
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 5, MAY 2023 1393

Machine Learning-Based Rowhammer Mitigation
Biresh Kumar Joardar , Member, IEEE, Tyler K. Bletsch, and Krishnendu Chakrabarty , Fellow, IEEE

Abstract—Rowhammer is a security vulnerability that arises
due to the undesirable electrical interaction between physically
adjacent rows in DRAMs. Bit flips caused by Rowhammer can
be exploited to craft many types of attacks in platforms ranging
from edge devices to datacenter servers. Existing DRAM pro-
tections using error-correction codes and targeted row refresh
are not adequate for defending against Rowhammer attacks. In
this work, we propose a Rowhammer mitigation solution using
machine learning (ML). We show that the ML-based technique
can reliably detect and prevent bit flips for all the different
types of Rowhammer attacks (including the recently proposed
Half-double and Blacksmith attacks) considered in this work.
Moreover, the ML model is associated with lower power and
area overhead compared to recently proposed Rowhammer mit-
igation techniques, namely, Graphene and Blockhammer, for
40 different applications from the Parsec, Pampar, Splash-2,
SPEC2006, and SPEC 2017 benchmark suites.

Index Terms—DRAM, Rowhammer, machine learning (ML).

I. INTRODUCTION

ROWHAMMER is a hardware reliability concern that
arises when an attacker repeatedly accesses (hammers)

a few DRAM rows to cause unauthorized changes in physi-
cally adjacent memory rows. The Rowhammer vulnerability
was first discovered in [1]. Since then, it has been exten-
sively studied for mounting various types of attacks, including
privilege escalation, sandbox escapes, and breaking cloud
isolation [2], [3], [4]. A number of hardware platforms, rang-
ing from edge devices to datacenter servers, have been shown
to be vulnerable to Rowhammer attacks [4], [5], [6], [7], [8].
Rowhammer is a serious challenge for system designers
because it exploits fundamental DRAM circuit behavior. Bit
flips due to Rowhammer occur when a particular DRAM
row is repeatedly activated and precharged many times (i.e.,
hammered). The electromagnetic interference between the
hammered row (usually referred as aggressor) and its neighbor
rows (usually referred as victim) causes the cell capacitors in

Manuscript received 24 February 2022; revised 31 May 2022 and
1 September 2022; accepted 4 September 2022. Date of publication
14 September 2022; date of current version 21 April 2023. This work
was supported in part by the Semiconductor Research Corporation under
Grant Task ID 2994.001, and in part by NSF under Grant CNS-2011561.
The work of Biresh Kumar Joardar was supported in part by NSF through
the Computing Research Association for the CIFellows Project under Grant
2030859. This article was recommended by Associate Editor A. Aminifar.
(Corresponding author: Biresh Kumar Joardar.)

Biresh Kumar Joardar was with the Department of Electrical and Computer
Engineering, Duke University, Durham, NC 27710 USA. He is now with the
Department of Electrical and Computer Engineering, University of Houston,
Houston, TX 77004 USA (e-mail: bjoardar@central.uh.edu).

Tyler K. Bletsch and Krishnendu Chakrabarty are with the Department of
Electrical and Computer Engineering, Duke University, Durham, NC 27708
USA (e-mail: tyler.bletsch; krish@duke.edu).

Digital Object Identifier 10.1109/TCAD.2022.3206729

the victim rows to leak much faster than under normal oper-
ation. The fast charge leakage in victim row(s) eventually
leads to bit flips. Both DDR3 and DDR4 DRAM memo-
ries are known to be susceptible to Rowhammer-induced bit
flips [2], [9], [10].

A number of Rowhammer mitigation techniques have been
proposed in prior work [1], [4], [11], [12], [25]. These mech-
anisms make it harder to launch a successful Rowhammer
attack. Some of the popular Rowhammer mitigation tech-
niques that can be deployed in hardware include the prob-
abilistic refreshing of victim rows [1] and counter-based
approaches [13]. Software-based countermeasures have also
been proposed [14]. However, existing mitigation schemes are
either ineffective against Rowhammer or incur high implemen-
tation overhead [10], [16]. Targeted row refresh (TRR) is one
of the latest Rowhammer mitigation techniques that is used in
commercial DRAMs [9]. However, it has been shown recently
that new types of Rowhammer attacks can bypass TRR and
still cause bit flips [9], [15], [16]. Newer attacks, such as
the Half-double and Blacksmith [15], [16], have diversified
Rowhammer attacks. To the best of our knowledge, none of the
existing Rowhammer mitigation techniques have experimen-
tally demonstrated protection against these new Half-double
and Blacksmith attacks. Hence, Rowhammer still remains
a major unsolved security concern for the semiconductor
industry

An effective Rowhammer mitigation mechanism must offer
protection against different types of attacks. Many of the exist-
ing defense mechanisms are ineffective against the recently
proposed N-sided, Half-double, and Blacksmith attacks [10].
In addition, the number of hammers required to cause a bit flip
(commonly referred as HCfirst) keeps reducing with smaller
process nodes (i.e., Rowhammer attacks can be launched
much faster in newer DRAMs [9], [17]). Hence, the detec-
tion mechanism must also be fast while introducing low
hardware overhead. Moreover, different applications exhibit
different DRAM access patterns. This often makes it difficult
to distinguish between an attack and benign memory-access
behavior. A practical Rowhammer solution should be able
to distinguish attacks from other benign applications, i.e., it
should have a low false-positive rate. In this article, we pro-
pose a machine learning (ML)-based technique that is fast
and can detect various types of Rowhammer attacks. ML
models can extract meaningful representation from data to
solve complex problems. We use this feature to develop
a low overhead Rowhammer mitigation solution in this work.
Information on which DRAM rows are being accessed by
benign applications and during a Rowhammer attack is used
as input to the ML model. The model then learns/uncovers
patterns in the data to identify whether an access is benign

1937-4151 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Duke University. Downloaded on December 09,2023 at 15:37:30 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7668-2824
https://orcid.org/0000-0003-4475-6435

1394 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 5, MAY 2023

Fig. 1. Illustration of DRAM organization on modern computers.

or malicious (i.e., whether a Rowhammer attack has been
launched). We evaluate the efficacy of the ML model using
popular Rowhammer implementations, and numerous applica-
tions from the Parsec, Pampar, Splash2, and SPEC2006 bench-
mark suites [27], [28], [29], [30]. Experiments show that the
proposed technique is able to identify Rowhammer attacks
and prevent exploitable bit flips. The key contributions of this
article are as follows.

1) We develop an ML-based model that can accu-
rately detect different Rowhammer attacks, including
the recently proposed TRRespass, Half-double, and
Blacksmith attacks.

2) We present a fully on-chip hardware implementation to
enable the proposed model in an end-to-end fashion. The
implementation includes dedicated hardware to generate
the features from memory-access data. It also includes
computation units to predict the attacks.

3) Experimental analysis demonstrates that the ML method
prevents bit flips and introduces 5% and 19%
lower power overhead compared to Graphene and
Blockhammer, respectively.

The remainder of this article is organized as follows.
Section II presents relevant prior work related to the
Rowhammer attack and defense. Section III motivates and
introduces the proposed ML solution. We evaluate its effec-
tiveness in Section IV. Finally, we conclude this paper by
summarizing the findings in Section V.

II. RELATED PRIOR WORK

A. DRAM Organization

In this section, we present some key details of the DRAM
architecture [22], [23]. Fig. 1 depicts the high-level organi-
zation of a DRAM-based main memory subsystem. The
CPU communicates with DRAM through the memory con-
troller (MC). The MC is responsible for issuing memory
requests to the corresponding DRAM channel. DRAM chan-
nels operate independently from each other, and a single
channel can host multiple memory modules (or DIMMs) as
shown in Fig. 1. DRAM chips in a DIMM are organized as
a single rank or multiple ranks. The DRAM chips that form
a rank operate in lockstep, simultaneously receiving the same
DRAM command but operating on different data portions.
Thus, a rank composed of several DRAM chips appears as
a single large memory to the system. A DRAM chip contains
multiple DRAM banks that operate in parallel.

A DRAM bank is a 2-D array of DRAM cells (as shown in
Fig. 1). The row decoder selects (i.e., activates) a row to load
its data into the row buffer, where data can be read and modi-
fied. A DRAM cell consists of two components: 1) a capacitor
and 2) an access transistor. The capacitor stores a single bit
of information as an electrical charge. DRAM cell capacitors
are not ideal, and they gradually lose their charge over time.
Thus, the MC needs to refresh the contents of all DRAM cells
periodically (usually every 64 ms) to prevent the loss of data.

