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Abstract—Rowhammer is a vulnerability that arises due to 

the undesirable interaction between physically adjacent rows in 

DRAMs. Existing DRAM protections are not adequate to defend 

against Rowhammer attacks. We propose a Rowhammer 

mitigation solution using machine learning (ML). We show that 

the ML-based technique can reliably detect and prevent bit flips 

for all the different types of Rowhammer attacks considered 

here. Moreover, the ML model is associated with lower power 

and area overhead compared to recently proposed Rowhammer 

mitigation techniques for 26 different applications from the 

Parsec, Pampar, and Splash-2 benchmark suites. 

I. INTRODUCTION 

Rowhammer is a hardware reliability concern that arises 

when an attacker repeatedly accesses (hammers) a few DRAM 
rows to cause unauthorized changes in physically adjacent 
memory rows [1]. It has been extensively studied for 
mounting various types of attacks, including privilege 
escalation, sandbox escapes, and breaking cloud isolation 
[2][3]. A number of hardware platforms, ranging from edge 
devices to datacenter servers, have been shown to be 
vulnerable to Rowhammer attacks [3][4][5][6][7]. A number 

of Rowhammer mitigation techniques have been proposed in 
prior work  [3][8][9][11][12][13]. However, existing 

mitigation schemes are either ineffective against Rowhammer 
or incur high implementation overhead [9][10]. Targeted Row 
Refresh (TRR) is one of the latest Rowhammer mitigation 

techniques that is used in commercial DRAMs. However, 
successful Rowhammer attacks are possible on commercial 

DRAMS even with TRR. Hence, Rowhammer still remains a 
major security concern for the semiconductor industry. 

An effective Rowhammer mitigation mechanism must offer 
protection against different types of attacks. Most of the 
existing defense mechanisms are ineffective against the 
recently proposed N-sided attacks [8]. In addition, the 
detection mechanism must be fast while introducing low 
hardware overhead. Moreover, different applications exhibit 
different DRAM access patterns. This often makes it difficult 
to distinguish between an attack and benign memory-access 
behavior. A practical Rowhammer solution should be able to 
distinguish attacks from other benign applications, i.e., it 
should have low false-positive rate. In this paper, we propose 
a machine learning (ML)-based technique that is fast and can 
detect various types of Rowhammer attacks. Information on 

which DRAM rows are being accessed by benign applications 
and during a Rowhammer attack is used as input to the ML 
model. The model then learns/uncovers patterns in the data to 

identify whether an access is benign or malicious (ie., 
whether a Rowhammer attack has been launched). We 
evaluate the efficacy of the ML model using popular 
Rowhammer implementations, and numerous applications 
from the Parsec, Pampar, and Splash2 benchmark suites 
[14][15][16]. Experiments shows that the proposed technique 

is able to identify Rowhammer attacks and prevent exploitable 
bit flips. The key contributions of this paper are as follows: 
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¢ To motivate the need for a new mitigation technique, 
we demonstrate via experiments that Rowhammer can 
cause bit-flips on commercial DDR4 DRAMs. 

¢ We develop an ML-based model that can accurately 
detect Rowhammer attacks. Once an attack is detected, 
we use additional refresh to prevent bit flips. 

¢ The ML method prevents bit flips and introduces 5% and 
19% lower power overhead than Graphene [17] and 
Blockhammer [18] respectively. 

II. PRIOR WORK 

Rowhammer is a well-known DRAM vulnerability that 

causes bit flips. Existing Rowhammer attack variants include 
one-location, single-sided, double-sided and the more general 
N-sided attacks [8]. The Rowhammer vulnerability has been 
utilized to launch many types of attacks on a wide range of 
systems. For instance, Rowhammer has been used to 
compromise the Linux kernel, break cloud isolation, takeover 
browsers, and “root”? mobile devices  [2][3][5][25]. 
Rowhammer attacks can also be successfully mounted over 
the network [19]. In this work, we hammered three 
commercially available DDR4 DRAMs for desktop 

computers and observed up to 1495 bit flips after just two 
hours of hammering. These examples show the wide scope 
and severity of Rowhammer attacks. 

