Activist Trading Dynamicsa

Doruk Cetemen1 Gonzalo Cisternas2 Aaron Kolb3 Vish Viswanathan4

1City University of London
2FRB New York
3Indiana Kelley
4Duke Fuqua

Insead, Fontainebleau and Singapore
September 6 2023

aThe views expressed in this paper are those of the authors and do not necessarily represent the position of the Federal Reserve Bank of New York or the Federal Reserve System.
background
Activist Shareholders

Blockholders that attempt to influence how firms are run.
Activist Shareholders

Blockholders that attempt to influence how firms are run. Important phenomenon

- In 2020, average market cap of a target was $21 billion
Activist Shareholders

Blockholders that attempt to influence how firms are run. Important phenomenon

- In 2020, average market cap of a target was $21 billion
- Apple (~$2 tn) subject to attacks in 2013 and 2018
Activist Shareholders

Blockholders that attempt to influence how firms are run. Important phenomenon

- In 2020, average market cap of a target was $21 billion
- Apple (~$2 tn) subject to attacks in 2013 and 2018
- Virtually every sector has been targeted
Activist Shareholders

Blockholders that attempt to influence how firms are run. Important phenomenon

- In 2020, average market cap of a target was $21 billion
- Apple (≈$2 tn) subject to attacks in 2013 and 2018
- Virtually every sector has been targeted

Who?

3
Activist Shareholders

Blockholders that attempt to influence how firms are run. Important phenomenon

- In 2020, average market cap of a target was $21 billion
- Apple (∼$2 tn) subject to attacks in 2013 and 2018
- Virtually every sector has been targeted

Who?

- Carl Icahn
Activist Shareholders

Blockholders that attempt to influence how firms are run. Important phenomenon

- In 2020, average market cap of a target was $21 billion
- Apple (∼$2 trn) subject to attacks in 2013 and 2018
- Virtually every sector has been targeted

Who?

- Carl Icahn
- Index funds (Vanguard, Blackrock)
Activist Shareholders

Blockholders that attempt to influence how firms are run. Important phenomenon

- In 2020, average market cap of a target was $21 billion
- Apple (\(\sim$2 tn) subject to attacks in 2013 and 2018
- Virtually every sector has been targeted

Who?

- Carl Icahn
- Index funds (Vanguard, Blackrock) \(\rightarrow\) vote ("passive")
Activist Shareholders

Blockholders that attempt to influence how firms are run. Important phenomenon

- In 2020, average market cap of a target was $21 billion
- Apple (~$2 tn) subject to attacks in 2013 and 2018
- Virtually every sector has been targeted

Who?

- Carl Icahn
- Index funds (Vanguard, Blackrock) → vote ("passive")
- Hedge funds: trade and intervene
Activist Shareholders

Blockholders that attempt to influence how firms are run. Important phenomenon

- In 2020, average market cap of a target was $21 billion
- Apple (~$2 tn) subject to attacks in 2013 and 2018
- Virtually every sector has been targeted

Who?

- Carl Icahn
- Index funds (Vanguard, Blackrock) → vote ("passive")
- **Hedge funds**: trade and intervene
 - Trian, Third Point LLC, Elliott Mgmt, Pershing Square, Starboard...

In 2020, average market cap of a target was $21 billion

Apple (~$2 tn) subject to attacks in 2013 and 2018

Virtually every sector has been targeted

Who?

- Carl Icahn
- Index funds (Vanguard, Blackrock) → vote ("passive")
- **Hedge funds**: trade and intervene
 - Trian, Third Point LLC, Elliott Mgmt, Pershing Square, Starboard...
Activist Shareholders

Blockholders that attempt to influence how firms are run. Important phenomenon

- In 2020, average market cap of a target was $21 billion
- Apple (∼$2 tn) subject to attacks in 2013 and 2018
- Virtually every sector has been targeted

Who?

- Carl Icahn
- Index funds (Vanguard, Blackrock) → vote ("passive")
- **Hedge funds**: trade and intervene
 - Trian, Third Point LLC, Elliott Mgmt, Pershing Square, Starboard...
 - U.S., 1994-2018: +900 funds, targeting +3000 firms, +4600 events (Brav et al. 2022)
Activist Shareholders

What?

- Capital structure (dividends, buybacks, debt/equity issuance)
- Business strategy (cut costs, sell divisions...)
- Corporate governance (exec comp., board composition, oust CEO...)

How?

- "Exit:" selling shares → threat (e.g., Admati & Pfleiderer 2009; Edmans, 2009; Edmans & Manso, 2011)
- "Voice:" interventions beyond voting (e.g., Shleifer and Vishny, 1986; Kahn & Winton (1998); Maug, 1998)
- Communication, formal proposals, proxy contests, lawsuits, etc.

"Voice" is a costly activity → effort

- Proxy advisors, research, consultants, legal fees → $	ext{MM}$ (Gantchev, 2013)

... that benefits all shareholders → public goods problem (e.g., Berle and Means, 1932)
Activist Shareholders

What?

- Capital structure (dividends, buybacks, debt/equity issuance)
Activist Shareholders

What?

- Capital structure (dividends, buybacks, debt/equity issuance)
- Business strategy (cut costs, sell divisions...)

How?

- "Exit:" selling shares → threat (e.g., Admati & Pfleiderer 2009; Edmans, 2009; Edmans & Manso, 2011)
- "Voice:" interventions beyond voting (e.g., Shleifer and Vishny, 1986; Kahn & Winton (1998); Maug, 1998)
 - Communication, formal proposals, proxy contests, lawsuits, etc.

"Voice" is a costly activity → effort

Proxy advisors, research, consultants, legal fees → $

... that benefits all shareholders → public goods problem

(e.g., Berle and Means, 1932)
Activist Shareholders

What?

- Capital structure (dividends, buybacks, debt/equity issuance)
- Business strategy (cut costs, sell divisions...)
- Corporate governance (exec comp., board composition, oust CEO...)
Activist Shareholders

What?

- Capital structure (dividends, buybacks, debt/equity issuance)
- Business strategy (cut costs, sell divisions...)
- Corporate governance (exec comp., board composition, oust CEO...)

How?

- "Exit:" selling shares → threat (e.g., Admati & Pfleiderer 2009; Edmans, 2009; Edmans & Manso, 2011)
- "Voice:" interventions beyond voting (e.g., Shleifer and Vishny, 1986; Kahn & Winton (1998); Maug, 1998)
 Communication, formal proposals, proxy contests, lawsuits, etc.
 "Voice" is a costly activity → effort
 Proxy advisors, research, consultants, legal fees → $MM (Gantchev, 2013)

... that benefits all shareholders → public goods problem (e.g., Berle and Means, 1932)
Activist Shareholders

What?
- Capital structure (dividends, buybacks, debt/equity issuance)
- Business strategy (cut costs, sell divisions...)
- Corporate governance (exec comp., board composition, oust CEO...)

How?
- “Exit:” selling shares \rightarrow threat (e.g., Admati & Pfleiderer 2009; Edmans, 2009; Edmans & Manso, 2011)

"Voice:" interventions beyond voting (e.g., Shleifer and Vishny, 1986; Kahn & Winton (1998); Maug, 1998)
Communication, formal proposals, proxy contests, lawsuits, etc.
"Voice" is a costly activity \rightarrow effort
Proxy advisors, research, consultants, legal fees \rightarrow MM
Gantchev, 2013

... that benefits all shareholders \rightarrow public goods problem (e.g., Berle and Means, 1932)
Activist Shareholders

What?

- Capital structure (dividends, buybacks, debt/equity issuance)
- Business strategy (cut costs, sell divisions...)
- Corporate governance (exec comp., board composition, oust CEO...)

How?

- “Exit:” selling shares \rightarrow threat (e.g., Admati & Pfleiderer 2009; Edmans, 2009; Edmans & Manso, 2011)
- “Voice:” interventions beyond voting (e.g., Shleifer and Vishny, 1986; Kahn & Winton (1998); Maug, 1998)
 - Communication, formal proposals, proxy contests, lawsuits, etc.
Activist Shareholders

What?

- Capital structure (dividends, buybacks, debt/equity issuance)
- Business strategy (cut costs, sell divisions...)
- Corporate governance (exec comp., board composition, oust CEO...)

How?

- “Exit:” selling shares → threat (e.g., Admati & Pfleiderer 2009; Edmans, 2009; Edmans & Manso, 2011)
 - Communication, formal proposals, proxy contests, lawsuits, etc.

“Voice” is a costly activity → effort
Activist Shareholders

What?

- Capital structure (dividends, buybacks, debt/equity issuance)
- Business strategy (cut costs, sell divisions...)
- Corporate governance (exec comp., board composition, oust CEO...)

How?

- "Exit:" selling shares \rightarrow threat (e.g., Admati & Pfleiderer 2009; Edmans, 2009; Edmans & Manso, 2011)
- "Voice:" interventions beyond voting (e.g., Shleifer and Vishny, 1986; Kahn & Winton (1998); Maug, 1998)
 - Communication, formal proposals, proxy contests, lawsuits, etc.

"Voice" is a costly activity \rightarrow effort

- Proxy advisors, research, consultants, legal fees \rightarrow $\$\text{MM}$ (Gantchev, 2013)
Activist Shareholders

What?
- Capital structure (dividends, buybacks, debt/equity issuance)
- Business strategy (cut costs, sell divisions...)
- Corporate governance (exec comp., board composition, oust CEO...)