B. Rowhammer Attacks

Rowhammer is a well-known DRAM vulnerability that
causes bit flips [1]. As we show later, bit flips can be observed
in some commercial DDR4 DRAMs after hammering the
aggressor rows a mere 20K times only. The minimum num-
ber of hammers necessary to cause a bit flip is referred
to as HCfirst in this article. Existing Rowhammer attack
variants include one-location (only one row is hammered),
single-sided (row r and either one of row r ± θ , where
θ > 2, are hammered), double-sided (row r and either one
of row r ± 2, are hammered), and the more general N-sided
attacks (where N represents the number of aggressor rows
in a bank) [1], [9]. Blacksmith improves the efficacy of
Rowhammer attacks by varying the offset and intensity of
hammering [16]. Blacksmith can generate bit flips in more
DIMMs than the N-sided attacks. Both these attacks primar-
ily result in bit flips in rows that are immediately adjacent to
the aggressor rows. Recently, researchers from Google have
demonstrated a “Half-double” attack, where they were able to
flip bits two rows away from the primary aggressor row (i.e.,
Rowhammer at a distance) [15]. These new attacks can evade
many existing defenses. The Rowhammer problem is likely to
get worse over time since DRAM cells are placed closer to
each other as process nodes shrink.

The Rowhammer vulnerability has been utilized to launch
many types of attacks on a wide range of systems. For
instance, Rowhammer has been used to compromise the
Linux kernel in [2]. Rowhammer can be used to break
cloud isolation, which threatens trust in cloud computing [4].
van der Veen et al. [38] used Rowhammer attacks to “root”
mobile devices. Browser takeover is demonstrated in [6].
Rowhammer attacks can also be successfully mounted over
the network without physical access to the device [24], [33].
The Rowhammer vulnerability can be used for launching
fault attacks on embedded software and to steal encryption

Authorized licensed use limited to: Duke University. Downloaded on December 09,2023 at 15:37:30 UTC from IEEE Xplore. Restrictions apply.

JOARDAR et al.: ML-BASED ROWHAMMER MITIGATION 1395

keys [41], [42]. Confidential information can also be leaked
using Rowhammer attacks [43]. Rowhammer attack can also
be used to strengthen the well-known Spectre attack [44].
In this work, we hammered eight commercially available
DDR4 DRAMs for desktop computers and observed up to
5692 bit-flips in one DIMM after just 2 h of hammering
(details are presented in Section IV). These examples show
the wide scope and severity of Rowhammer attacks.

C. Rowhammer Defense

Using extra refresh is an early defense proposed against
Rowhammer [11], [12], [21]. Probabilistic refresh and error
correction codes (ECC) can also be used to prevent bit flips
due to Rowhammer attacks [1], [4]. However, prior inves-
tigations have demonstrated that these methods are either
ineffective against Rowhammer attacks or have very high-
performance overheads [14]. TWiCe is another promising
Rowhammer mitigation technique that uses counters [13].
However, TWiCe is not efficient for small HCfirst values
(below 32K), and incurs high area overhead. Our experi-
ments indicate that HCfirst of some of the latest DDR4s
can be as low as 20K. Hence, TWiCe is not suited as
a Rowhammer mitigation technique for these modern DRAMs.
A counter-based probabilistic method (referred as ProHit)
has been proposed in [26] to prevent Rowhammer attacks.
However, this method is vulnerable to carefully crafted attack
patterns [31]. Software-based solutions have been proposed to
prevent Rowhammer [14], [18], [19]. However, these meth-
ods require complex hardware support that incur very high
implementation overheads. ML-based Rowhammer mitiga-
tion strategies have been presented in [20], [34], and [39].
However, the implementation in [34] requires 1–2 ms for a sin-
gle inferencing, which is not suited for real-time Rowhammer
detection; DRAM rows can be accessed every ∼46 ns [9].
Hence, the attacker can cause bit flips way before getting
detected by this method. The ML method in [39] requires up to
264 μs to detect an attack, which is not sufficient for DRAMs
that have low HCfirst values (e.g., 20K). Moreover, they use
complex ML models, such as RNN, LSTM, etc., which are
computationally expensive and have high power overheads.

Simpler models such as Perceptron has been used
for detecting microarchitectural attacks, such as
Spectre and Meltdown [49]. This method relies on hun-
dreds of features to detect different attacks, including the
“selfRefreshEnergy” reading from the MC. However, this
method may not be suited for detecting Rowhammer attacks,
since many benign applications, such as graph and bioinfor-
matics applications, tend to have high memory access rates
and hence high selfRefreshEnergy [46], [48]. These applica-
tions access the DRAM many times, but they do not access
the same row(s) all the time (as in a Rowhammer attack).
Without incorporating the row-wise access information,
PerSpectron may not be suited for detecting Rowhammer
attacks. However, since this solution is meant to be deployed
in a CPU, incorporating row-wise access information
will require storing the DRAM row remapping, which is
expensive [13]. In addition, the hardware must be provisioned

for the maximum number of DRAMs that can be supported
by the motherboard (considering the worst-case scenario).
Such over-provisioning results in a higher area and power
overhead.

TRR is deployed on commercial DDR4 memories to mit-
igate Rowhammer. However, TRR is ineffective for N-sided
attacks (where N > 2), as shown in [9]. In our experiments
with a number of DDR4 DRAMs with TRR enabled, we found
that more than a thousand bit-flips occurred after we contin-
uously hammered different DRAM rows for 2 h; we provide
more details in a later section. This happens as TRR can track
only a finite number of aggressors using its sampler [9]. As
a result, the TRR mitigation can be easily bypassed by sim-
ply overwhelming the TRR’s sampling mechanism; one way
to achieve this is by simply hammering many rows simultane-
ously. Due to TRR’s limited tracking capability, some of the
aggressors will remain undetected, which will eventually cause
bit flips; this is demonstrated by TRRespass [9]. The Half-
double and Blacksmith attacks are also known to evade TRR
and cause bit flips [15], [16]. Here, it should be noted that
many implementation details of TRR have not been disclosed
publicly. Hence, it is unclear if this weakness of TRR can
be resolved with little modification to the existing hardware.
However, it is certain that the existing TRR mechanism does
not provide a adequate Rowhammer protection. Consequently,
new types of Rowhammer mitigation schemes are necessary.

III. ROWHAMMER DETECTION USING ML

In this section, we present the proposed ML-based solution
that detects and mitigates Rowhammer attacks.

A. ML for Rowhammer Attack Mitigation

ML models can uncover hidden features from a given set
of data with low implementation overheads. We utilize this
feature to train an ML model to detect Rowhammer attacks
with low overhead. However, implementing an ML model for
detecting Rowhammer attacks in real time is challenging, as
the model should achieve high prediction accuracy without
adding significant area and power overhead. The choice of the
ML model is further constrained by limited on-chip resources.

Typically, a Rowhammer detection mechanism is deployed
in three ways: 1) as part of the MC (e.g., [31] and [32]);
2) inside the DRAM module (e.g., [13]); and 3) off-chip
or in software (e.g., [14] and [34]). However, as demon-
strated in [34], solutions deployed on the CPU (or off-chip)
are slow and are not suited for newer DRAMs that have low
HCfirst values. Hence, software-based Rowhammer implemen-
tations, which are slow, are not suited anymore. Deploying the
Rowhammer mitigation setup inside the MC is another popu-
lar architectural choice as it is fast [31], [32]. However, it has
the following drawbacks: 1) The MC must be aware of DRAM
row remapping, a technique used to deal with manufacturing
faults in DRAMs. Storing the row remapping information of
all the banks in the MC can be costly [13] and 2) the hard-
ware implementation in MC must be provisioned considering
the maximum number of DRAM rows that can be supported
by the overall system (i.e., the worst-case scenario).

Authorized licensed use limited to: Duke University. Downloaded on December 09,2023 at 15:37:30 UTC from IEEE Xplore. Restrictions apply.

1396 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 5, MAY 2023

In practice, the DRAM configuration (such as the number of
DIMMs, the capacity of each DIMM, etc.) can vary based on
the user’s choice. Provisioning the hardware for a worst-case
scenario can lead to a significant wastage of resources. For
instance, our experimental setup includes an MSI motherboard
(model MS-7A70), which can support up to four DIMMs;
each DIMM can have 16 banks Hence, a Rowhammer mit-
igation scheme deployed in the MC must include support for
the maximum possible number of banks (64 banks for the
MS-7A70 motherboard) that the user can have. Having sup-
port for fewer banks leaves some of the DIMMs vulnerable
to exploits while supporting all 64 banks can be wasteful if
the user chooses to have one DIMM only. In this work, we
assume that protection against Rowhammer is of paramount
importance. Hence, the area and power overheads of mitigation
techniques that are implemented on the MC will be extremely
high irrespective of the user’s actual setup.