Increasing the default refresh rate is an early defense 
proposed against Rowhammer [20]. Probabilistic refresh and 

Error correction codes (ECC) can also be used to prevent bit 
flips due to Rowhammer attacks [3]. However, prior 
investigations have demonstrated that these methods are 
ineffective against Rowhammer attacks [10]. TWiCe is 
another promising Rowhammer mitigation technique that uses 
counters [12]. However, TWiCe is not efficient for small 

HCyi-s¢ values (below 32K), and incurs high area overhead. A 

counter-based probabilistic method (referred as ProHit) has 
been proposed in [13] to prevent Rowhammer attacks. 
However, this method is vulnerable to adversarial attack 
patterns [17]. Software-based solutions have been proposed to 
prevent Rowhammer [10][11]. However, these methods 
require complex hardware implementations. An ML-based 
Rowhammer mitigation strategy is presented in [21]. 
However, it requires 1-2ms for a single inferencing, which is 

not suited for real-time Rowhammer detectionas DRAM rows 
can be accessed after ~46ns [18]. TRR is deployed on 

commercial DDR4s to mitigate Rowhammer. However, TRR 
is ineffective for N-sided attacks (where N > 2) [8]. Hence, 
there is a need for new Rowhammer mitigation schemes. 

IH. ROWHAMMER DETECTION USING ML 

A. ML for Rowhammer attack mitigation 

Implementing an ML model for detecting Rowhammer 
attacks in real-time is challenging as the model should achieve 
high prediction accuracy without adding significant area and 
power overhead. The choice of the ML model is further 

constrained by limited on-chip resources. Typically a 
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Rowhammer detection mechanism is deployed in three ways: 
(a) as part of the memory controller (MC) e.g., [17][18]. (b) 
inside the DRAM module (e.g., [12]), and (c) off-chip or in 
software (e.g., [11][21]). However, as demonstrated in [22], 
solutions deployed on the CPU (or off-chip) are slow. Hence, 
they are not suited for detecting Rowhammer in real-time. 

Deploying the Rowhammer mitigation setup inside the 
memory controller (MC) is a popular architectural choice 
[17][18]. However, it has the following drawbacks: (a) The 
MC must be aware of DRAM row remapping, a technique 
used to deal with manufacturing faults in DRAMs. Storing the 
row remapping information of all the banks in the MC can be 
costly [12], and (b) the hardware implementation in MC must 
be provisioned considering the maximum number of DRAM 
rows that can be supported by the overall system (i.e., the 
worst-case scenario). However, in practice, the DRAM 
configuration (such as the number of DIMMs, the capacity of 
each DIMM, etc.) can vary based on the user’s choice. This 
can lead to a significant wastage of resources. For instance, 
our experimental setup includes an MSI motherboard (model 
MS-7A70), which can support up to four DIMMs; each 
DIMM can have 16 banks. Hence, a Rowhammer mitigation 
scheme deployed in the memory controller must include 
support for the maximum possible number of banks (64 banks 
for the MS-7A70 motherboard) that the user can have. Having 
support for fewer banks leaves some of the DIMMs vulnerable 
to exploits while supporting all 64 banks can be wasteful if the 
user chooses to have one DIMM only. 

Therefore, we deploy the proposed Rowhammer solution 
inside the DRAM module (on-chip) in this work. However, 
this introduces some important design challenges: (a) the 
solution should not require extensive changes to existing 
DRAM designs, and (b) as the solution is on-chip, the area and 
power overhead must be minimal; this requirement further 

restricts the choice of the ML algorithm that can be used for 
detecting Rowhammer. Large ML models with many weights 
(such as RNNs [21]) are not suited for on-chip deployment as 
they will introduce high area and power overhead. A suitable 
ML model must achieve high prediction accuracy with very 
little performance and power overheads. In this work, we use 
a linear model with only four trainable parameters (three 
weights and one bias) to detect a Rowhammer attack. Linear 
models are simple and can be easily implemented using only 
an adder and a multiplier. As we show later, the ML model 
can detect Rowhammer attacks with high accuracy. 

The model is trained offline and then deployed for on-chip 
inferencing using dedicated hardware. To train the classifier, 
we first prepare the training and testing dataset; we discuss the 
creation of training and testing data in a later section. The 
training set consists of traces that are randomly sampled from 
three benign applications and three variants of Rowhammer 
attack. Note that we do not require a large amount of training 
data as the proposed ML model has only four trainable 
parameters. The handful of parameters can be trained easily: 
we did not find any noticeable improvement in prediction 
accuracy using more training data. The proposed ML model 
has three stages: (a) data pre-processing, (b) Rowhammer 

detection, and (c) mitigation to prevent bit flips. 