How?
- “Exit:” selling shares → threat (e.g., Admati & Pfleiderer 2009; Edmans, 2009; Edmans & Manso, 2011)
- “Voice:” interventions beyond voting (e.g., Shleifer and Vishny, 1986; Kahn & Winton (1998); Maug, 1998)
 - Communication, formal proposals, proxy contests, lawsuits, etc.

“Voice” is a costly activity → effort
- Proxy advisors, research, consultants, legal fees → $MM (Gantchev, 2013)

... that benefits all shareholders
Activist Shareholders

What?

- Capital structure (dividends, buybacks, debt/equity issuance)
- Business strategy (cut costs, sell divisions...)
- Corporate governance (exec comp., board composition, oust CEO...)

How?

- “Exit:” selling shares → threat (e.g., Admati & Pfleiderer 2009; Edmans, 2009; Edmans & Manso, 2011)
- “Voice:” interventions beyond voting (e.g., Shleifer and Vishny, 1986; Kahn & Winton (1998); Maug, 1998)
 - Communication, formal proposals, proxy contests, lawsuits, etc.

“Voice” is a costly activity → effort

- Proxy advisors, research, consultants, legal fees → $MM (Gantchev, 2013)

... that benefits all shareholders → public goods problem (e.g., Berle and Means, 1932)
Activism usually involves strict minority shareholders.
Activism usually involves **strict minority shareholders**

- as low as 0.02% ownership; ≠ corporate raiders in the 80s
Activism usually involves **strict minority shareholders**
- as low as 0.02% ownership; ≠ corporate raiders in the 80s

Critical for an activist to **bring others along**
Activism usually involves **strict minority shareholders**
- as low as 0.02% ownership; ≠ corporate raiders in the 80s

Critical for an activist to **bring others along**
- key in large cap segment
Activism usually involves strict minority shareholders

- as low as 0.02% ownership; ≠ corporate raiders in the 80s

Critical for an activist to bring others along

- key in large cap segment → emergence of activism
Activism usually involves **strict minority shareholders**
- as low as 0.02% ownership; ≠ corporate raiders in the 80s

Critical for an activist to **bring others along**
- key in large cap segment → emergence of activism
- **empirically relevant:**
Activism usually involves strict minority shareholders

- as low as 0.02% ownership; ≠ corporate raiders in the 80s

Critical for an activist to bring others along

- key in large cap segment → emergence of activism
- empirically relevant: large cap firms as targets
Activism usually involves **strict minority shareholders**

- as low as 0.02% ownership; ≠ corporate raiders in the 80s

Critical for an activist to **bring others along**

- key in large cap segment \rightarrow emergence of activism
- **empirically relevant**: large cap firms as targets \uparrow & firms targeted by multiple hedge funds \uparrow (Becht et al, 2015)
Activism usually involves strict minority shareholders
- as low as 0.02% ownership; ≠ corporate raiders in the 80s

Critical for an activist to bring others along
- key in large cap segment → emergence of activism
- empirically relevant: large cap firms as targets and firms targeted by multiple hedge funds (Becht et al, 2015)

~ mechanisms by which activists steer others to add value?
Activism usually involves strict minority shareholders
- as low as 0.02% ownership; ≠ corporate raiders in the 80s

Critical for an activist to bring others along
- key in large cap segment → emergence of activism
- empirically relevant: large cap firms as targets ↑ & firms targeted by multiple hedge funds ↑ (Becht et al, 2015)

∽ mechanisms by which activists steer others to add value?
 skin in the game: block size
Activism usually involves strict minority shareholders

- as low as 0.02% ownership; ≠ corporate raiders in the 80s

Critical for an activist to bring others along

- key in large cap segment → emergence of activism
- empirically relevant: large cap firms as targets ↗ & firms targeted by multiple hedge funds ↗ (Becht et al, 2015)

.arrowhead \Rightarrow \text{mechanisms by which activists steer others to add value?}

skin in the game: block size

This paper: market-based mechanism involving strategic block (de-)accumulation

- minimal elements to generate dynamics
Model: “Stackelberg model of trading and activism”

1) Leader (L) and follower (F) with initial positions X_i^0, $i = L, F$, on a firm's stock. Initial “blocks” are private information (types; Back et al, 2018).

2) • Period 1: L orders $\theta_L \in \mathbb{R}$ units, which generates a public order flow $\Psi_1 = \theta_L + \sigma Z_1$, where $\sigma > 0$ and $Z_1 \sim N(0, 1)$ ⊥ X_i^0. Executed at $P_1 = E[\text{firm's value}|F \Psi_1]$ (Kyle '85; “market-maker” (MM)).

• Period 2: Exactly as 1, but F ↔ L...

• Period 3: activists simultaneously exert costly effort $W_i \in \mathbb{R}$. ⇝ Total payoff: $(W_i + W - i) |\{z\} \text{share value } X_i^T - P_t(i) \theta_i - 1^2(W_i)$.
Model: “Stackelberg model of trading and activism”

1) Leader (L) and follower (F) with initial positions X_0^i, $i = L, F$, on a firm’s stock.
Model: “Stackelberg model of trading and activism”

1) *Leader* (L) and *follower* (F) with initial positions \(X_i^0 \), \(i = L, F \), on a *firm’s stock*. Initial “blocks” are **private information** (*types*; Back et al, 2018).
Model: “Stackelberg model of trading and activism”

1) Leader (L) and follower (F) with initial positions X^i_0, $i = L, F$, on a firm’s stock. Initial “blocks” are private information (types; Back et al, 2018). Commonly known:

$$X^i_0 \sim N(\mu, \phi) \text{ and } \text{Cov}[X^L_0, X^F_0] = \rho \in [-\phi, \phi]$$

2) Period 1: L orders $\theta^L \in \mathbb{R}$ units,
Model: “Stackelberg model of trading and activism”

1) Leader (L) and follower (F) with initial positions X^i_0, $i = L, F$, on a firm’s stock. Initial “blocks” are private information (types; Back et al, 2018). Commonly known:

$$X^i_0 \sim N(\mu, \phi) \text{ and } \text{Cov}[X^L_0, X^F_0] = \rho \in [-\phi, \phi]$$

2) • **Period 1**: L orders $\theta^L \in \mathbb{R}$ units, which generates a public order flow
Model: “Stackelberg model of trading and activism”

1) **Leader** (L) and **follower** (F) with initial positions \(X_0^i, \ i = L, F, \) on a firm’s stock. Initial “blocks” are **private information** (types; Back et al, 2018). Commonly known:

\[
X_0^i \sim N(\mu, \phi) \text{ and } \text{Cov}[X_0^L, X_0^F] = \rho \in [-\phi, \phi]
\]

2) **Period 1**: \(L \) orders \(\theta^L \in \mathbb{R} \) units, which generates a **public order flow**

\[
\Psi_1 = \theta^L + \sigma Z_1, \quad \text{where } \sigma > 0 \text{ and } Z_1 \sim N(0, 1) \perp X_0^i
\]
Model: “Stackelberg model of trading and activism”

1) Leader (L) and follower (F) with initial positions X_i^0, $i = L, F$, on a firm’s stock. Initial “blocks” are private information (types; Back et al, 2018). Commonly known:

$$X_i^0 \sim N(\mu, \phi) \text{ and } \text{Cov}[X_L^0, X_F^0] = \rho \in [-\phi, \phi]$$

2) • Period 1: L orders $\theta^L \in \mathbb{R}$ units, which generates a public order flow

$$\Psi_1 = \theta^L + \sigma Z_1, \quad \text{where } \sigma > 0 \text{ and } Z_1 \sim N(0, 1) \perp X_i^0$$

Executed at $P_1 = \mathbb{E}[\text{firm’s value}|\mathcal{F}_1^\Psi]$ (Kyle ’85; “market-maker” (MM))
Model: “Stackelberg model of trading and activism”

1) Leader (L) and follower (F) with initial positions X_i^0, $i = L, F$, on a firm's stock. Initial “blocks” are private information (types; Back et al, 2018). Commonly known:

$$X_i^0 \sim N(\mu, \phi) \text{ and } \text{Cov}[X_L^0, X_F^0] = \rho \in [-\phi, \phi]$$

2) • Period 1: L orders $\theta^L \in \mathbb{R}$ units, which generates a public order flow

$$\Psi_1 = \theta^L + \sigma Z_1, \text{ where } \sigma > 0 \text{ and } Z_1 \sim N(0,1) \perp X_0^i$$

Executed at $P_1 = \mathbb{E}[\text{firm's value}|\mathcal{F}_1^\Psi]$ (Kyle ’85; “market-maker” (MM))

• Period 2: Exactly as 1, but $F \leftrightarrow L$... and $P_2 = \mathbb{E}[\cdot|\mathcal{F}_2^\Psi]$
Model: “Stackelberg model of trading and activism”

1) Leader (L) and follower (F) with initial positions X^i_0, $i = L, F$, on a firm’s stock. Initial “blocks” are private information (types; Back et al, 2018). Commonly known:

$$X^i_0 \sim N(\mu, \phi) \text{ and } \text{Cov}[X^L_0, X^F_0] = \rho \in [-\phi, \phi]$$