Therefore, we deploy the proposed Rowhammer solution
inside the DRAM module (on-chip) in this work. However,
this introduces some important design challenges: 1) the solu-
tion should not require extensive changes to existing DRAM
designs and 2) as the solution is on-chip, the area and power
overhead must be minimal; this requirement further restricts
the choice of the ML algorithm that can be used for detecting
Rowhammer. We have experimented with different types of
ML models for detecting Rowhammer attacks. For instance,
we have found that RNN models are effective in detecting
Rowhammer attacks. However, as any detection scheme must
run in real time and in an on-chip environment (inside the
DRAM in our case), larger and more complex ML mod-
els are not suited for this purpose. Large ML models with
many weights (such as RNNs [39]) are not suited for on-
chip deployment as they will introduce high area and power
overhead.

A suitable ML model must achieve high prediction accu-
racy with very little performance and power overheads. In this
work, we use a linear model, called Perceptron, that uses only
four trainable parameters (three weights and one bias) to detect
a Rowhammer attack. Perceptron is a supervised learning-
based ML model for binary classification tasks. It is a type
of linear classifier whose computations can be expressed as
follows:

y =
N∑

i=1

wi ∗ xi + b

if y > ε, then Rowhammer, else benign.

Here, wi and xi represent the ith weight and input feature,
respectively, N represents the total number of input features,
b and y represent the bias and the predicted values while ε is
a user defined threshold. Since, this is a binary classification
problem, we denote a benign access with the class label “0,”
and the Rowhammer data is labeled as “1.” Hence, we choose
ε = 0.5 here. We use the identity activation function here as it
is a binary classification problem. The model performs a clas-
sification task; it classifies whether a certain memory access
pattern is a Rowhammer attack or not based on the threshold
ε. Here, we choose a linear model as it is simple and can

Fig. 2. Hardware implementation of the ML-based Rowhammer detection
technique (STC: Short-term counter and LTC: Long-term counter).

be easily implemented using only an adder, a multiplier, and
a comparator. Here, we use 8-bit precision for the weights and
inputs. Our experiments show that the use of 8-bits does not
result in any noticeable accuracy loss compared to traditional
32-bit full-precision. As we show later, the ML model can
detect Rowhammer attacks with high accuracy when trained
using a diverse set of data.

The model is trained offline and then deployed for on-chip
inferencing using dedicated hardware. Fig. 2 shows the overall
setup used for the proposed ML-based solution. To train the
classifier shown in Fig. 2, we first prepare the training and
testing dataset; we discuss the creation of training and test-
ing data in a later section. The training set consists of traces
that are randomly sampled from three benign applications and
three variants of the Rowhammer attack. Note that we do
not require a large amount of training data as the proposed
ML model has only four trainable parameters. The handful of
parameters can be trained easily; we did not find any notice-
able improvement in prediction accuracy using more training
data. The proposed ML model has three stages: 1) data pre-
processing; 2) the Rowhammer detection; and 3) mitigation to
prevent bit flips.

B. Data Preprocessing

As mentioned earlier, Rowhammer attacks on DRAMs
require accessing a row many times for a successful bit flip. As
a result, the raw memory access data consists of an extremely
long sequence of information (which rows were accessed).
Using such a long sequence of data as input will require a large
ML model (proportional to the length of the input traces) to
process it; this will introduce high area and power overheads,
which is undesirable in a completely on-chip solution. Simple
ML models must be used here. For instance, the ML model
shown in Fig. 2 takes only three inputs, which is economical
in terms of both area and power. Hence, the data must be first
preprocessed to compress the long sequence of memory access
data to three representative features that will be used by the
small ML model. Fig. 2 shows the hardware implementation
to preprocess and compress the data. Note that preprocessing
is necessary for both training and inferencing. As inferencing
is done on-chip, we need dedicated hardware support enabled
for the data-preprocessing.

Authorized licensed use limited to: Duke University. Downloaded on December 09,2023 at 15:37:30 UTC from IEEE Xplore. Restrictions apply.

JOARDAR et al.: ML-BASED ROWHAMMER MITIGATION 1397

The data-preprocessing is implemented using a set of coun-
ters. However, counting the number of times each row is
accessed is also expensive to implement. For instance, each
bank in a typical commercial DRAM has 216 rows. Counting
the number of times each of these individual rows is accessed
will necessitate 216 counters in each bank, which is pro-
hibitively expensive. To reduce hardware overhead, we use
a Bloom filter where each counter tracks R rows. Fig. 2 shows
a minimal illustrative example where each counter is used to
track R = 2 rows in a DRAM bank. Hence, Counter-0 will
be incremented when either Row-0 or Row-1 is accessed.
The use of Bloom filters significantly reduces the number of
counters required. We employ area- and latency-efficient H3-
class hash functions for the Bloom filters. Following [32], we
alter the hash function periodically to thwart reverse engineer-
ing attempts of uncovering the hash functions. This is done
by replacing the hash function’s seed value with a randomly
generated value.

To prevent different types of Rowhammer attacks, we use
two sets of counters to track both the short-term and long-
term DRAM access behavior by different applications. The
two sets of counters work as follows: The short-term coun-
ters track the DRAM usage for C consecutive clock cycles,
after which they are reset. The long-term counters are incre-
mented only if the short-term counts exceed a threshold. The
long-term counters are refreshed every 64 ms. The two sets of
counters allow higher implementation flexibility (than having
only one big counter) and is necessary to prevent evasion by
different Rowhammer attack patterns. For instance, an adver-
sary can craft attacks that: 1) activate a handful of rows in the
shortest possible time (similar to TRRespass) or 2) activate
the rows in bursts after very long periods of time (similar to
Blacksmith), to evade detection; an adversary can also adopt
a combination of these two strategies to synthetically create
adversarial attacks. The former type of attack will lead to
abnormally high short-term counts (but low long-term counts)
while the latter will result in unusually high long-term counts
(but low short-term counts). We can detect such attacks (and
its different engineered variants) using two sets of coun-
ters. Here, we choose the number of counters and the bit
width of each counter such that we can detect Rowhammer
attack attempts with more than 99% accuracy after only
HCfirst/4 accesses. Such early detection enables us to proac-
tively thwart Rowhammer attempts. The prediction accuracy
increases to 100% long before HCfirst/2 number of accesses for
all Rowhammer attacks considered in this work. We discuss
the choice of the design parameters in Section IV-A.

C. Rowhammer Detection

The data from the counters is used by the ML model as
input to determine whether there is a Rowhammer attack.
The data is collected for inference every C cycle (before the
short-term counters are reset). The inputs to the ML model
include: 1) short-term count; 2) the sum of all the short-
term counts (recall that we have many short-term counters
per bank); and 3) the long-term count. Our experiments indi-
cate that these three features are sufficient to reliably identify

Rowhammer attacks (including synthetically engineered ones).
Memory accesses during a Rowhammer attack exhibit anoma-
lous behavior, where only a handful of counters will have high
short-term counts. This happens as the Rowhammer attack
requires repeated access to the same row(s). Hence, only
a handful of counters will have excessively high counts. The
ML model can easily identify such behavior/pattern by com-
paring the short-term counts and the total counts. However,
as mentioned earlier, to detect Blacksmith-like attacks (where
a row is hammered after long periods of time), the long-term
counts are necessary as another input feature.

Overall, the ML model combines these input features with
its learnt parameters (weights and bias) to detect whether
there is a Rowhammer attack. The computations associated
with the ML model include simple multiplication and addi-
tion operations, which we implement using a multiplier and
adder. To reduce area and power overhead of the adder and
multiplier, we use lower precision for the ML model. It is well
known that low-precision ML models can be used for inferenc-
ing without sacrificing accuracy compared to its full-precision
counterpart [47]. In this work, we did not observe any notice-
able accuracy drop using 8-bit fixed-point precision (beyond
8-bit precision, we observed some accuracy drop). Hence, we
use 8-bit fixed-point representation for implementing the ML
model on-chip.

D. Rowhammer Mitigation

Upon detection of an attack, we use a probabilistic refresh
mechanism to prevent bit flips: every time a target row is
accessed, its neighboring rows are refreshed with a nonzero
probability p′ [1]. Here, we do not choose targeted refresh as
it requires additional memory to store which rows to refresh.
This introduces additional area overhead. On the other hand,
the area overhead of probabilistic refresh is low as we do
not need to store precise information about aggressor rows.
Since Rowhammer is a rare event and as our solution has
low false positives (shown later), the average performance
overhead of the probabilistic refresh is negligible. Overall,
probabilistic refresh provides a better design tradeoff with
lower area and lower performance overhead compared to tar-
geted refresh-based mechanisms (which have low-performance
overhead but relatively higher area overhead. Hence, several
prior work, such as [51] and [52], have adopted probabilistic
methods for preventing Rowhammer attacks.