Data-preprocessing: Applications often access DRAM 
millions of times between consecutive refreshes. Hence, the 
memory access data must be first preprocessed to compress 

the long sequence of memory access traces to few 
representative features that will be used by the small ML 
model. Pre-processing is necessary for both training and 
inferencing. As inferencing is done on-chip, we need 
hardware support enabled for the data-preprocessing. The 
data-preprocessing is implemented using a set of counters. 
However, counting the number of times each row is accessed 
is also expensive to implement. For instance, each bank in a 
typical commercial DRAM has 2'° rows. Counting the 
number of times each of these individual rows is accessed will 
necessitate 2° counters in each bank, which is prohibitively 
expensive. To reduce hardware overhead, we use a Bloom 
filter where each counter tracks R rows. The use of Bloom 
filters significantly reduces the number of counters required. 
We employ H3-class hash functions for the Bloom filters. 
Following [18], we alter the hash function periodically to 
thwart reverse engineering attempts of uncovering the hash 
functions. This is done by replacing the hash function’s seed 
value with a randomly generated value. 

We use two sets of counters to track both the short-term 
and long-term DRAM access behavior by different 
applications. The two sets of counters work as follows: The 
short-term counters track the DRAM usage for C consecutive 
clock cycles, after which they are reset. The long-term 
counters are incremented only if the short-term counts exceed 
a threshold. The long-term counters are refreshed every 64ms. 
Here, we choose the number of counters and the bit width of 
each counter such that we can detect Rowhammer attack 
attempts with more than 99% accuracy after only HCyj-.¢/4 

accesses (we define HCyi;s: aS the minimum number of 

hammers required to flip a bit in any of the adjacent victim 
rows). Such early detection enables us to proactively thwart 
Rowhammer attempts. The prediction accuracy increases to 
100% long before HC;;,;,/2 number of accesses for all 

Rowhammer attacks considered in this work. We discuss the 
choice of the design parameters in Section IV.A. 

Rowhammer detection: The data from the counters is 
used by the ML model as input to determine whether there is 
a Rowhammer attack. The data is collected for inference every 
C cycles (before the short-term counters are reset). The inputs 
to the ML model include: (a) short-term count, (b) the sum of 
all the short-term counts (recall that we have many short-term 
counters per bank), and (c) the long-term count. Our 
experiments indicate that these three features are sufficient to 
reliably identify Rowhammer attacks. Memory accesses 
during a Rowhammer attack exhibit anomalous behavior, 
where only a handful of counters will have high short-term 
counts. This happens as Rowhammer attack requires repeated 
access to the same row(s). Hence, only a handful of counters 
will have excessively high counts. The ML model can easily 
identify such behavior/pattern by comparing the short-term 
counts and the total counts. However, as mentioned earlier, 
short term counters are reset frequently. To preserve the 
access behavior during a long period of time, the long-term 
counts are necessary as another input feature. Overall, the ML 
model combines these input features with its learnt parameters 
(weights) to detect whether there is a Rowhammer attack. 

Rowhammer mitigation: Upon detection of an attack, we 
use a probabilistic refresh mechanism to prevent bit flips: 
every time a target row is accessed, its neighboring rows are 
refreshed with a non-zero probability p [1]. Each DRAM row 
(except the edges) has neighboring rows on two sides. Hence, 
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Table I: Details on the DRAMs used in this work 
ize 

1 41GU6AFR8N-TF GB 

1 43CB2-CRC GB 
143EB1-CPB GB 

IRx8 
IRx8 

the neighboring row on either side has a p/2 probability 
(individually) of being refreshed whenever the target row is 
activated. As mentioned earlier, Rowhammer attacks involve 
repeatedly hammering a handful of rows. Hence, we can 
choose p, such that there is an extremely high chance that the 
victim rows will be refreshed at least once during this interval 
(preventing bit flips) while keeping the overall number of 
added refreshes (and hence the performance impact) low [1]. 

In this work, we aim to have a bit error rate of less than 10~*° 
when a Rowhammer attack is sustained for an hour. 

  

A similar technique using probabilistic refresh was 
proposed in [1]; it is referred as PARA. However, PARA lacks 

Rowhammer detection capability and therefore introduces 
additional refreshes in all DRAM banks even under normal 
conditions. This is inefficient as the additional refreshes will 
stall the normal DRAM read/write operations leading to 
higher execution times [9]. In this work, we solve this by 
activating the probabilistic refresh only when the ML model 
detects an attack. By applying the probabilistic refresh 
selectively, the proposed technique greatly reduces the 
number of additional refresh operations compared to PARA. 