2) • Period 1: L orders $\theta^L \in \mathbb{R}$ units, which generates a public order flow

$$\Psi_1 = \theta^L + \sigma Z_1, \quad \text{where } \sigma > 0 \text{ and } Z_1 \sim N(0, 1) \perp X^i_0$$

Executed at $P_1 = \mathbb{E}[$firm’s value$|F^\Psi_1]$ (Kyle ’85; “market-maker” (MM))

• Period 2: Exactly as 1, but $F \leftrightarrow L$... and $P_2 = \mathbb{E}[$.|F^Ψ_2]

• Period 3: activists simultaneously exert costly effort $W^i \in \mathbb{R}$.
1) Leader (L) and follower (F) with initial positions X_i^0, $i = L, F$, on a firm’s stock. Initial “blocks” are private information \(\text{(types; Back et al, 2018).} \)

Commonly known:

\[X_i^0 \sim N(\mu, \phi) \text{ and } \text{Cov}[X_L^0, X_F^0] = \rho \in [-\phi, \phi] \]

2) • Period 1: \(L \) orders $\theta_L \in \mathbb{R}$ units, which generates a public order flow

\[\Psi_1 = \theta_L + \sigma Z_1, \quad \text{where } \sigma > 0 \text{ and } Z_1 \sim N(0, 1) \perp X_i^0 \]

Executed at $P_1 = \mathbb{E}[\text{firm’s value}|\mathcal{F}_1^\Psi]$ (Kyle ’85; “market-maker” (MM))

• Period 2: Exactly as 1, but $F \leftrightarrow L$... and $P_2 = \mathbb{E}[.|\mathcal{F}_2^\Psi]$

• Period 3: activists simultaneously exert costly effort $W_i \in \mathbb{R}$.

\[\sim \text{ Total payoff: } \left(W_i + W^{-i} \right) X_T^i - P_{t(i)} \theta^i - \frac{1}{2} (W^i)^2 \]
Main Finding and Roadmap

Dynamics + endogenous firm value \leadsto **linear eqbm. w/manipulation motive**

- L steers F to build stakes; departure from Kyle '85 and subsequent work
- We derive predictions about outcomes...
Main Finding and Roadmap

Dynamics + endogenous firm value \rightsquigarrow \textbf{linear eqbm. w/manipulation motive}

- L steers F to build stakes; departure from Kyle '85 and subsequent work
- We derive predictions about outcomes...

Plan

2. Equilibrium analysis: manipulation dynamics

3. Predictions: market outcomes & first-mover advantages

4. Hedge fund activism: \textit{wolf packs}

5. Other linear equilibria & refinement
Firm’s value is exogenous $v \sim N(\mu, \phi)$; private information to an “insider”
• Firm’s value is \textit{exogenous} \(v \sim N(\mu, \phi) \); private information to an “insider”

• MM observes \(\Psi = \theta + \sigma Z \) to set execution price \(P \).
• Firm’s value is exogenous $v \sim N(\mu, \phi)$; private information to an “insider”

• MM observes $\Psi = \theta + \sigma Z$ to set execution price P. Insider’s objective is

$$\max_{\theta \in \mathbb{R}} \mathbb{E}[v(X_0 + \theta) - P\theta]$$
• Firm’s value is exogenous \(v \sim N(\mu, \phi) \); private information to an “insider”

• MM observes \(\Psi = \theta + \sigma Z \) to set execution price \(P \). Insider’s objective is

\[
\max_{\theta \in \mathbb{R}} \mathbb{E}[v(X_0 + \theta) - P\theta] \Leftrightarrow \max_{\theta \in \mathbb{R}} \mathbb{E}[(v - P)\theta]
\]
Static Kyle ’85

- Firm’s value is exogenous $v \sim N(\mu, \phi)$; private information to an “insider”
- MM observes $\Psi = \theta + \sigma Z$ to set execution price P. Insider’s objective is
 \[
 \max_{\theta \in \mathbb{R}} \mathbb{E}[v(X_0 + \theta) - P\theta] \Leftrightarrow \max_{\theta \in \mathbb{R}} \mathbb{E}[(v - P)\theta]
 \]
- $P = \mu + \Lambda \Psi$ → problem is concave if $\Lambda > 0$
• Firm’s value is exogenous $\nu \sim N(\mu, \phi)$; private information to an “insider”

• MM observes $\Psi = \theta + \sigma Z$ to set execution price P. Insider’s objective is

$$\max_{\theta \in \mathbb{R}} \mathbb{E}[\nu(X_0 + \theta) - P\theta] \Leftrightarrow \max_{\theta \in \mathbb{R}} \mathbb{E}[(\nu - P)\theta]$$

• $P = \mu + \Lambda \Psi \rightarrow$ problem is concave if $\Lambda > 0 \rightarrow$ price impact Λ: limits to arbitrage
Static Kyle ’85

- Firm’s value is exogenous $v \sim N(\mu, \phi)$; private information to an “insider”

- MM observes $\Psi = \theta + \sigma Z$ to set execution price P. Insider’s objective is

$$\max_{\theta \in \mathbb{R}} \mathbb{E}[v(X_0 + \theta) - P\theta] \Leftrightarrow \max_{\theta \in \mathbb{R}} \mathbb{E}[(v - P)\theta]$$

- $P = \mu + \Lambda \Psi \rightarrow$ problem is concave if $\Lambda > 0 \rightarrow$ price impact Λ: limits to arbitrage

- Optimal trading + correct price/belief (i.e., $P = \mathbb{E}[v|\Psi]$)

$$\theta = \sqrt{\frac{\sigma^2}{\phi}} (v - \mu) \quad \text{and} \quad \Lambda = \frac{\alpha_K \phi}{\alpha_K^2 \phi + \sigma^2} = \frac{\text{Cov}[v, \Psi]}{\text{Var}[\Psi]}$$
• Firm’s value is exogenous \(v \sim N(\mu, \phi) \); private information to an “insider”

• MM observes \(\Psi = \theta + \sigma Z \) to set execution price \(P \). Insider’s objective is

\[
\max_{\theta \in \mathbb{R}} \mathbb{E}[v(X_0 + \theta) - P\theta] \Leftrightarrow \max_{\theta \in \mathbb{R}} \mathbb{E}[(v - P)\theta]
\]

• \(P = \mu + \Lambda \Psi \) → problem is concave if \(\Lambda > 0 \) → price impact \(\Lambda \): limits to arbitrage

• Optimal trading + correct price/belief (i.e., \(P = \mathbb{E}[v|\Psi] \))

\[
\theta = \sqrt{\frac{\sigma^2}{\phi}} (v - \mu) \quad \text{and} \quad \Lambda = \frac{\alpha_K \phi}{\alpha_K^2 \phi + \sigma^2} = \frac{\text{Cov}[v, \Psi]}{\text{Var}[\Psi]}
\]

\(\alpha^K := \)

\[\therefore \text{"Gap" strategy } \Rightarrow \mathbb{E}[\theta] = 0: \text{“unpredictable”} \]
Kyle type "gap" strategies are ubiquitous in this literature.
“Gap” strategies

- Kyle type "gap" strategies are ubiquitous in this literature
- Foster and Viswanathan (1996) has a “gap” strategy (so multiple traders does not change this aspect)
"Gap" strategies

- Kyle type "gap" strategies are ubiquitous in this literature
- Foster and Viswanathan (1996) has a "gap" strategy (so multiple traders does not change this aspect)
- Back et. al.(2018) has single activist who has a "gap" strategy
“Gap” strategies

- Kyle type “gap” strategies are ubiquitous in this literature
- Foster and Viswanathan (1996) has a “gap” strategy (so multiple traders does not change this aspect)
- Back et. al. (2018) has single activist who has a “gap” strategy
- In our model, because of externalities, the leader does not have a gap strategy (we will return to why)
Back to our setting: incentives

\[v\big(X^i_0 + \theta\big) - P_{t(i)}\theta^i \]
Back to our setting: incentives

$$(W^L + W^F)X^i_T - P_{t(i)}\theta^i - \frac{1}{2}(W^i)^2$$
Back to our setting: incentives

\[(X^i_T + X^T_i)X^i_T - P_{t(i)}\theta^i - \frac{1}{2}(X^i_T)^2\]

- larger blocks \rightarrow more effort (stronger intervention)
- public-goods problem is at play
- static incentives to trade: (i) stronger due to own effort $(X^i_T X^i_T)$ and (ii) stronger/weaker depending on the other activist $(X^i_T X_{-i}^T$; linked to ρ)
- dynamic incentives: leader with larger blocks benefit more from follower’s effort $(X^{L}_T X^{F}_T) \rightarrow$ applied to more shares
1. Activists w/similar business models suggests $\rho > 0$;
Back to our setting: correlation positions

1. Activists w/similar business models suggests $\rho > 0$; but fixed number of shares sets limitations
1. Activists w/similar business models suggests $\rho > 0$; but fixed number of shares sets limitations
Back to our setting: correlation positions

1. Activists w/similar business models suggests $\rho > 0$; but fixed number of shares sets limitations

![Graph showing Log Market Value vs Log Shares Outstanding]

2. $\rho > 0$ more likely as market capitalization grows
1. Activists w/similar business models suggests $\rho > 0$; but fixed number of shares sets limitations

2. $\rho > 0$ more likely as market capitalization grows

3. Presence of large short and long positions indicative of $\rho < 0$
equilibrium analysis
An **equilibrium** is a pair of trading strategies \((\theta^L, \theta^F)\) and pricing rules \((P_1, P_2)\) s.t.
Linear equilibrium

An equilibrium is a pair of trading strategies \((\theta^L, \theta^F)\) and pricing rules \((P_1, P_2)\) s.t.