To prevent bit flips far away from the aggressor row (due
to the Half-double attack [15]), we refresh rows up to two
hops away from the aggressor(s). The probability of refresh-
ing a row is given by p′ = p × 0.5(d−1) following [32]; here,
d denotes the distance (measured as the number of rows)
between the victim and the aggressor row, and p represents
the probability of refreshing the immediate neighbors of an
aggressor. Each DRAM row (except the edges) has neighbor-
ing rows on two sides. Hence, the neighboring row on either
side has a p′/2 probability (individually) of being refreshed
whenever the target row is activated. As mentioned earlier,
Rowhammer attacks involve repeatedly hammering a hand-
ful of rows. Hence, we can choose p such that there is an

Authorized licensed use limited to: Duke University. Downloaded on December 09,2023 at 15:37:30 UTC from IEEE Xplore. Restrictions apply.

1398 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 5, MAY 2023

extremely high chance that the victim rows will be refreshed
at least once during this interval (preventing bit flips) while
keeping the overall number of added refreshes (and hence the
performance impact) low.

In this work, we aim to achieve a bit error rate (BER)
of less than 10−15 per hour of continuous hammering; we
adopt this BER following typical consumer memory reliability
targets [6], [10]. We analyze the effectiveness of the proposed
technique by considering an adversarial attack where each
aggressor row is hammered just enough times to cause a bit
flip and no more in each refresh interval. Following [1], every
time the aggressor row is hammered, each of the immediate
neighboring row is refreshed with probability p/2; given that
each aggressor has neighboring rows on two sides; the overall
probability of refreshing the victims is p. Similarly, the victims
farther from the aggressor row on each side, are refreshed with
probability p′/2 to prevent bit flips due to Half-double attacks.
To ensure the target BER, we must first determine the value
of p (and hence p′). Since the refresh of either victim rows is
an independent event, the number of refreshes to one particu-
lar adjacent row can be modeled as a random variable X that
is binomially distributed with parameters B(HCfirst, p/2). An
error occurs in the adjacent row only if it is never refreshed
during any of the HCfirst hammers, i.e., X = 0. The chances
of such an event occurring are: (1 − p/2)HCfirst . Solving this
equation provides the value of p (and hence p′) that is suf-
ficient to ensure a BER of less than 10−15 when an attack
is sustained for an hour. However, note that the effectiveness
of an ML model is dependent on multiple factors, including
the choice of the training data, hyperparameters, duration of
training, etc. Hence, it is difficult to provide theoretical secu-
rity guarantees under all conditions. This is also the case for
other ML-based Rowhammer mitigation solutions [34], [49].
However, our experiments (shown later) provide strong empir-
ical evidence that the ML model will be able to mitigate
Rowhammer attacks if trained appropriately.

A similar technique using probabilistic refresh was proposed
in [1]; it is referred as PARA. However, PARA lacks
Rowhammer detection capability and therefore introduces
additional refreshes in all DRAM banks all the time (even
under normal conditions). This is inefficient as the additional
refreshes will stall the normal DRAM read/write operations
leading to higher execution times [10]. This problem is likely
to get worse as HCfirst values are projected to reduce in
future. In this work, we solve this by activating the proba-
bilistic refresh only when the ML model detects an attack.
By applying the probabilistic refresh technique selectively,
the proposed technique greatly reduces the number of addi-
tional refresh operations compared to PARA. Overall, the
ML-based Rowhammer detector, in conjunction with proba-
bilistic refresh, includes the best of both worlds: it prevents
Rowhammer attacks while introducing significantly fewer
refresh operations as we show in the next section.

In this work, we assume that the DRAM initiates the addi-
tional refreshes. However, in current DRAM architectures, the
MC is assumed to be the sole device that can generate/issue
commands to the DRAM. Therefore, any additional refresh
without the MC’s knowledge can lead to conflicts. In case of

Fig. 3. Illustration of the experimental setup used in this work.

a conflict, the normal access requested by the MC, is blocked,
and a feedback signal is sent to alert the MC of the conflict.
This can be easily achieved using an already existing feedback
path in DRAMs (e.g., alert_n signal in DDR4 [50]). The MC
can then reissue the memory read/write operation after some
time. Since Rowhammer is a rare event, the chances of a con-
flict happening is very low. As shown in [13], this approach
introduces negligible performance overhead.

IV. EXPERIMENTAL RESULTS

In this section, we first present our experimental setup
to evaluate the proposed ML-based Rowhammer mitigation
technique. Next, we present details about our training and
inferencing dataset for Rowhammer evaluation. Finally, we
compare the proposed method with two recently proposed
Rowhammer mitigation techniques in terms of Rowhammer
detection accuracy, area, and power overhead.

A. Experimental Setup

Fig. 3 illustrates the hardware platform used for experi-
mental evaluations. We use the Gem5 simulator to simulate
a four-core system [35]. Each core is a CPU based on the Intel
×86 architecture with an operating frequency of 2 GHz. The
CPUs include a private 64-kB L1 cache. The 1MB L2 is shared
among all four CPUs and is the last level cache in our setup.
The DRAM consists of 16 banks, each bank with ∼65K rows
and operates at 2400 MHz. For evaluation, we use 40 different
applications from the Parsec, Pampar, Splash-2, SPEC2006,
and SPEC2017 benchmark suites [27], [28], [29], [30], [54].
We refer to the applications from the Parsec, Pampar, Splash-
2, SPEC2006, and SPEC2017 benchmark suites as “benign
applications” as these applications typically do not cause bit-
flips. We have also added five multiprogramming scenarios.
In each case, we assume four different applications are being
executed at the same time. The four applications being run at
the same time are chosen randomly from different benchmark
suites (Splash-2, Parsec, Pampar, and SPEC 2017) to induce
high memory access.

We emphasize that we have considered different scenar-
ios that may arise in a PC system. The applications from
the Splash-2, Pampar, Parsec, and SPEC2006 benchmarks

Authorized licensed use limited to: Duke University. Downloaded on December 09,2023 at 15:37:30 UTC from IEEE Xplore. Restrictions apply.

JOARDAR et al.: ML-BASED ROWHAMMER MITIGATION 1399

TABLE I
DETAILS ON THE DRAMS USED IN THIS WORK

are multithreaded, applications from SPEC2017 are single-
threaded, and we have also considered multiprogramming
scenarios, where multiple single-threaded applications are run-
ning simultaneously. Overall, these include all the different
possible scenarios that may arise in a PC system. We have
included all these data in our training/testing dataset to evalu-
ate the proposed solution. We use three popular Rowhammer
implementations for evaluation: 1) the implementation by
Google (we refer this as G-hammer [2]); 2) TRRespass [9],
which implements the N-sided attacks; and 3) the recently
proposed Blacksmith attacks [16]. We use a linear ML model
with three weights and one bias. The model is implemented
using the sklearn library. For data preprocessing, we choose
the parameter values (such as the number of counters, counter
bit-widths as discussed in Section III) using a grid search.
Based on the results of the grid search, we use 300 counters
in each bank. The short-term counters are reset every C =
90 μs, while the long-term counters are reset every 64 ms. The
values of these variables can also be chosen by the hardware
designer.

B. Rowhammering DDR4 DRAMs

To motivate the necessity of a new Rowhammer miti-
gation technique, we first present our findings when we
hammered commercial DDR4 DRAMs. Table I lists the details
of eight DRAMs used for the experiments in this work. We
use G-hammer, TRRespass, and Blacksmith for our experi-
ments. G-hammer is a popular Rowhammer implementation
for launching single- and double-sided Rowhammer attacks. It
is known to cause bit flips in older DDR3 DRAMs. TRRespass
can be used to launch the more general N-sided Rowhammer
attacks and can defeat TRR-based protections and cause
bit flips in some DDR4 DRAMs. Blacksmith is a recently
proposed Rowhammer attack that can be used to hammer
at precise predetermined times with varying intensities [16].
Both TRRespass and Blacksmith can evade TRR and cause
bit flips on modern DDR4 DIMMs.

We perform all our experiments on an Intel i5-7500 proces-
sor mounted on an MSI motherboard (model MS-7A70). Our
threat model assumes that the attacker has no prior knowl-
edge of the type of DRAM used in the targeted system, i.e.,
the attacker does not know the make or model of the DIMMs
used in the targeted system. The threat model does not make

TABLE II
OBSERVATIONS AFTER HAMMERING FOR ∼2 H

any assumption about whether the attacker has physical access
to the targeted system; having physical access is not neces-
sary for a successful Rowhammer attack [33]. We perform all
subsequent analysis following this threat model,

Each DIMM is hammered for approximately 2-h using the
G-hammer, TRRespass, and Blacksmith implementations. The
G-hammer implementation requires no preprocessing. It starts
by allocating a large block of memory (e.g., 1 GB) and
then picks random virtual addresses within that block. On
a machine with 16 DRAM banks, this leads to a 1/16 chance
that the chosen addresses are in the same bank, which is
quite high and can result in bit flips [2]. Unlike G-hammer,
both TRRespass and Blacksmith require some preprocessing
to determine the mapping of memory addresses to DRAM
channels, ranks, and banks. This can be carried out using open-
source tools, such as DRAMA [45]. The DRAMA tool can
reverse-engineer the mapping of memory addresses to DRAM
channels, ranks, and banks by comparing the memory access
times of multiple pairs of DRAM addresses.