IV. EXPERIMENTAL RESULTS 

A. Experimental Setup 

We use the GemS simulator to simulate a four-core system 
[22]. Each core is a CPU based on the Intel x86 architecture 
with an operating frequency of 2GHz. The CPUs include a 
private 64KB L1 cache. The IMB L2 is shared among all the 
four CPUs and is the last level cache in our setup. The DRAM 
consists of 16 banks, each bank with ~65K rows and operates 
at 2400 MHz. For evaluation, we use 26 different applications 
from the Parsec!, Pampar? and Splash-2? benchmark suites 
[14][15][16]. We refer to the applications from the Parsec, 
Pampar and Splash-2 benchmark suites as “benign 
applications” as these applications do not cause bit-flips. We 
use two popular Rowhammer implementations for evaluation, 
(a) the implementation by Google (we refer this as G-hammer 
[2]) and TRRespass [8]. We use a linear ML model with three 
weights and one bias. The model is implemented using the 
sklearn library. For data preprocessing, we choose the 
parameter values (such as the number of counters, counter bit- 
widths as discussed in Section III) using a grid search. Based 
on the results of the grid search, we use 300 counters in each 
bank. The counters are reset every C = 90 us. The values of 
these variables can also be chosen by the hardware designer. 
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Table II: Observations after hammering for ~2 hours 
  

  

  

    

Make HCrirse |Successful attacks} Rowhammer attacks 

Hynix (H1) 50K 12 12,13,15,16,28-sided 
Samsung (S1) 20K 24 26,28,30-sided 

Samsung (S2) 30K 1495 30 > N27 -sided           

B. Preparing training/inferencing dataset 

For training the ML model, we must first have sufficient 
data that includes memory-access behavior generated by 
benign applications and Rowhammer attacks. However, such 
a dataset is not available publicly. Hence, we must first 
prepare a sufficiently large and diverse data set that includes 
both Rowhammer attacks and benign applications. For this 
purpose, we collect memory-access traces using cycle- 
accurate simulations on Gem5 [22][26]. The memory access 
information (which address was accessed at what time) during 
an application’s lifetime is recorded for preparing the dataset. 
For training and evaluating the ML model, we use a mix of 
benign applications, and real Rowhammer attacks. 

Benign applications: We simulate applications from the 
Splash-2, Parsec and Pampar benchmark suites, using Gem5 
full system simulations with a real Linux kernel. Fig. 1 shows 

the memory-access behavior for all these 26 applications 
considered in this work. For comparison, we also show the 
memory-access behavior during a 8-sided Rowhammer attack 
(abbreviated as ‘RH’ and shown in red in Fig. 1); other N- 
sided attacks exhibit similar memory access behavior. Fig. 
1(a) shows the cache miss percentage while Fig. 1(b) shows 
the overall DRAM access rate (number of DRAM accesses 
per unit time) for the different benign applications and during 
a Rowhammer attack. As shown in Fig. 1, the benign 

applications exhibit a varying degree of cache miss and 
memory access rates, which is representative of a real-world 
scenario; we assume that the user(s) will run different types of 
workloads on the target hardware platform. This diverse 
behavior enables us to evaluate the ML-based Rowhammer 
detector under different levels of DRAM usage. 

Rowhammer attacks: Next, we must obtain data from 
attacks that have been demonstrated to cause bit flips on 
commercial DRAMs. To obtain the data from real 
Rowhammer attacks, we evaluate existing attack 
implementations on three commercial DRAMs. Table I lists 
the details of the three commercially available DRAMs used 
for the experiments in this work. We perform all our 
experiments on an Intel i5-7500 processor mounted on an MSI 
motherboard (model MS-7A70). Each DIMM is hammered 
for approximately two hours using both the G-hammer and 
TRRespass implementations. Table II lists the outcome of our 
experiments. As shown in Table II, DDR4s are susceptible to 
different N-sided attacks. For instance, H1 is susceptible to the 

BL BO CA DE FL FR ST SW x2 DFT DJ DP GS HA JA MM OE SH TR FF LU OC RA RY VO WA RH 
Applications 
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(b) 
BL BO CA DE FL FR ST SW x2 DFT DJ DP GS HA JA MM OE SH TR FF LU OC RA RY VO WA RH 

Applications 

Fig. 1: Memory access behavior of benign applications represented using (a) Last level cache (LLC) miss percentage, and (0) DRAM access rate (number of 