- \(\theta^i\) is optimal given \((\theta^{i^{-}}, P_1, P_2)\), \(i = L, F\)

\[\hat{\theta}^i \text{ is optimal given } (\theta^{i^{-}}, P_1, P_2), i = L, F \]

Linear equilibrium:

\[\hat{\theta}^L = \alpha^L X^L_0 + \delta^L \mu \]

\[\hat{\theta}^F = \alpha^F X^F_0 + \beta^F P_1 + \delta^F \mu \]

\[\hat{P}_t = E[W^L_t + W^F_t | \Psi_t], t = 1, 2 \] when \(\theta^i\) drives \(\Psi_t\) \((i)\)

Focus on linear equilibria with positive block sensitivity (PBS): \(\alpha^L > 0\) and \(\alpha^F > 0\)
An equilibrium is a pair of trading strategies \((\theta^L, \theta^F)\) and pricing rules \((P_1, P_2)\) s.t.

- \(\hat{\theta}^i\) is optimal given \((\theta^{-i}, P_1, P_2), i = L, F\)
- \(P_t = \mathbb{E}[W^L + W^F | \mathcal{F}_t^\Psi], t = 1, 2\) when \(\theta^i\) drives \(\Psi_t(i)\)
An **equilibrium** is a pair of trading strategies \((\theta^L, \theta^F)\) and pricing rules \((P_1, P_2)\) s.t.

- \(\hat{\theta}^i\) is optimal given \((\theta^{-i}, P_1, P_2)\), \(i = L, F\)
- \(P_t = \mathbb{E}[W^L + W^F|\mathcal{F}_t^\Psi]\), \(t = 1, 2\) when \(\theta^i\) drives \(\Psi_{t(i)}\)

Linear equilibrium:

Leader trades
- \(\theta^L = \alpha^L X^L_0 + \delta^L \mu\)

Follower trades
- \(\theta^F = \alpha^F X^F_0 + \beta^F P_1 + \delta^F \mu\)

Pricing rule
- \(P_t\) is affine in \(\Psi_t\), \(t = 1, 2\) when \(\theta^i\) drives \(\Psi_{t(i)}\)
An \textbf{equilibrium} is a pair of trading strategies \((\theta_L, \theta^F)\) and pricing rules \((P_1, P_2)\) s.t.

- \(\hat{\theta}^i\) is optimal given \((\theta^{-i}, P_1, P_2)\), \(i = L, F\)
- \(P_t = \mathbb{E}[W^L + W^F | \mathcal{F}_t^\Psi], \ t = 1, 2\) when \(\theta^i\) drives \(\Psi_t(i)\)

\textbf{Linear equilibrium:}

- Leader trades \(\theta^L = \alpha_L X^L_0 + \delta_L \mu\)
An **equilibrium** is a pair of trading strategies \((\theta^L, \theta^F)\) and pricing rules \((P_1, P_2)\) s.t.

- \(\hat{\theta}^i\) is optimal given \((\theta^{-i}, P_1, P_2), i = L, F\)
- \(P_t = \mathbb{E}[W^L + W^F | \mathcal{F}_t^\psi], t = 1, 2\) when \(\theta^i\) drives \(\psi_t(i)\)

Linear equilibrium:

- Leader trades \(\theta^L = \alpha_L X^L_0 + \delta_L \mu\)
- Follower trades \(\theta^F = \alpha_F X^F_0 + \beta_F P_1 + \delta_F \mu\)
An **equilibrium** is a pair of trading strategies \((\theta^L, \theta^F)\) and pricing rules \((P_1, P_2)\) s.t.

- \(\theta^i\) is optimal given \((\theta^{-i}, P_1, P_2), \ i = L, F\)
- \(P_t = \mathbb{E}[\mathcal{W}^L + \mathcal{W}^F | \mathcal{F}_t^\Psi], \ t = 1, 2\) when \(\theta^i\) drives \(\Psi_t(i)\)

Linear equilibrium:

- Leader trades \(\theta^L = \alpha_L X_0^L + \delta_L \mu\)
- Follower trades \(\theta^F = \alpha_F X_0^F + \beta_F P_1 + \delta_F \mu\)
- Pricing rule \(P_t\) is affine in \(\Psi_t\)
An **equilibrium** is a pair of trading strategies \((\theta^L, \theta^F)\) and pricing rules \((P_1, P_2)\) s.t.

- \(\theta^i\) is optimal given \((\theta^{-i}, P_1, P_2)\), \(i = L, F\)
- \(P_t = \mathbb{E}[W^L + W^F | \mathcal{F}_t^\Psi], t = 1, 2\) when \(\theta^i\) drives \(\Psi_t(i)\)

Linear equilibrium:

- Leader trades \(\theta^L = \alpha_L X^L_0 + \delta_L \mu\)
- Follower trades \(\theta^F = \alpha_F X^F_0 + \beta_F P_1 + \delta_F \mu\)
- Pricing rule \(P_t\) is affine in \(\Psi_t\)

Focus on linear equilibria with **positive block sensitivity (PBS):** \(\alpha_L > 0\) and \(\alpha_F > 0\)

- higher types accumulate more shares than low types (relatively)
Learning and pricing

$T = 0$: MM forms expectation P_0 of firm’s value, and activists form private beliefs
Learning and pricing

$T = 0$: MM forms expectation P_0 of firm’s value, and activists form private beliefs

$T = 1$: MM updates beliefs about both activists to set $P_1 = \mathbb{E}[X^L_T|\mathcal{F}_1^\Psi] + \mathbb{E}[X^F_T|\mathcal{F}_1^\Psi]$:

$\Lambda_1 = \alpha_L \phi_{\alpha_2 L} + \sigma^2$

Kyle’s $\Lambda_1 \times 1 + \alpha_L + \rho (1 + \alpha_F)/\phi_1 - \beta F$
Learning and pricing

$T = 0$: MM forms expectation P_0 of firm’s value, and activists form private beliefs

$T = 1$: MM updates beliefs about both activists to set $P_1 = \mathbb{E}[X_L^T | \mathcal{F}_1^\psi] + \mathbb{E}[X_F^T | \mathcal{F}_1^\psi]$:

$$P_1 = P_0 + \Lambda_1 \left\{ \psi_1 - \mu(\alpha_L + \delta_L) \right\}, \text{ with}$$

$$\Lambda_1 := \frac{\alpha_L \phi}{\alpha_L^2 \phi + \sigma^2} \times \frac{1 + \alpha_L + \rho(1 + \alpha_F)/\phi}{1 - \beta_F}$$

Kyle’s Λ endogenous firm value
Learning and pricing

\(T = 0 \): MM forms expectation \(P_0 \) of firm’s value, and activists form private beliefs

\(T = 1 \): MM updates beliefs about both activists to set \(P_1 = E[X_T^L | \mathcal{F}_1^\psi] + E[X_T^F | \mathcal{F}_1^\psi] \):

\[
P_1 = P_0 + \Lambda_1 \{\Psi_1 - \mu(\alpha_L + \delta_L)\} \quad \text{with}
\]

\[
\Lambda_1 := \frac{\alpha_L \phi}{\alpha_L \phi + \sigma^2} \times \frac{1 + \alpha_L + \rho(1 + \alpha_F) / \phi}{1 - \beta_F}
\]

Kyle’s \(\Lambda \times 1 \) + \(\alpha_L + \rho(1 + \alpha_F) / \phi \) / endogenous firm value
Learning and pricing

$T = 0$: MM forms expectation P_0 of firm’s value, and activists form private beliefs

$T = 1$: MM updates beliefs about both activists to set $P_1 = \mathbb{E}[X_T^L | \mathcal{F}_1^\Psi] + \mathbb{E}[X_T^F | \mathcal{F}_1^\Psi]$:

$$P_1 = P_0 + \Lambda_1 \{\Psi_1 - \mu(\alpha_L + \delta_L)\}, \text{ with}$$

$$= \Psi_1 - \mathbb{E}[\alpha_L X_0^L + \delta_L \mu]$$

$$\Lambda_1 := \frac{\alpha_L \phi}{\alpha_L^2 \phi + \sigma^2} \times \frac{1 + \alpha_L + \rho(1 + \alpha_F)/\phi}{1 - \beta_F}$$

Kyle’s Λ

endogenous firm value
Note the price at time 1 is given by

$$P_1 = \mathbb{E} \left[(1 + \alpha_L)X_0^L + \delta_L \mu + (1 + \alpha_F)X_0^F + \beta_F P_1 + \delta_F \mu \mid \Psi_1 \right]$$

- Hence the price P_1 is on both sides of the equation, since the follower's trading strategy depends on P_1 leading to the denominator in the previous page.
Note the price at time 1 is given by

\[P_1 = \mathbb{E} \left[(1 + \alpha_L)X_0^L + \delta_L \mu + (1 + \alpha_F)X_0^F + \beta_F P_1 + \delta_F \mu \mid \Psi_1 \right] \]

- Hence the price \(P_1 \) is on both sides of the equation, since the follower’s trading strategy depends on \(P_1 \) leading to the denominator in the previous page.