The reverse-engineered information is then used to launch
attacks using TRRespass and Blacksmith. Both the TRRespass
and Blacksmith-based attacks were performed using the in-
built “fuzzer.” The TRRespass fuzzer launches N-sided attacks
where both the value of N (31 > N > 2) and which rows to
hammer, are chosen randomly in each iteration. Note that all
the N rows that are selected to be hammered during a particular
iteration must belong to the same bank. This condition is easily
ensured due to a priori preprocessing using DRAMA [45], as
described above. Blacksmith hammers N aggressor rows with
varying order, regularity, and intensity. This creates a nonuni-
form memory access pattern, which can cause more bit blips
than TRRespass.

Table II lists the outcome of our experiments. As shown
in Table II, G-hammer failed to produce any bit flips on any
of the eight DRAMs considered in this work. Recall that
G-hammer implements only the older Rowhammer attacks,
namely, the single- and double-sided attacks, which can be
prevented using TRR. However, TRRespass and Blacksmith
produced several bit-flips on most of the DRAMs considered
in this work. As shown in Table II, TRRespass introduced 12,
24, and 1495 successful Rowhammer attacks on H1, S1, and
S2 DIMMs, respectively, after approximately 2 h of hammer-
ing. Here, we define a Rowhammer attack as being successful

Authorized licensed use limited to: Duke University. Downloaded on December 09,2023 at 15:37:30 UTC from IEEE Xplore. Restrictions apply.

1400 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 5, MAY 2023

if it causes at least one-bit flip in the victim rows. However,
TRRespass failed to elicit bit flips on H2, H3, and C1-3 mod-
ules. Unlike TRRespass, Blacksmith produced bit flips in six
out of the eight DIMMs.

Table II also lists the time it took to cause the first-bit flip.
As we can see in Table II, it is possible to induce bit flips in
a short duration of time. An attacker can then use these bit
flips to launch different malicious activities (such as browser
takeover, root mobile device, etc. [6], [38]) in slightly over
a minute. Here, it should be noted that these bit flips were
obtained using the in-built fuzzer. The fuzzer in Blacksmith
and TRRespass is meant to probe the defenses of a target
DRAM as TRR implementations often vary between different
DRAM make/model. Once, the subset of the most effective
attacks is determined, the attacker can then launch these spe-
cific attacks to cause even more bit flips than what we report
here. For instance, only the 26, 28, and 30-sided TRRespass
attacks were successful in the S1 module. Once the attacker
possesses this knowledge by using the fuzzer, he can target
the S1 DRAM with these three attacks (26, 28, and 30-sided
TRRespass) only to maximize damage. This shows the sever-
ity of the Rowhammer problem, and it must be resolved. To
the best of our knowledge, existing Rowhammer mitigation
techniques have not experimentally demonstrated protection
against these new attacks.

From our experiments, we have observed that
DDR4 DRAMs can have HCfirst values as low as 20K
(for S1 DRAM) when the TRR mechanism is bypassed;
TRR was enabled on all eight DIMMs considered here.
These observations indicate that TRR protects against single-
and double-sided attacks; no bit-flips are observed using
G-Hammer as shown in Table II. However, TRR fails to
defend against the more recent N-sided attacks implemented
using TRRespass and the Blacksmith attacks. These results
are similar to that reported by [9] and [16]. This happens
because the TRR sampler can track only a finite number
of aggressors [9]. Hence, the TRR mechanism fails when
M rows are hammered at the same time where M is
larger than the number of aggressors that can be tracked
by the TRR sampler. Overall, our experiments confirm that
Rowhammer has not been mitigated in commercially available
DDR4 DRAMs using TRR. Hence, there is a need for new
protection mechanisms that can offer protection against the
various types of Rowhammer attacks.

C. Preparing Training/Inferencing Dataset

For training the ML model, we must first have suffi-
cient data that includes memory-access behavior generated by
benign applications and Rowhammer attacks. However, to the
best of our knowledge, such a dataset is not available pub-
licly. Hence, we must first prepare a sufficiently large and
diverse dataset that includes both Rowhammer attacks and
benign applications. For this purpose, we collect memory-
access traces using cycle-accurate simulations on Gem5 [35].
Gem5 is a full-system simulator that simulates all the hard-
ware in a conventional PC (starting from the CPU to the
I/O devices) [35]. This allows Gem5 to execute binaries with

Fig. 4. Memory access pattern for a 8-sided Rowhammer attack as obtained
using Gem5 full-system simulations. Red arrows indicate the aggressor rows
and the blue dots represent a memory access.

no modifications. Additionally, the full-system mode utilizes
a Linux kernel. This incorporates the impacts of the oper-
ating system and other low-level details in our experiments,
similar to a real PC. The memory-access traces obtained from
Gem5 include cycle-by-cycle information about which DRAM
channel, bank, and rows were accessed by an application. The
memory access information (which address was accessed at
what time) during an application’s lifetime is used for prepar-
ing the dataset. For training and evaluating the ML model, we
use a mix of benign applications, and real Rowhammer attacks.
The dataset consisting of the memory access information
of both the benign applications and Rowhammer attacks is
available for download at [53].

Rowhammer Attacks: Since we have demonstrated that
commercial DRAMs are vulnerable to various Rowhammer
attacks (as shown in Table II), we test our model using these
attacks. For this purpose, we collect memory-access traces of
the successful attacks (from Table II) using cycle-accurate
simulations on Gem5. We modify the G-hammer code to
implement different Rowhammer attacks, including the N-
sided attacks (TRRespass), and the Blacksmith attacks. The
modified G-hammer is then run on Gem5 to obtain the memory
traces during a Rowhammer attack. Fig. 4 shows the memory
access pattern during an 8-sided Rowhammer attack. Without
loss of generality, we show an 8-sided attack for the purpose of
demonstration. Other Rowhammer attacks exhibit similar fea-
tures. As shown in Fig. 4, an 8-sided Rowhammer results in
repeated hammering of eight different rows in a DRAM bank.
We use these Rowhammer traces for training and evaluating
the ML model.

Benign Applications: We simulate applications from the
Splash-2, Parsec, Pampar, and SPEC2006 benchmark suites,
using Gem5 full system simulations with a real Linux
kernel. Fig. 5 shows the memory-access behavior for all these
33 applications considered in this work. For comparison, we
also show the memory-access behavior during an 8-sided
Rowhammer attack (abbreviated as “RH” and shown in red in
Fig. 5); other N-sided attacks exhibit similar memory access
behavior. Fig. 1(a) shows the cache miss percentage while
Fig. 1(b) shows the overall DRAM access rate (number of
DRAM accesses per unit time) for the different benign applica-
tions and during a Rowhammer attack. As shown in Fig. 5, the
benign applications exhibit a varying degree of cache miss and

Authorized licensed use limited to: Duke University. Downloaded on December 09,2023 at 15:37:30 UTC from IEEE Xplore. Restrictions apply.

JOARDAR et al.: ML-BASED ROWHAMMER MITIGATION 1401

(a)

(b)

Fig. 5. Memory access behavior of benign applications represented using (a) Cache miss percentage and (b) DRAM access rate (number of DRAM access
per second). The red bar RH represents the Rowhammer attack.

memory access rates, which is representative of a real-world
scenario; we assume that the user(s) will run different types
of workloads on the target hardware platform. This diverse
behavior enables us to evaluate the ML-based Rowhammer
detector under different levels of DRAM usage. For instance,
DE exhibits the highest cache miss rate (92%) while the ST
application has extremely low cache miss rate (1%). For com-
parison purposes, we also show the LLC miss percentage and
the DRAM access rate during an 8-sided attack in Fig. 5.
As shown in Fig. 5, the LLC miss rate during an attack is
very high. This is expected as the attacks utilize the clflush
command to access the DRAM rows repeatedly. However,
as shown in Fig. 5, the cache miss and DRAM access rate
are not reliable indicators of the Rowhammer attack. Some
genuine applications (e.g., DE) can exhibit similar behavior.
Other applications, such as graph processing and bioinformat-
ics are also known to have high cache miss and DRAM access
rates [46], [48].

Adversarial Rowhammer Attacks: Besides Rowhammer
attacks listed in Table II, an adversary can also engineer new
attacks to evade detection. It is well known that ML models
are vulnerable toward adversarial attacks. One way to prevent
adversarial attacks is to train using adversarial examples [55].
Hence, we develop possible adversarial attack patterns that
may escape detection (similar to [26]). Note that applica-
tion scheduling is handled by the operating system. Hence,
it may not be possible to implement these attacks in prac-
tice or they may not result in bit flips (hence, we refer
them as “synthetic attacks”). However, we assume a worst-
case scenario where the attacker can access any DRAM row
at any point of time of his/her choosing to cause bit flips.
To study these attacks, we develop an attack generator (AG)
that synthesizes possible attacks with spatial (which rows are
hammered) and temporal (how frequently each row is ham-
mered) variations. The synthetic attacks are designed with an
adversarial mindset, specifically attempting to evade our ML
detector. We add these different synthetic attacks generated
by the AG to our dataset to train/evaluate the proposed ML
model. Following are some examples of possible adversarial
attacks.