DRAM access per second). The red bar “RH” represents the Rowhammer attack 
  

'Blackscholes (BL), Bodytrack (BO), Canneal (CA), Dedup (DE), Fluidanimate (FL), Freqmine (FR), Streamcluster (ST), Swaptions (SW), x264 (x2) 
> DFT (DF), Dijkstra’s shortest path (DJ), Dot-product (DO), Gram-Schmidt (GS), Harmonic sum (HS), Jacobi method (JA), Matrix multiply (MM), Odd- 
even sort (OE). Histogram similarity (HS), Turing Rin 
3 Fast Fourier Transform (FF), LU factorization ( 

(TR). 
U), Scean (OC), Radix (RA), Raytrace (RY), Volrend (VO) and Water (WA). 
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Fig. 2: Area and power overhead of proposed method compared to 
Blockhammer and Graphene. 

12, 13, 15, 16 and 28-sided attacks, while S2 is vulnerable to 
all possible N-sided attacks where 30 > N > 7. Since we have 
demonstrated that these attacks cause bit flips on commercial 
DRAMs, we test our model using these attacks. Table II also 
lists the HCfis¢ values (minimum number of hammers that 

caused a bit flip) for these DRAMs. As we can see from Table 
Il, DDR4 DRAMSs can have HC;;,,, values as low as 20K. 

Hence, we develop the ML model for HCyi75, = 20K (worst 

case scenario). We collect the memory access traces of the 
successful attacks (from Table-ID) using Gem5. 

C. Performance, power, and area evaluation 

Next, we study the effectiveness of the proposed ML 
algorithm in identifying different Rowhammer attacks. We 
test the trained ML model on the different Rowhammer 
attacks that caused bit flips on commercial DDR4s (listed in 
Table II). Our experiments indicate that the ML model can 
identify all the Rowhammer attacks considered in this work 
long before HC;;,s¢/2 accesses. These results provide strong 

empirical evidence that a simple ML model can prevent bit 
flips under various Rowhammer attacks. 

For area and power overhead comparison, we use 
Graphene [17], and Blockhammer [18] as baselines. Both 
Graphene and Blockhammer are implemented on the memory 
controller. Fig. 2 shows the area and power overhead of the 
three methods. To estimate the power and area overheads, we 
synthesize the hardware required to implement these 
techniques using Cacti [23]. For a fair comparison, we 
compare the overheads for a single 16-bank DIMM. However, 
as mentioned earlier, solutions implemented on the MC must 
be designed for the worst case (maximum number of DIMMs 
that can be accommodated by the motherboard) irrespective 
of the actual setup, whereas our technique canbe implemented 
in the individual DRAM modules. Hence, the real amount of 
overhead of Graphene and Blockhammer are significantly 
higher (~4X) in practice than what we report here. As shown 
in Fig. 2, the proposed ML model introduces less area and 
power overhead than the other baseline techniques. The ML 
implementation requires 51% and 19% less area and power 
overhead respectively compared to Blockhammer. These 
results can be attributed to the fact that both Graphene and 
Blockhammer require more hardware (counters and buffers) 
than the proposed method. The ML model can identify 
Rowhammer attacks with fewer resources. Hence, the 
overheads of the ML technique are significantly less. 

Next, we compare the performance overheads of the three 
techniques. Once, a Rowhammer attack is suspected, both the 
proposed method and Graphene use additional refreshes while 
Blockhammer stalls memory access temporarily to prevent bit 
flips. These mitigation actions can lead to performance 
overheads in case of false positive predictions for the genuine 
applications. To examine the performance overhead, we use 
DRAMSim3, a popular DRAM simulator [24]. We implement 
the three mitigation techniques using DRAMSim3. Our 

analysis indicates that all three methods have low false 
positive predictions which results in negligible performance 
overhead. The performance overhead of the proposed ML 
method was tiny (0.003% only) on average; Graphene and 
Blockhammer also have ~0% performance overhead. This 
happens as the mitigation mechanisms are not triggered 
frequently enough to cause a visible performance impact. 

CONCLUSION 

Rowhammer is a serious hardware vulnerability. Existing 
Rowhammer detection schemes either do not offer sufficient 
protection or require high power and area overheads. We have 
presented an ML-based technique that can detect all the 
Rowhammer attacks considered here and prevent bit flips. The 
ML model, in conjunction with probabilistic refresh achieves 
a BER of less than 10715 for an hour of hammering. The ML 
technique can reliably detect both Rowhammer attacks with 
low performance, power, and area overheads. 
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