- With positive correlation, a high price in period 1 induces the follower to trade less and vice versa.
Explaining Pricing

Note the price at time 1 is given by

\[P_1 = \mathbb{E} \left[(1 + \alpha_L)X_0^L + \delta_L \mu + (1 + \alpha_F)X_0^F + \beta_F P_1 + \delta_F \mu | \Psi_1 \right] \]

- Hence the price \(P_1 \) is on both sides of the equation, since the follower’s trading strategy depends on \(P_1 \) leading to the denominator in the previous page.
- With positive correlation, a high price in period 1 induces the follower to trade less and vice versa.
- We will see that \(\beta_F \neq 1 \).
Note the price at time 1 is given by

\[P_1 = \mathbb{E} \left[(1 + \alpha_L)X_0^L + \delta_L\mu + (1 + \alpha_F)X_0^F + \beta_F P_1 + \delta_F\mu \mid \Psi_1 \right] \]

- Hence the price \(P_1 \) is on both sides of the equation, since the follower’s trading strategy depends on \(P_1 \) leading to the denominator in the previous page.
- With positive correlation, a high price in period 1 induces the follower to trade less and vice versa.
- We will see that \(\beta_F \neq 1 \).
- The numerator comes from the fact that we are predicting \(X_0^L \) and from this \(X_0^F \).
Analysis: learning and pricing, continued

$T = 1$: Follower “inverts” P_1 to infer order flow Ψ_1 and update about the leader

- Forecast $W^F + W^L$; linear combination of Ψ_1 and X_0^F
Analysis: learning and pricing, continued

$T = 1$: Follower “inverts” P_1 to infer order flow Ψ_1 and update about the leader

- Forecast $W^F + W^L$; linear combination of Ψ_1 and X^F_0

$T = 2$: After observing Ψ_2, the MM updates again about both activists:
Analysis: learning and pricing, continued

$T = 1$: Follower “inverts” P_1 to infer order flow Ψ_1 and update about the leader

- Forecast $W^F + W^L$; linear combination of Ψ_1 and X_0^F

$T = 2$: After observing Ψ_2, the MM updates again about both activists:

$$P_2 = P_1 + \Lambda_2[\Psi_2 - (\alpha_F M_1^F + \beta_F P_1 + \delta_F \mu)],$$

with

$$\Lambda_2 = \frac{\alpha_F \gamma_1^F}{\alpha_F^2 \gamma_1^F + \sigma^2} \times [1 + \alpha_F + \rho_1 / \gamma_1^F]$$

where $M_1^F := \mathbb{E}[X_0^F | \mathcal{F}_1^\Psi]$, $\gamma_1^F := \text{Var}(X_0^F | \mathcal{F}_1^\Psi)$, $\rho_1 := \text{Cov}(X_T^L, X_0^F | \mathcal{F}_1^\Psi)$
Analysis: learning and pricing, continued

$T = 1$: Follower “inverts” P_1 to infer order flow Ψ_1 and update about the leader

- Forecast $W^F + W^L$; linear combination of Ψ_1 and X_0^F

$T = 2$: After observing Ψ_2, the MM updates again about both activists:

$$P_2 = P_1 + \Lambda_2[\Psi_2 - (\alpha_F M_1^F + \beta_F P_1 + \delta_F \mu)], \text{ with }$$

$$\Lambda_2 = \frac{\alpha_F \gamma_1^F}{\alpha_F^2 \gamma_1^F + \sigma^2} \times [1 + \alpha_F + \rho_1/\gamma_1^F]$$

where $M_1^F := \mathbb{E}[X_0^F | \mathcal{F}_1^\Psi], \gamma_1^F := \text{Var}(X_0^F | \mathcal{F}_1^\Psi), \rho_1 := \text{Cov}(X_T^L, X_0^F | \mathcal{F}_1^\Psi)$

Wedge admits analog interpretation. Leader doesn’t need to update using P_2
Trading: first-order conditions

The activists’ FOCs are

\[F : \quad 0 = -\mathbb{E}_F[P_1 + \Lambda_2\{\Phi_2 - \mathbb{E}[\Phi_2|\mathcal{F}_1]\}|\theta] - \theta\Lambda_2 + \mathbb{E}_F[X^E_T + X^L_T|\theta] \]

\[L : \quad 0 = -\mathbb{E}_L[P_0 + \Lambda_1\{\Phi_1 - \mathbb{E}[\Phi_1]\}|\theta] - \theta\Lambda_1 + \mathbb{E}_L[X^E_T + X^L_T|\theta] \]

\[+ X^L_T \frac{\partial\mathbb{E}_L[X^E_T|\theta]}{\partial \theta} \]
The activists’ FOCs are

\[
F : \quad 0 = -\mathbb{E}_F[P_1 + \Lambda_2 \{ \Psi_2 - \mathbb{E}[\Psi_2 | F_1] \}]|\theta| - \theta \Lambda_2 + \mathbb{E}_F[X_T^F + X_T^L]|\theta|
\]

\[
L : \quad 0 = -\mathbb{E}_L[P_0 + \Lambda_1 \{ \Psi_1 - \mathbb{E}[\Psi_1] \}]|\theta| - \theta \Lambda_1 + \mathbb{E}_L[X_T^F + X_T^L]|\theta|
\]

\[
+ X_T^L \frac{\partial \mathbb{E}_L[X_T^F]|\theta]}{\partial \theta}
\]

- Cost of last unit (expected price)
The activists’ FOCs are

\[F : \quad 0 = -\mathbb{E}_F[P_1 + \Lambda_2 \{ \Psi_2 - \mathbb{E}[\Psi_2|\mathcal{F}_1]\}|\theta] - \theta \Lambda_2 + \mathbb{E}_F[X_F^T + X_L^T|\theta] \]

\[L : \quad 0 = -\mathbb{E}_L[P_0 + \Lambda_1 \{ \Psi_1 - \mathbb{E}[\Psi_1]\}|\theta] - \theta \Lambda_1 + \mathbb{E}_L[X_F^T + X_L^T|\theta] \]

\[+ X_L^T \frac{\partial \mathbb{E}_L[X_F^T|\theta]}{\partial \theta} \]

- Cost of last unit (expected price)
- **Price impact** on all inframarginal units
Trading: first-order conditions

The activists’ FOCs are

\[F : \quad 0 = -\mathbb{E}_F[P_1 + \Lambda_2 \{ \Psi_2 - \mathbb{E}[\Psi_2 | \mathcal{F}_1]\}] | \theta \]
\[- \theta \Lambda_2 + \mathbb{E}_F[X^F_T + X^L_T | \theta] \]

\[L : \quad 0 = -\mathbb{E}_L[P_0 + \Lambda_1 \{ \Psi_1 - \mathbb{E}[\Psi_1]\}] | \theta \]
\[- \theta \Lambda_1 + \mathbb{E}_L[X^E_T + X^L_T | \theta] \]

\[+ X^L_T \frac{\partial \mathbb{E}_L[X^E_T | \theta]}{\partial \theta} \]

- Cost of last unit (expected price)
- Price impact on all inframarginal units
- Expected value of marginally higher block (effort is at an optimum)
The activists’ FOCs are

\[
F : \quad 0 = -E_F[P_1 + \Lambda_2 \{ \Psi_2 - E[\Psi_2 | F_1^\psi] \}]|\theta] - \theta \Lambda_2 + E_F[X_F^T + X_L^T | \theta] \\
L : \quad 0 = -E_L[P_0 + \Lambda_1 \{ \Psi_1 - E[\Psi_1] \}]|\theta] - \theta \Lambda_1 + E_L[X_F^T + X_L^T | \theta] \\
+ X_L^T \frac{\partial E_L[X_F^T | \theta]}{\partial \theta}
\]

- Cost of last unit (expected price)
- Price *impact* on all inframarginal units
- Expected value of marginally higher block (effort is at an optimum)
- Leader’s *value of manipulation*
 - discrepancy wrt Kyle stems from endogeneity + non-trivial cont. value
Second-order conditions:

\[1 - 2\Lambda_2 < 0 \quad \text{for follower} \]
\[1 - 2\Lambda_1 (1 - \beta_F) < 0 \quad \text{for leader} \]
Trading: second-order conditions

Second-order conditions:

\[
\begin{align*}
1 - 2\Lambda_2 &< 0 \quad \text{for follower} \\
1 - 2\Lambda_1(1 - \beta_F) &< 0 \quad \text{for leader}
\end{align*}
\]

- 1: endogenous fundamentals (extra convexity)
Second-order conditions:

\[1 - 2\Lambda_2 < 0 \quad \text{for follower} \]
\[1 - 2\Lambda_1(1 - \beta_F) < 0 \quad \text{for leader} \]

- \(\Lambda_1 \): endogenous fundamentals (extra convexity)
- \(\Lambda_1(1 - \beta_F) \): leader’s effective price impact due to manipulation
Second-order conditions:

\[1 - 2\Lambda_2 < 0 \quad \text{for follower} \]
\[1 - 2\Lambda_1 (1 - \beta_F) < 0 \quad \text{for leader} \]

- 1: endogenous fundamentals (extra convexity)
- \(\Lambda_1 (1 - \beta_F) \): leader’s effective price impact due to manipulation
- find candidate equilibrium and check \(\beta_F \neq 1 \) ex post
Follower's equilibrium trading

Recall that $\theta^F = \alpha_F X_0^F + \beta_F P_1 + \delta_F \mu$ and $M_1^F := \mathbb{E}[X_0^F | \mathcal{F}_1^\psi]$, $\gamma_1^F := \text{Var}(X_0^F | \mathcal{F}_1^\psi)$.
Recall that \(\theta^F = \alpha^F X_0^F + \beta^F P_1 + \delta^F \mu \) and \(M_1^F := \mathbb{E}[X_0^F | \mathcal{F}^\psi_1], \gamma_1^F := \text{Var}(X_0^F | \mathcal{F}^\psi_1) \)

Proposition

In any PBS equilibrium:

1. \(\alpha^F = \sqrt{\frac{\sigma^2}{\gamma_1^F}} \),
2. \(\beta^F < 1 \) with \(\text{sign}(\beta^F) = -\text{sign}(\rho) \) and
3. \(\delta^F < 0 \).