1) (R1, T), (R2, T+tRC), (R3, T+2∗tRC), (R1, T+3∗tRC),
(R4, T + 3 ∗ tRC + r1), (R2, T + 4 ∗ tRC + r2), . . .

2) (R1, T), (R2, T + tRC + r1), (R1, T + tRC + r1 + r2),
(R2, T + tRC + r1 + r2 + r3), . . .

Here (Ri, T) represents an access to the ith row at time
T, while ri represents a random duration of time (ri > tRC).
These patterns are aimed to test the proposed Rowhammer
mitigation solution thoroughly. Please note that an attacker
does not have to follow or use the AG to cause bit flips. We
do not make any such assumptions in our threat model. The
AG is meant to generate possible attacks for the purpose of
testing and strengthening the proposed model only.

There are a few other ways to launch Rowhammer attacks.
For instance, DMA- and RDMA-based Rowhammer attacks
have been implemented using network requests with Ethernet
cards [8], [33] or on Android devices [38]. To the best of
our knowledge, both these scenarios cannot be implemented
easily on Gem5, which is a manycore system simulator.
Unlike TRRespass attacks, these DMA- and RDMA-based
Rowhammer attacks do not result in high cache miss.
However, we would like to stress here that cache miss is not
a parameter in our ML model. We only show the cache miss
rate in Fig. 5 of the manuscript to highlight the fact that the
benign workloads are diverse in nature and are representative
of the various scenarios that may arise in a typical PC system.
We do not use cache miss as a feature in our ML model. As
discussed in Section III, the ML model uses a set of counters
to track the memory access and relies on the counts as input
features. Note that accessing the same set of row(s) many times
is a necessary condition for Rowhammer attacks. Hence, even
though DMA or RDMA-based attacks have low cache miss
rates, the DRAM access behavior is still going to be simi-
lar to the other attacks considered here. As we show later,
the proposed ML solution is able to detect all the considered
Rowhammer attacks with very high accuracy.

D. Performance, Power, and Area Evaluation

Next, we study the effectiveness of the proposed ML algo-
rithm in identifying different Rowhammer attacks. We test the

Authorized licensed use limited to: Duke University. Downloaded on December 09,2023 at 15:37:30 UTC from IEEE Xplore. Restrictions apply.

1402 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 5, MAY 2023

(a) (b) (c) (d)

Fig. 6. Confusion matrix showing absolute values (and percentages) when (a) trained ML model is used for benign applications and (b) Rowhammer attacks,
and (c) Graphene (or Blockhammer) is used for benign applications and (d) Rowhammer attacks.

trained ML model on the different Rowhammer attacks that
caused bit flips on commercial DDR4s (listed in Table II).
Fig. 6 shows the confusion matrix for the benign and mali-
cious cases separately. As shown in Fig. 6(a), the proposed
ML-based solution can identify the benign workloads with
very high accuracy (99.95%). There are rare occasions where
Canneal and Freqmine access the same row more than 5K
times. To ensure early detection of Rowhammer, any case
where the same row is accessed more than 5K times is
annotated as malicious; hence some benign access patterns
are labeled as malicious. However, note that these applica-
tions do not access the same row enough times to cause
a bit flip. As shown in Fig. 6(a), The ML model is able
to correctly identify benign applications in almost all cases.
Next, Fig. 6(b) shows the confusion matrix for the malicious
patterns (from G-hammer, TRRespass, Blockhammer, and syn-
thetic ones). As shown in Fig. 6(b), the ML solution is able
to detect the attacks with high accuracy as well. Note that
there are some benign accesses in the Rowhammer memory
access patterns. These accesses are observed when the mali-
cious program has just started to execute. Hence, the number
of accesses to the same row is lower than HCfirst/4; these
initial access patterns are therefore classified as benign. At
HCfirst/4, there are only 0.03% escapes. These primarily con-
sist of the adversarial attacks. However, note that the ML
solution identifies 100% of the malicious patterns correctly
before HCfirst/2 accesses indicating that the ML model can
detect all the attacks considered here. These results provide
strong empirical evidence that a simple ML model can prevent
bit flips under various Rowhammer attacks. For compari-
son, we also present the confusion matrix for Graphene and
Blockhammer in Fig. 6(c) and (d). As shown in Fig. 6(c) and
(d), both Graphene and Blockhammer achieve 100% detection
accuracy, i.e., they detect both malicious and benign cases cor-
rectly without fail. However, as we show next, Graphene and
Blockhammer achieve slightly higher accuracy at the cost of
relatively higher area and power overheads.

For area and power overhead comparison, we use
Graphene [31], and Blockhammer [32] as baselines. Both
Graphene and Blockhammer are implemented on the MC
whereas the proposed ML technique is implemented on the
DRAM in a completely on-chip fashion. Our experiments
show that both Graphene and Blockhammer can identify the
Rowhammer attacks correctly 100% of times. Fig. 7 shows the
area and power overhead of the three methods. To estimate
the power and area overheads, we synthesize the hardware

Fig. 7. Power and area overhead comparison.

required to implement these techniques using Cacti [36]. Cacti
includes memory access time, cycle time, area, leakage, and
dynamic power models and allows us to synthesize designs
using SRAMs and CAMs. Note that we do not use CACTI for
DRAM simulation. The DRAM simulations are done using
Gem5 and DRAMSim3. Following prior work [32], we use
CACTI only to synthesize the hardware required to imple-
ment the ML solution. The ML solution requires storing the
counts for a fixed duration of time, which requires an on-chip
memory. We implement the on-chip memory using SRAMs.
The area and power overhead of the SRAM-based storage is
obtained using CACTI; Gem5 or DRAMSim3 are not suit-
able for this purpose. For a fair comparison, we compare the
overheads for a single 16-bank DIMM. However, as men-
tioned earlier, solutions implemented on the MC must be
designed for the worst case (maximum number of DIMMs
that can be accommodated by the motherboard) irrespective
of the actual setup, whereas our technique can be imple-
mented in the individual DRAM modules. Hence, the real
overhead of Graphene and Blockhammer are significantly
higher (∼4× for MS-7A70 motherboard) in practice than
what we report here. As shown in Fig. 7, the proposed ML
model introduces less area and power overhead than the
other baseline techniques. The ML implementation requires
51% and 19% less area and power overhead, respectively,
compared to Blockhammer. These results can be attributed
to the fact that both Graphene and Blockhammer require
more hardware (counters and buffers) to detect Rowhammer
attacks than the proposed method. The ML model can identify
Rowhammer attacks with significantly fewer resources. Hence,
the overheads of the ML technique are significantly less.

Next, we compare the performance overheads of the three
techniques. Once, a Rowhammer attack is suspected, both the
proposed method and Graphene use additional refreshes while
Blockhammer stalls memory access temporarily to prevent bit
flips. These mitigation actions can lead to performance over-
heads in case of false positive predictions for the genuine

Authorized licensed use limited to: Duke University. Downloaded on December 09,2023 at 15:37:30 UTC from IEEE Xplore. Restrictions apply.

JOARDAR et al.: ML-BASED ROWHAMMER MITIGATION 1403

Fig. 8. Scalability of the ML-based Rowhammer mitigation technique.

applications. Here, we also consider the overhead due to addi-
tional refresh necessary to mitigate Half-double attacks. Recall
that Half-double attacks can cause bit flips two rows away
from the aggressor. To examine the performance overhead, we
use DRAMSim3, a popular DRAM simulator [37]. We imple-
ment the three mitigation techniques using DRAMSim3. Our
analysis indicates that all three methods have low false positive
predictions which results in negligible performance overhead.
The performance overhead of the proposed ML method was
tiny (0.003% only) on average; Graphene and Blockhammer
also have ∼0% performance overhead. This happens as the
mitigation mechanisms are not triggered frequently enough
(due to the low false positive prediction) to cause a visible
performance impact.

