacks. Table II also
lists the HCfis¢ values (minimum number of hammers that

caused a bit flip) for these DRAMs. As we can see from Table
Il, DDR4 DRAMSs can have HC;;,,, values as low as 20K.

Hence, we develop the ML model for HCyi75, = 20K (worst

case scenario). We collect the memory access traces of the
successful attacks (from Table-ID) using Gem5.

C. Performance, power, and area evaluation

Next, we study the effectiveness of the proposed ML
algorithm in identifying different Rowhammer attacks. We
test the trained ML model on the different Rowhammer
attacks that caused bit flips on commercial DDR4s (listed in
Table II). Our experiments indicate that the ML model can
identify all the Rowhammer attacks considered in this work
long before HC;;,s¢/2 accesses. These results provide strong

empirical evidence that a simple ML model can prevent bit
flips under various Rowhammer attacks.

For area and power overhead comparison, we use
Graphene [17], and Blockhammer [18] as baselines. Both
Graphene and Blockhammer are implemented on the memory
controller. Fig. 2 shows the area and power overhead of the
three methods. To estimate the power and area overheads, we
synthesize the hardware required to implement these
techniques using Cacti [23]. For a fair comparison, we
compare the overheads for a single 16-bank DIMM. However,
as mentioned earlier, solutions implemented on the MC must
be designed for the worst case (maximum number of DIMMs
that can be accommodated by the motherboard) irrespective
of the actual setup, whereas our technique canbe implemented
in the individual DRAM modules. Hence, the real amount of
overhead of Graphene and Blockhammer are significantly
higher (~4X) in practice than what we report here. As shown
in Fig. 2, the proposed ML model introduces less area and
power overhead than the other baseline techniques. The ML
implementation requires 51% and 19% less area and power
overhead respectively compared to Blockhammer. These
results can be attributed to the fact that both Graphene and
Blockhammer require more hardware (counters and buffers)
than the proposed method. The ML model can identify
Rowhammer attacks with fewer resources. Hence, the
overheads of the ML technique are significantly less.

Next, we compare the performance overheads of the three
techniques. Once, a Rowhammer attack is suspected, both the
proposed method and Graphene use additional refreshes while
Blockhammer stalls memory access temporarily to prevent bit
flips. These mitigation actions can lead to performance
overheads in case of false positive predictions for the genuine
applications. To examine the performance overhead, we use
DRAMSim3, a popular DRAM simulator [24]. We implement
the three mitigation techniques using DRAMSim3. Our

analysis indicates that all three methods have low false
positive predictions which results in negligible performance
overhead. The performance overhead of the proposed ML
method was tiny (0.003% only) on average; Graphene and
Blockhammer also have ~0% performance overhead. This
happens as the mitigation mechanisms are not triggered
frequently enough to cause a visible performance impact.

CONCLUSION

Rowhammer is a serious hardware vulnerability. Existing
Rowhammer detection schemes either do not offer sufficient
protection or require high power and area overheads. We have
presented an ML-based technique that can detect all the
Rowhammer attacks considered here and prevent bit flips. The
ML model, in conjunction with probabilistic refresh achieves
a BER of less than 10715 for an hour of hammering. The ML
technique can reliably detect both Rowhammer attacks with
low performance, power, and area overheads.

REFERENCES

[1] Y. Kim et al., “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors.” in ISCA, 2014.

[2] M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhamer bug to
Gain Kernel Privileges,” in Black Hat, 2015.

[3] L. Cojocar et al., “Exploiting Correcting Codes: On the Effectiveness
of ECC Memory Against Rowhammer Attacks,” in S&P, 2019.

[4] _P. Frigo et al., “Grand Pwning Unit: Accelerating Microarchitectural
Attacks with the GPU.” in S&P, 2018.

[5] E. Bosman et al., “Dedup Est Machina: Memory Deduplication as an
Advanced Exploitation Vector,” in S&P, 2016.

[6] D. Gruss et al, “Another Flip in the Wall of Rowhammer Defenses,”
in S&P, 2018.

[7] A. Tataret al., “Throwhammer: Rowhammer Attacks over the Network
and Defenses,” in USENIX ATC, 2018.

[8] P. Frigo et al., "TRRespass: Exploiting the Many Sides of Target Row
Refresh," in S&P, 2020, pp. 747-762.

[9] J..S. Kimet al., "Revisiting RowHammer: An Experimental Analysis
of Modern DRAM Devices and Mitigation Techniques," in ISCA,
2020, pp. 638-651.

[10] Z. B. Aweke et al., “ANVIL: Software-Based Protection Against Next-
Generation Rowhammer Attacks,” in ASPLOS, 2016.

[11] R. K. Konoth et al., “ZebRAM: Comprehensive and Compatible
Software Protection Against Rowhammer Attacks,” in OSDI, 2018.

[12] E. Lee et al, “TWiCe: Preventing Row-Hammering by Exploiting
Time Window Counters,” in ISCA, 2019

[13] M. Son, H. Park, J. Ahn and S. Yoo, "Making DRAM stronger against
row hammering," in DAC, 2017, pp. 1-6

[14] C. Bienia, et. al., "The PARSEC benchmark suite: Characterization and
architectural implications," in PACT, 2008, pp. 72-81.

[15] A. M. Garcia et. al, “PAMPAR: A new parallel benchmark for
performance and energy consumption evaluation,” in CCPE. 2019.

[16] S. C. Woo wt. al., “The SPLASH-2 programs: characterization and
methodological considerations,” in ISCA 1995, 24-36.

[17] Y. Park, et. al, "Graphene: Strong yet Lightweight Row Hammer
Protection, "in MICRO, 2020, pp. 1-13.

[18] A. G. Yaglikei et al., "BlockHammer: Preventing RowHammer at Low
Cost by Blac! listing Rapidly-Accessed DRAM Rows," inHPCA, 2021

[19] M. Lipp et al., “Nethammer: Inducing Rowhammer Faults Through
Network Requests,” in EuroS&PW, 2018, pp. 710-719.

[20] Apple Inc., “About the Security Content of Mac EFI Security Update
2015-001,” https://support.apple.com/en-us/HT204934, 2015.

[21] B. Gulmezoglu, et. al., “FortuneTeller: Predicting Microarchitectural
Attacks via Unsupervised Deep Learning,” in arXiv:1907.03651, 2019.

[22] J. L. Power et. al., “The gem5 Simulator: Version 20.0+,” in
arXiv:2007.03 152, 2020.

[23] N. Muralimanohar, R. Balasubramonian and N. Jouppi, "Optimizing
NUCA Organizations and Wiring Alternatives for Large Caches with
CACTI 6.0," in MICRO, 2007, pp. 3-14.

[24] S. Li, Z. Yang, D. Reddy, A. Srivastava and B. Jacob, "DRAMsim3: A
Cycle-Accurate, Thermal-Capable DRAM Simulator," in IEEE
Computer Architecture Letters, vol. 19, no. 2, pp. 106-109, 2020.

[25] S V. van der Veen et al, “Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms,” in CCS, 2016

[26] L. France et. al., “Vulnerability Assessment of the Rowhammer Attack
Using Machine Learning and the gem5 Simulator - Work in Progress”
in SAT-CPS New York, 104-109, 2021.

Design, Automation and Test in Europe Conference (DATE 2022) 567

Authorized licensed use limited to: Duke University. Downloaded on December 09,2023 at 15:38:00 UTC from IEEE Xplore. Restrictions apply.