Further, \(\theta^F \) admits the “gap” representation \(\theta^F = \alpha^F (X_0^F - M_1^F) \).
Follower's equilibrium trading

Recall that \(\theta^F = \alpha_F X_0^F + \beta_F P_1 + \delta_F \mu \) and \(M_1^F := \mathbb{E}[X_0^F | \mathcal{F}_1^\psi], \gamma_1^F := \text{Var}(X_0^F | \mathcal{F}_1^\psi) \)

Proposition

In any PBS equilibrium:

(i) \(\alpha_F = \sqrt{\frac{\sigma^2}{\gamma_1^F}} \),
(ii) \(\beta_F < 1 \) with \(\text{sign}(\beta_F) = -\text{sign}(\rho) \) and
(iii) \(\delta_F < 0 \).

Further, \(\theta^F \) admits the “gap” representation \(\theta^F = \alpha^F (X_0^F - M_1^F) \).

- high \(P_1 \) indicative of high \(X_0^L \) → high \(M_1^F \) if \(\rho > 0 \) → \(F \) trades less → \(\beta_F < 0 \)
- ... → low \(M_1^F \) if \(\rho < 0 \) → \(F \) trades more → \(\beta_F > 0 \)
1) Why a gap on initial information?
Interpretation of $\theta^F = \sqrt{\frac{\sigma^2_F}{\gamma_1}} (\theta - M^F_1)$

1) Why a gap on initial information? Traditionally

$$\text{trade} \propto \text{mispricing} = \text{[private belief about firm value]} - \text{[public belief]}$$
Interpretation of $\theta^F = \sqrt{\frac{\sigma^2}{\gamma_1}} (\theta - M_1^F)$

1) Why a gap on initial information? Traditionally

\[\text{trade} \propto \text{mispricing} = [\text{private belief about firm value}] - [\text{public belief}] \]

- Linear strategies + Gaussian learning: $\mathbb{E}_F[W^i] - \mathbb{E}[W^i | F_1^\Psi] \propto X_0^F - M_1^F$
Interpretation of $\theta^F = \sqrt{\frac{\sigma^2}{\gamma_1^F}} (\theta - M_1^F)$

1) Why a gap on initial information? Traditionally

\[\text{trade} \propto \text{mispicing} = [\text{private belief about firm value}] - [\text{public belief}] \]

- Linear strategies + Gaussian learning: $\mathbb{E}_F[W^i] - \mathbb{E}[W^i | \mathcal{F}^\Psi_1] \propto X_0^F - M_1^F$

2) Why Kyle's weight? Recall Λ_2 is scaled up by $1 + \alpha_F + \rho_1/\gamma_1^F$...

- Follower's expectation of firm value is also scaled by the same factor...
- Price impact wedge reflects a change in marginal incentives of the same size
Corollary: i.i.d. case

If $\rho = 0$, MM learns nothing about the follower from Ψ_1: $M_1^F = \mu$ and $\gamma_1^F = \phi$.
Corollary: i.i.d. case

If $\rho = 0$, MM learns nothing about the follower from Ψ_1: $M_1^F = \mu$ and $\gamma_1^F = \phi$

- $\theta^F = \sqrt{\frac{\sigma^2}{\phi}} (X_0^F - \mu)$
If $\rho = 0$, MM learns nothing about the follower from Ψ_1: $M^F_1 = \mu$ and $\gamma^F_1 = \phi$

- $\theta^F = \sqrt{\frac{\sigma^2}{\phi}} (X^F_0 - \mu)$

- F's trade is independent of the history of the game...
If $\rho = 0$, MM learns nothing about the follower from Ψ_1: $M_1^F = \mu$ and $\gamma_1^F = \phi$

- $\theta^F = \sqrt{\frac{\sigma^2}{\phi}} (X^F_0 - \mu)$

- F's trade is independent of the history of the game...

- So the leader’s problem is identical: $\theta_L = \sqrt{\frac{\sigma^2}{\phi}} (X^L_0 - \mu)$
Corollary: i.i.d. case

If $\rho = 0$, MM learns nothing about the follower from Ψ_1: $M_1^F = \mu$ and $\gamma_1^F = \phi$

- $\theta^F = \sqrt{\frac{\sigma^2}{\phi}}(X_0^F - \mu)$

- F's trade is independent of the history of the game...

- So the leader's problem is identical: $\theta_L = \sqrt{\frac{\sigma^2}{\phi}}(X_0^L - \mu)$

This equilibrium is unique within the linear class
Corollary: i.i.d. case

If $\rho = 0$, MM learns nothing about the follower from Ψ_1: $M_1^F = \mu$ and $\gamma_1^F = \phi$

- $\theta^F = \sqrt{\frac{\sigma^2}{\phi}} (X_0^F - \mu)$
- F''s trade is independent of the history of the game...
- So the leader's problem is identical: $\theta_L = \sqrt{\frac{\sigma^2}{\phi}} (X_0^L - \mu)$

This equilibrium is unique within the linear class

\therefore with Stackelberg structure, need non-trivial ρ to get dynamics...
Proposition

Fix $\sigma, \phi > 0$. There exists $\rho \in (-\phi, 0)$ s.t. for all $\rho \in [\rho, \phi]$, there is a unique PBS equilibrium. There, $\theta^L = \alpha^L X^L_0 + \delta^L \mu$, where $\alpha^L > 0$ and $\delta^L < 0$ and

- if $\rho > 0$, then $\alpha^L < \alpha^K$ and $\delta^L < -\alpha^K$
- if $\rho < 0$, then $\alpha^L > \alpha^K$ and $\delta^L > -\alpha^K$

Further, both α^L and δ^L are decreasing in ρ.
Proposition

Fix $\sigma, \phi > 0$. There exists $\underline{\rho} \in (-\phi, 0)$ s.t. for all $\rho \in [\underline{\rho}, \phi]$, there is a unique PBS equilibrium. There, $\theta^L = \alpha_L X_0^L + \delta_L \mu$, where $\alpha_L > 0$ and $\delta_L < 0$ and

- if $\rho > 0$, then $\alpha_L < \alpha_K$ and $\delta_L < -\alpha_K$
- if $\rho < 0$, then $\alpha_L > \alpha_K$ and $\delta_L > -\alpha_K$

Further, both α_L and δ_L are decreasing in ρ.

$$\alpha_L \neq |\delta_L|$$

is a generic property
PBS equilibrium: general case

\[\begin{align*}
\alpha_L & \quad \delta_L & \quad \pm \alpha^K
\end{align*} \]
Recall the leader’s value of manipulation:

\[X_L^T \frac{\partial \mathbb{E}_L[X^F_T|\theta^L]}{\partial \theta^L} = X_T^L \beta_F \frac{\partial \mathbb{E}_L[P_1]}{\partial \psi_1} = X_T^L \beta_F \Lambda_1 \]
Recall the leader’s value of manipulation:

\[X^L_T \frac{\partial \mathbb{E}_L[X^E_T | \theta^L]}{\partial \theta^L} = X^L_T \beta_F \frac{\partial \mathbb{E}_L[P_1]}{\partial \psi_1} = X^L_T \beta_F \Lambda_1 \]

Consider \(\rho > 0 \):
\(\alpha_L \neq \alpha_K \) and the Value of Manipulation

Recall the leader’s value of manipulation:

\[
X_T^L \frac{\partial \mathbb{E}_L[X_T^F|\theta^L]}{\partial \theta^L} = X_T^L \beta_F \frac{\partial \mathbb{E}_L[P_1]}{\partial \psi_1} = X_T^L \beta_F \Lambda_1
\]

Consider \(\rho > 0 \):

- \(\beta_F < 0 \): all leader types deviate downward relative to Kyle
 - Drive \(P_1 \) (or \(M_1^F \)) downwards \(\rightarrow F \) acquires a larger position
 - \(F \)'s arbitrage opportunity: \(X_0^F - M_1^F \)

\(\alpha_L > 0 \): higher types end up with higher terminal blocks

\(\alpha_L < \alpha_K \): high types scale back more on absolute terms
Recall the leader’s value of manipulation:

\[X_T^L \frac{\partial \mathbb{E}_L[X_T^F | \theta^L]}{\partial \theta^L} = X_T^L \beta_F \frac{\partial \mathbb{E}_L[P_1]}{\partial \Psi_1} = X_T^L \beta_F \Lambda_1 \]