E. Scalability

Next, we study the effect of decreasing HCfirst on the
ML model. It is projected that HCfirst will reduce further in
the future [10]. Prior work has reported HCfirst values of as
low as 4.8K [10]. Hence, it is important that the ML model
works at relatively low HCfirst values as well. Fig. 8 shows
the prediction accuracy considering both benign and mali-
cious applications at different HCfirst values. Here, we consider
HCfirst values of 20K, 15K, 10K, and 4.8K to show the
scalability of our solution. As shown in Fig. 8, the ML solu-
tion can detect Rowhammer attacks and benign applications
with high accuracy even when HCfirst is 10K. However, the
accuracy decreases slightly for HCfirst = 4.8K. On deeper
analysis, we notice that the proposed model is still able to
distinguish most benign workloads from Rowhammer attacks
with very high accuracy (∼99%). However, it achieves rela-
tively low detection accuracy on a handful of specific benign
workloads (such as dedup, canneal, freqmine, matrix multiply,
odd–even, ×264, ocean, l bm, and some of the multiprogram
scenarios). These benign workloads unintentionally are inter-
preted as Rowhammer attacks at low HCfirst values, as they
access the same row more than 1.2K times on several occa-
sions; hence they are classified as (unintentional) Rowhammer
attacks. The memory access patterns of these applications
are very diverse, and the single neuron-based ML model is
unable to learn all these different behaviors with very high
accuracy.

Solving this problem would require designing both the
software implementation and the mitigation scheme suitably.
These previously benign workloads can be redesigned to
prevent them from repeatedly accessing the same row many

times. DRAM manufacturing should also be improved to
prevent such low HCfirst values. In addition, we must investi-
gate ML solutions with more parameters and features that can
learn more diverse memory access behavior. These include
using more expressive ML algorithms, such as SVMs, MLPs,
etc., or to use more input features along with an ensem-
ble of simple models. However, the HCfirst of 4.8K was
observed on LPDDR4 DRAMs only. These DRAMs are com-
monly used in smaller edge devices, which have stringent
area and power constraints. Using more complex ML algo-
rithms or more features will introduce more area and power
overhead, both of which are not desirable in edge devices.
Hence, solving this issue is challenging and would require
improvements and changes to the current design. We plan to
investigate this and improve our solution in follow-up work.
However, as shown in Fig. 8, the ML solution can detect
Rowhammer attacks with high accuracy even when HCfirst
is 10K.

V. CONCLUSION

Rowhammer is a serious hardware vulnerability that can
be exploited for different types of attacks. Different hard-
ware platforms starting from edge devices to datacenter server
computers are vulnerable to Rowhammer exploits. Existing
Rowhammer detection schemes either do not offer sufficient
protection or require high power and area overheads. We
have shown in this work that commercial DDR4 DRAMs are
vulnerable to Rowhammer even with TRR enabled. Hence,
there is an immediate need to develop new countermeasures
to prevent bit-flips caused by Rowhammer. To address this
problem, we have presented an ML-based technique that can
detect all the Rowhammer attacks considered here and prevent
bit flips. The ML model, in conjunction with probabilistic
refresh achieves a BER of less than 10−15 for an hour of
hammering. The ML technique can reliably detect different
types of Rowhammer attacks with high accuracy, and low
power/area overheads.

REFERENCES

[1] Y. Kim et al., “Flipping bits in memory without accessing them: An
experimental study of DRAM disturbance errors,” in Proc. ISCA, 2014,
pp. 361–372.

[2] M. Seaborn and T. Dullien, “Exploiting the DRAM rowhamer bug to
gain kernel privileges,” presented at the Black Hat, vol. 15, 2015, p. 17.

[3] Z. Zhang et al., “A Retrospective and futurespective of Rowhammer
attacks and defenses on DRAM,” 2022, arXiv:2201.02986.

[4] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting correct-
ing codes: On the effectiveness of ECC memory against Rowhammer
attacks,” in Proc. SP, 2019, pp. 55–71.

[5] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand Pwning unit:
Accelerating microarchitectural attacks with the GPU,” in Proc. SP,
2018, pp. 195–210.

[6] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup Est machina:
Memory deduplication as an advanced exploitation vector,” in Proc. SP,
2016, pp. 987–1004.

[7] D. Gruss et al., “Another flip in the wall of Rowhammer defenses,” in
Proc. SP, 2018, pp. 245–261.

[8] A. Tatar, R. K. Konoth, E. Athanasopoulos, C. Giuffrida, H. Bos, and
K. Razavi, “ThRowhammer: Rowhammer attacks over the network and
defenses,” in Proc. USENIX ATC, 2018, pp. 213–225.

[9] P. Frigo et al., “TRRespass: Exploiting the many sides of target row
refresh,” in Proc. SP, 2020, pp. 747–762.

Authorized licensed use limited to: Duke University. Downloaded on December 09,2023 at 15:37:30 UTC from IEEE Xplore. Restrictions apply.

1404 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 5, MAY 2023

[10] J. S. Kim et al., “Revisiting RowHammer: An experimental analysis
of modern DRAM devices and mitigation techniques,” in Proc. ISCA,
2020, pp. 638–651.

[11] “Row Hammer privilege escalation.” Lenovo. 2015. [Online]. Available:
https://support.lenovo.com/us/en/ product_security/row_hammer

[12] “About the security content of Mac EFI security update 2015-001.”
Apple Inc. 2015. [Online]. Available: https://support.apple.com/en-us/
HT204934

[13] E. Lee, I. Kang, S. Lee, G. E. Suh, and J. H. Ahn, “TWiCe: Preventing
row-hammering by exploiting time window counters,” in Proc. ISCA,
2019, pp. 385–396.

[14] Z. B. Aweke et al., “ANVIL: Software-based protection against
next-generation Rowhammer attacks,” in Proc. ASPLOS, 2016,
pp. 743–755.

[15] S. Qazi, Y. Kim, N. Boichat, E. Shiu, and M. Nissler. “Introducing
half-double: New hammering technique for DRAM Rowhammer
bug.” 2021. [Online]. Available: https://security.googleblog.com/2021/
05/introducing-half-double-new-hammering.html

[16] P. Jattke, V. V. D. Veen, P. Frigo, S. Gunter, and K. Razavi,
“BLACKSMITH: Scalable Rowhammering in the frequency domain,”
in Proc. SP, 2022, pp. 716–734.

[17] B. K. Joardar, T. K. Bletsch, and K. Chakrabarty, “Learning to mitigate
Rowhammer attacks,” in Proc. DATE, 2022, pp. 564–567.

[18] R. K. Konoth et al., “ZebRAM: Comprehensive and compatible soft-
ware protection against Rowhammer attacks,” in Proc. OSDI, 2018,
pp. 697–710.

[19] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi,
“CAn’t touch this: Software-only mitigation against Rowhammer
attacks targeting kernel memory,” in Proc. USENIX Security, 2017,
pp. 117–130.

[20] A. Chakraborty, M. Alam, and D. Mukhopadhyay, “Deep learning based
diagnostics for Rowhammer protection of DRAM chips,” in Proc. ATS,
2019, pp. 860–865.

[21] K. Bains, J. Halbert, C. Mozak, T. Schoenborn, and Z. Greenfield, “Row
hammer refresh command,” U.S. Patent 9 117 544, 2015.

[22] K. K. Chang, “Understanding and improving the latency of DRAM-
based memory systems,” Ph.D. dissertation, Dept. Economics, Carnegie
Mellon Univ., Pittsburgh, PA, USA, 2017.

[23] K. K. Chang et al., “Understanding latency variation in modern DRAM
Chips: Experimental characterization, analysis, and optimization,” in
Proc. SIGMETRICS, 2016, pp. 323–336.

[24] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A remote
software-induced fault attack in Javascript,” 2016, arXiv:1507.06955.

[25] I. Kang, E. Lee, and J. H. Ahn, “CAT-TWO: Counter-based adaptive
tree, time window optimized for DRAM row-hammer prevention,” IEEE
Access, vol. 8, pp. 17366–17377, 2020.

[26] M. Son, H. Park, J. Ahn, and S. Yoo, “Making DRAM stronger against
row hammering,” in Proc. DAC, 2017, pp. 1–6.

[27] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in Proc. PACT,
2008, pp. 72–81.

[28] A. M. Garcia, C. Schepke, and A. Girardi, “PAMPAR: A new par-
allel benchmark for performance and energy consumption evalua-
tion,” Concurrency Comput. Pract. Exp., vol. 32, no. 20, p. e5504,
2020.

[29] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological considera-
tions,” in Proc. ISCA, 1995, pp. 24–36.

[30] “SPEC CPU.” Standard Performance Evaluation Corporation. 2006.
[Online]. Available: https://www.spec.org/cpu2006/

[31] Y. Park, W. Kwon, E. Lee, T. J. Ham, J. H. Ahn, and J. W. Lee,
“Graphene: Strong yet lightweight row hammer protection,” in Proc.
MICRO, 2020, pp. 1–13.

[32] A. G. Yağlikçi et al., “BlockHammer: Preventing RowHammer at low
cost by blacklisting rapidly-accessed DRAM rows,” in Proc. HPCA,
2021, pp. 345–358.

[33] M. Lipp et al., “Nethammer: Inducing Rowhammer faults through
network requests,” in Proc. EuroS PW, 2018, pp. 710–719.

[34] B. Gülmezoglu, A. Moghimi, T. Eisenbarth, and B. Sunar,
“FortuneTeller: Predicting microarchitectural attacks via unsupervised
deep learning,” 2019, arXiv:1907.03651.