Consider \(\rho > 0 \):

- \(\beta_F < 0 \): all leader types **deviate downward** relative to Kyle
 - Drive \(P_1 \) (or \(M_1^F \)) downwards \(\rightarrow F \) acquires a larger position
 - \(F \)'s arbitrage opportunity: \(X_0^F - M_1^F \)
- Higher types benefit more: they own more shares
Recall the leader’s value of manipulation:

\[X_L^T \frac{\partial \mathbb{E}_L[X_T^F|\theta^L]}{\partial \theta^L} = X_L^T \beta_F \frac{\partial \mathbb{E}_L[P_1]}{\partial \Psi_1} = X_L^T \beta_F \Lambda_1 \]

Consider \(\rho > 0 \):

- \(\beta_F < 0 \): all leader types deviate downward relative to Kyle
 - Drive \(P_1 \) (or \(M_1^F \)) downwards \(\rightarrow F \) acquires a larger position
 - \(F \)'s arbitrage opportunity: \(X_0^F - M_1^F \)
- Higher types benefit more: they own more shares
 - \(\alpha_L > 0 \): higher types end up with higher terminal blocks
 - \(\alpha_L < \alpha^K \): high types scale back more on absolute terms
\(\delta_L \neq \delta_K \) and Price Impact \(\Lambda_1 \)

\[
\delta_L = \frac{1}{(1 - \beta_F)\Lambda_1} \times \left. \frac{\partial}{\partial \mu} \left(\mathbb{E}_L[W_L + W_F] - P_1 \right) \right|_{\text{sensitivity of arbitrage wrt } \mu}
\]
\(\delta L \neq \delta K \) and Price Impact \(\Lambda_1 \)

\[
\delta_L = \frac{1}{(1 - \beta_F) \Lambda_1} \times \frac{\partial}{\partial \mu} \left(\mathbb{E}_L [W_L + W_F] - P_1 \right)
\]

sensitivity of arbitrage wrt \(\mu \)

1) \(\delta_L < 0 \): all types scale back as \(\mu \) grows; trivial when \(\nu \) exogenous
\(\delta_L \neq \delta_K \) and Price Impact \(\Lambda_1 \)

\[
\delta_L = \frac{1}{(1 - \beta_F)\Lambda_1} \times \left(\frac{\partial}{\partial \mu} (E[L[W_L + W_F] - P_1]) \right)
\]

sensitivity of arbitrage wrt \(\mu \)

1) \(\delta_L < 0 \): all types scale back as \(\mu \) grows; trivial when \(\nu \) exogenous

- Here: leader is less sensitive than MM to an increase in \(\mu \)
$\delta_L \neq \delta_K$ and Price Impact Λ_1

$$\delta_L = \frac{1}{(1 - \beta_F)\Lambda_1} \times \frac{\partial}{\partial \mu} \left(\mathbb{E}_L[W_L + W_F] - P_1 \right)$$

sensitivity of arbitrage wrt μ

1) $\delta_L < 0$: all types scale back as μ grows; trivial when ν exogenous

- Here: leader is less sensitive than MM to an increase in μ

- she uses both μ and private information to forecast firm’s value
$\delta_L \neq \delta_K$ and Price Impact Λ_1

\[
\delta_L = \frac{1}{(1 - \beta_F)\Lambda_1} \times \frac{\partial}{\partial \mu} \left(\mathbb{E}_L [W_L + W_F] - P_1 \right)
\]

sensitivity of arbitrage wrt μ

1) $\delta_L < 0$: all types scale back as μ grows; trivial when v exogenous

- Here: leader is less sensitive than MM to an increase in μ
- she uses both μ and private information to forecast firm’s value

2) $\delta_L < -\alpha_K$: Fixing $\rho > 0$, lower signaling (α) \Rightarrow lower $\Lambda_1 \Rightarrow$ less costly to scale back
\(\delta_L \neq \delta_K \) and Price Impact \(\Lambda_1 \)

\[
\delta_L = \frac{1}{(1 - \beta_F)\Lambda_1} \times \frac{\partial}{\partial \mu} \left(\mathcal{E}_L[W_L + W_F] - P_1 \right)
\]

sensitivity of arbitrage wrt \(\mu \)

1) \(\delta_L < 0 \): all types scale back as \(\mu \) grows; trivial when \(\nu \) exogenous

- Here: leader is less sensitive than MM to an increase in \(\mu \)
- she uses both \(\mu \) and private information to forecast firm’s value

2) \(\delta_L < -\alpha_K \): Fixing \(\rho > 0 \), lower signaling (\(\alpha \)) \(\Rightarrow \) lower \(\Lambda_1 \) \(\Rightarrow \) less costly to scale back

all types scale back along both types of info \(\Rightarrow \) symmetry breaks

\(\rho < 0 \): trade more aggressively
predictions
Proposition

In the unique PBS equilibrium,

1. **Order flow:** \(\mathbb{E}[\Psi_1] = \mathbb{E}[\theta^L] < 0 \) *iff* \(\rho > 0 \), while \(\mathbb{E}[\Psi_2] = 0 \)
Proposition

In the unique PBS equilibrium,

1. **Order flow**: \(E[\psi_1] = E[\theta^L] < 0 \) iff \(\rho > 0 \), while \(E[\psi_2] = 0 \)
 - Selling (buying) pressure when \(\rho > 0 \) (\(\rho < 0 \))
Proposition

In the unique PBS equilibrium,

1. **Order flow**: $\mathbb{E}[\Psi_1] = \mathbb{E}[\theta^L] < 0$ iff $\rho > 0$, while $\mathbb{E}[\Psi_2] = 0$
 - Selling (buying) pressure when $\rho > 0$ ($\rho < 0$)

2. **Price impact**: $\partial \Lambda_1 / \partial \rho > 0$ in a neighborhood of $\rho = 0$
Proposition

In the unique PBS equilibrium,

1. **Order flow**: $E[\Psi_1] = E[\theta^L] < 0$ iff $\rho > 0$, while $E[\Psi_2] = 0$
 - Selling (buying) pressure when $\rho > 0$ ($\rho < 0$)

2. **Price impact**: $\partial \Lambda_1 / \partial \rho > 0$ in a neighborhood of $\rho = 0$
 - Signaling is disciplined by price impact and vice-versa
Proposition

In the unique PBS equilibrium,

1. **Order flow:** $\mathbb{E}[\psi_1] = \mathbb{E}[\theta^L] < 0$ iff $\rho > 0$, while $\mathbb{E}[\psi_2] = 0$
 - Selling (buying) pressure when $\rho > 0$ ($\rho < 0$)

2. **Price impact:** $\partial \Lambda_1 / \partial \rho > 0$ in a neighborhood of $\rho = 0$
 - Signaling is disciplined by price impact and vice-versa

3. **Firm value:** $\mathbb{E}[W^L + W^F] = (2 + \alpha_L + \delta_L) \mu < 2\mu$ iff $\rho > 0$; but always $> \mu$.

Prediction on average prices: "abnormally" low iff $\rho > 0$.
Proposition

In the unique PBS equilibrium,

1. **Order flow**: \(\mathbb{E}[\Psi_1] = \mathbb{E}[\theta^L] < 0 \) iff \(\rho > 0 \), while \(\mathbb{E}[\Psi_2] = 0 \)
 - Selling (buying) pressure when \(\rho > 0 \) (\(\rho < 0 \))

2. **Price impact**: \(\partial \Lambda_1 / \partial \rho > 0 \) in a neighborhood of \(\rho = 0 \)
 - Signaling is disciplined by price impact and vice-versa

3. **Firm value**: \(\mathbb{E}[W^L + W^F] = (2 + \alpha_L + \delta_L)\mu < 2\mu \) iff \(\rho > 0 \); but always \(> \mu \).
 - If \(\rho > 0 \) (\(\rho < 0 \)), value is lower (higher) relative to no activism/trading world
Proposition

In the unique PBS equilibrium,

1. **Order flow**: \(\mathbb{E}[\Psi_1] = \mathbb{E}[\theta^L] < 0 \) iff \(\rho > 0 \), while \(\mathbb{E}[\Psi_2] = 0 \)
 - Selling (buying) pressure when \(\rho > 0 \) (\(\rho < 0 \))

2. **Price impact**: \(\partial \Lambda_1 / \partial \rho > 0 \) in a neighborhood of \(\rho = 0 \)
 - signaling is disciplined by price impact and vice-versa

3. **Firm value**: \(\mathbb{E}[W^L + W^F] = (2 + \alpha_L + \delta_L) \mu < 2 \mu \) iff \(\rho > 0 \); but always \(> \mu \).
 - if \(\rho > 0 \) (\(\rho < 0 \)), value is lower (higher) relative to no activism/trading world
 - leader brings additional value relative to lone activist (Becht et al., 2017)

Predictions: market outcomes
Proposition

In the unique PBS equilibrium,

1. **Order flow**: \(\mathbb{E}[\Psi_1] = \mathbb{E}[\theta^L] < 0 \) iff \(\rho > 0 \), while \(\mathbb{E}[\Psi_2] = 0 \)
 - Selling (buying) pressure when \(\rho > 0 \) (\(\rho < 0 \))

2. **Price impact**: \(\partial \Lambda_1 / \partial \rho > 0 \) in a neighborhood of \(\rho = 0 \)
 - signaling is disciplined by price impact and vice-versa

3. **Firm value**: \(\mathbb{E}[W^L + W^F] = (2 + \alpha_L + \delta_L)\mu < 2\mu \) iff \(\rho > 0 \); but always > \(\mu \).
 - if \(\rho > 0 \) (\(\rho < 0 \)), value is lower (higher) relative to no activism/trading world
 - leader brings additional value relative to lone activist (Becht et al., 2017)
 - Prediction on average prices: “abnormally” low iff \(\rho > 0 \)
Incentive to become a leader? Examine L and F in one simultaneous trading round.
Incentive to become a leader? Examine L and F in one simultaneous trading round.