[35] J. L. Power et al., “The gem5 simulator: Version 20.0+,” 2020,
arXiv:2007.03152.

[36] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing
NUCA organizations and wiring alternatives for large caches with
CACTI 6.0,” in Proc. MICRO, 2007, pp. 3–14.

[37] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “DRAMsim3:
A cycle-accurate, thermal-capable DRAM simulator,” IEEE Comput.
Archit. Lett., vol. 19, no. 2, pp. 106–109, Jul.–Dec. 2020.

[38] V. van der Veen et al., “Drammer: Deterministic Rowhammer attacks
on mobile platforms,” in Proc. CCS, 2016, pp. 1675–1689.

[39] L. France, M. Mushtaq, F. Bruguier, D. Novo, and P. Benoit,
“Vulnerability assessment of the Rowhammer attack using machine
learning and the gem5 simulator—Work in progress” in Proc. SAT-CPS,
2021, pp. 104–109.

[40] M. Farmani, M. Tehranipoor, and F. Rahman, “RHAT: Efficient
RowHammer-aware test for modern DRAM modules,” in Proc. ETS,
2021, pp. 1–6.

[41] B. Yuce, P. Schaumont, and M. Witteman, “Fault attacks on secure
embedded software: Threats, design, and evaluation,” J. Hardw. Syst.
Security, vol. 2, pp. 111–130, May 2018.

[42] F. Zhang et al., “Persistent fault analysis on block ciphers,” IACR
Trans. Cryptograph. Hardw. Embedded Syst., vol. 2018, no. 3,
pp. 150–172, 2018. [Online]. Available: https://tches.iacr.org/index.php/
TCHES/article/view/7272

[43] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “RAMBleed:
Reading bits in memory without accessing them,” in Proc. SP, 2020,
pp. 695–711.

[44] Y. Tobah, A. Kwong, I. Kang, D. Genkin, and K. G. Shin,
“SpecHammer: Combining spectre and Rowhammer for new speculative
attacks,” in Proc. SP, 2022, pp. 681–698.

[45] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
Exploiting DRAM addressing for cross-CPU attacks,” in Proc. USENIX,
2016, pp. 565–581.

[46] B. K. Joardar, P. Ghosh, P. P. Pande, A. Kalyanaraman, and
S. Krishnamoorthy, “NoC-enabled software/hardware co-design frame-
work for accelerating k − mer counting,” in Proc. NOCS, 2019,
pp. 1–8.

[47] Y. Choukroun, E. Kravchik, F. Yang, and P. Kisilev, “Low-bit quanti-
zation of neural networks for efficient inference,” in Proc. ICCV, 2019,
pp. 3009–3018.

[48] S. Khoram, J. Zhang, M. Strange, and J. Li, “Accelerating graph analyt-
ics by co-optimizing storage and access on an FPGA-HMC platform,”
in Proc. FPGA, 2018, pp. 239–248.

[49] S. Mirbagher-Ajorpaz, G. Pokam, E. Mohammadian-Koruyeh, E. Garza,
N. Abu-Ghazaleh, and D. A. Jiménez, “PerSpectron: Detecting invari-
ant footprints of microarchitectural attacks with perceptron,” in Proc.
MICRO, 2020, pp. 1124–1137.

[50] DDR4 Registering Clock Driver, JEDEC Standard JESD82-31, 2016.
[51] H. Nassar, L. Bauer, and J. Henkel, “TiVaPRoMi: Time-varying

probabilistic row-hammer mitigation,” in Proc. DATE, 2021,
pp. 1711–1716.

[52] J. M. You and J. S. Yang, “MRLoc: Mitigating row-hammering based
on memory locality,” in Proc. DAC, 2019, pp. 1–6.

[53] B. K. Joardar, T. K. Bletsch, and K. Chakrabarty. “Memory access
dataset.” Accessed: May 27, 2022. [Online]. Available: https://doi.org/
10.7924/r4hh6p604

[54] “SPEC CPU 2017.” Standard Performance Evaluation Corporation.
2017. [Online]. Available: https://www.spec.org/cpu2017

[55] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning
at scale,” in Proc. ICLR, 2017, pp. 1–17.

Biresh Kumar Joardar (Member, IEEE) received
the Ph.D. degree from Washington State University,
Pullman, WA, USA, in 2020.

He is an Assistant Professor with the University
of Houston, Houston, TX, USA. Before joining
the University of Houston, he was a Computing
Innovation Fellow (postdoc) with Duke University,
Durham, NC, USA. His current research interests
include machine learning, manycore architectures,
accelerators for deep learning, hardware reliability,
and security.

Dr. Joardar received the Outstanding Graduate Student Researcher Award
at Washington state University in 2019. His works have been nominated for
Best Paper Awards at prestigious conferences, such as DATE and NOCS.

Authorized licensed use limited to: Duke University. Downloaded on December 09,2023 at 15:37:30 UTC from IEEE Xplore. Restrictions apply.

JOARDAR et al.: ML-BASED ROWHAMMER MITIGATION 1405

Tyler K. Bletsch received the Ph.D. degree from
North Carolina State University, Raleigh, NC, USA,
in 2011, with a research focus on software security.

He joined the faculty with Duke University,
Durham, NC, USA, in November 2015 after several
years of work in industry with NetApp. In addition
to his work at Duke, he has often been a mentor
to FIRST robotics teams. His current professional
interests include hardware and software security,
robotics, and technology education with an emphasis
on project-oriented learning.

Krishnendu Chakrabarty (Fellow, IEEE) received
the B.Tech. degree from the Indian Institute of
Technology Kharagpur, Kharagpur, India, in 1990,
and the M.S.E. and Ph.D. degrees from the
University of Michigan, Ann Arbor, MI, USA, in
1992 and 1995, respectively.

He is currently the John Cocke Distinguished
Professor of Electrical and Computer Engineering,
and a Professor of Computer Science with Duke
University, Durham, NC, USA. He is also a Visiting
Professor with NVIDIA, Santa Clara, CA, USA. He

is a Research Ambassador of the University of Bremen, Bremen, Germany,
and he was a Hans Fischer Senior Fellow with the Institute for Advanced
Study, Technical University of Munich, Munich, Germany, from 2016 to
2019. His current research projects include: design-for-testability of 2.5D/3-D
integrated circuits and heterogeneous integration; hardware security; AI accel-
erators; microfluidic biochips; AI for healthcare; and neuromorphic computing
systems.

Prof. Chakrabarty is a recipient of the National Science Foundation
CAREER Award, the Office of Naval Research Young Investigator Award, the
Humboldt Research Award from the Alexander von Humboldt Foundation,
Germany, the IEEE Transactions on CAD Donald O. Pederson Best Paper
Award in 2015, the IEEE TRANSACTIONS ON VERY LARGE SCALE

INTEGRATION (VLSI) SYSTEMS Prize Paper Award in 2021, the ACM
Transactions on Design Automation of Electronic Systems Best Paper Award in
2017, multiple IBM Faculty Awards and HP Labs Open Innovation Research
Awards, and over a dozen best paper awards at major conferences. He is also
a recipient of the IEEE Computer Society Technical Achievement Award in
2015, the IEEE Circuits and Systems Society Charles A. Desoer Technical
Achievement Award in 2017, the IEEE Circuits and Systems Society Vitold
Belevitch Award in 2021, the Semiconductor Research Corporation Technical
Excellence Award in 2018, the Semiconductor Research Corporation Aristotle
Award in 2022, the IEEE-HKN Asad M. Madni Outstanding Technical
Achievement and Excellence Award in 2021, and the IEEE Test Technology
Technical Council Bob Madge Innovation Award in 2018. He is a 2018 recip-
ient of the Japan Society for the Promotion of Science Invitational Fellowship
in the “Short Term S: Nobel Prize Level” category. He served as the Editor-
in-Chief of IEEE DESIGN AND TEST OF COMPUTERS from 2010 to 2012,
Journal on Emerging Technologies in Computing Systems from 2010 to
2015, and IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION

SYSTEMS from 2015 to 2018. He is a Fellow of ACM and AAAS, and
a Golden Core Member of the IEEE Computer Society. He is a mem-
ber of the DARPA Microsystems Exploratory Council from 2022 to 2025.
He is also a member of the Scientific Advisory Board of the Deutsches
Forschungszentrum für Künstliche Intelligenz (German Research Center for
Artificial Intelligence). He was a Distinguished Visitor of the IEEE Computer
Society from 2005 to 2007 and from 2010 to 2012, a Distinguished Lecturer
of the IEEE Circuits and Systems Society from 2006 to 2007 and from 2012
to 2013, and an ACM Distinguished Speaker from 2008 to 2016.

Authorized licensed use limited to: Duke University. Downloaded on December 09,2023 at 15:37:30 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