Proposition

Suppose ρ not too negative. There exists a unique symmetric PBS equilibrium

$$\theta^i = \sqrt{\frac{\sigma^2}{2\phi}}(X^i_0 - \mu).$$

If ρ is near 0, the leader gets a higher expected payoff if she moves first.
Incentive to become a leader? Examine L and F in one simultaneous trading round.

Proposition

Suppose ρ not too negative. There exists a unique symmetric PBS equilibrium

$$\theta^i = \sqrt{\frac{\sigma^2}{2\phi}} (X_0^i - \mu).$$

If ρ is near 0, the leader gets a higher expected payoff if she moves first.

- Competition effect: $2\sqrt{\frac{\sigma^2}{2\phi}} > \sqrt{\frac{\sigma^2}{\phi}}$
Predictions: first-mover advantages

L’s ex ante payoffs as ρ varies:
Predictions: first-mover advantages

L’s ex ante payoffs as ρ varies:

$\rho > 0$: moving first dominates; skip competition \& manipulation cost effective
Predictions: first-mover advantages

L’s ex ante payoffs as ρ varies:

$\rho > 0$: moving first dominates; skip competition \land manipulation cost effective

$\rho \ll 0$: simultaneous dominates: follower effectively a “supplier”
Predictions: first-mover advantages

L’s ex ante payoffs as ρ varies:

$\rho > 0$: moving first dominates; skip competition \land manipulation cost effective

$\rho \ll 0$: simultaneous dominates: follower effectively a “supplier”

Similarity: our mechanism is plausible if ρ is not too negative
Predictions: number of followers

\(N \) “normalized” followers: \(\mu/N, \phi/N^2 \) and \(\operatorname{Cov}[X_0^F, X_0^L] = \rho/N \rightarrow \) fixed uncertainty
Predictions: number of followers

N “normalized” followers: μ/N, ϕ/N^2 and $\text{Cov}[X_0^F, X_0^L] = \rho/N \rightarrow$ fixed uncertainty

\vdash isolate strategic effects (direct: less manipulation due to followers shrinking)
Predictions: number of followers

N “normalized” followers: μ/N, ϕ/N^2 and $\text{Cov}[X_0^F, X_0^L] = \rho/N \rightarrow$ fixed uncertainty

\therefore isolate **strategic effects** (direct: less manipulation due to followers shrinking)

Proposition

Fix any $\rho \in (0, \phi]$. In the unique (symmetric) PBS equilibrium

$$\theta^F = \alpha_F (X_0^F - M_{1}^F), \quad \text{where} \quad \alpha_F = \sqrt{\frac{\sigma^2}{N \gamma_1^F}}$$

Also: (i) α_F is increasing in N; (ii) α_L and the firm’s ex ante value are decreasing in N; and (iii) the leader’s ex ante payoff $\uparrow \sim \sqrt{N}$ asymptotically.
Predictions: number of followers

\(N \) “normalized” followers: \(\mu/N, \phi/N^2 \) and \(\text{Cov}[X_0^F, X_0^L] = \rho/N \) → fixed uncertainty

∴ isolate strategic effects (direct: less manipulation due to followers shrinking)

Proposition

Fix any \(\rho \in (0, \phi] \). In the unique (symmetric) PBS equilibrium

\[
\theta^F = \alpha_F (X_0^F - M_1^F), \quad \text{where} \quad \alpha_F = \sqrt{\frac{\sigma^2}{N\gamma_1^F}}
\]

Also: (i) \(\alpha_F \) is increasing in \(N \); (ii) \(\alpha_L \) and the firm’s ex ante value are decreasing in \(N \); and (iii) the leader’s ex ante payoff \(\uparrow \sim \sqrt{N} \) asymptotically.

smaller fraction of the total \(\rightarrow \) followers are more aggressive \(\rightarrow \) higher value of manipulation \(\rightarrow \) higher payoffs
Complementarities: $\rho > 0$ and N

L’s expected payoff $(N; \rho)$:

![Graph showing the expected payoff for different values of ρ.]
Complementarities: $\rho > 0$ and N

L’s expected payoff $(N; \rho)$:

mechanism is more likely when activists:
Complementarities: $\rho > 0$ and N

L’s expected payoff $(N; \rho)$:

![Graph showing the expected payoff for different values of ρ.]

mechanism is more likely when activists:

respond to arbitrage opportunities,
Complementarities: $\rho > 0$ and N

L’s expected payoff $(N; \rho)$:

mechanism is more likely when activists:
respond to arbitrage opportunities, have similar stakes
Complementarities: $\rho > 0$ and N

L’s expected payoff $(N; \rho)$:

mechanism is more likely when activists:
respond to arbitrage opportunities, have similar stakes of small/moderate size
Complementarities: $\rho > 0$ and N

L’s expected payoff $(N; \rho)$:

mechanism is more likely when activists:

respond to arbitrage opportunities, have similar stakes of small/moderate size
if a positive statistical link, when there are more followers acting non-cooperatively
Hedge fund activism and wolf packs
Important area of research in finance and law
Wolf Packs

Important area of research in finance and law

“The term “wolf pack” [...] will mean a loose network of activist investors that act in a parallel fashion, but deliberately avoid forming a group

(Coffee and Palia, 2016, pp.561-562)
Wolf Packs

Important area of research in finance and law

“The term “wolf pack” [...] will mean a loose network of activist investors that act in a parallel fashion, but deliberately avoid forming a group

(Coffee and Palia, 2016, pp.561-562)

“[...] institutional investors such as activist hedge funds engage via so-called “wolf packs” in which multiple funds with small to moderate stakes (who do not act as a formal group) each engage in costly efforts to change firm policies”

(Brav et al, 2021, p.1)
arbitrage opportunities: highly sensitive to mispricing
arbitrage opportunities: highly sensitive to mispricing

non-cooperative behavior: substantial costs when acting as a formal group
 • must disclose stake exceeding 5% within 10 days
arbitrage opportunities: highly sensitive to mispricing

non-cooperative behavior: substantial costs when acting as a formal group

- must disclose stake exceeding 5% within 10 days
- group = single entity
arbitrage opportunities: highly sensitive to mispricing

non-cooperative behavior: substantial costs when acting as a formal group

- must disclose stake exceeding 5% within 10 days
- group = single entity → earlier disclosure
Hedge Fund Activism: Institutional Details

arbitrage opportunities: highly sensitive to mispricing

non-cooperative behavior: substantial costs when acting as a formal group

- must disclose stake exceeding 5% within 10 days
- group = single entity → earlier disclosure → competition
Hedge Fund Activism: Institutional Details

arbitrage opportunities: highly sensitive to mispricing

non-cooperative behavior: substantial costs when acting as a formal group

- must disclose stake exceeding 5% within 10 days
- group = single entity → earlier disclosure → competition
- nec. smaller stakes, and potential reaction by target (block acquisitions, litigation,...n/a if anonymous)

similarity: business model & median stakes 6.3%-6.6% (Bebchuk et al. 2013, Brav et al, 2022)

awareness: informed of the presence of others and of potential targets

SEC regulation circa 1992 permits limited communication

2000-2010: +400 engagements involving multiple hedge funds (Becht et al 2017)
Hedge Fund Activism: Institutional Details

arbitrage opportunities: highly sensitive to mispricing

non-cooperative behavior: substantial costs when acting as a formal group

- must disclose stake exceeding 5% within 10 days
- group = single entity → earlier disclosure → competition
- nec. smaller stakes, and potential reaction by target (block acquisitions, litigation,...n/a if anonymous)

similarity: business model & median stakes 6.3%-6.6% (Bebchuk et al. 2013, Brav et al, 2022)
arbitrage opportunities: highly sensitive to mispricing

non-cooperative behavior: substantial costs when acting as a formal group

- must disclose stake exceeding 5% within 10 days
- group = single entity → earlier disclosure → competition
- nec. smaller stakes, and potential reaction by target (block acquisitions, litigation,...n/a if anonymous)

similarity: business model & median stakes 6.3%-6.6% (Bebchuk et al. 2013, Brav et al, 2022)

awareness: informed of the presence of others and of potential targets
arbitrage opportunities: highly sensitive to mispricing

non-cooperative behavior: substantial costs when acting as a formal group
- must disclose stake exceeding 5% within 10 days
- group = single entity \rightarrow earlier disclosure \rightarrow competition
- nec. smaller stakes, and potential reaction by target (block acquisitions, litigation,...n/a if anonymous)

similarity: business model & median stakes 6.3%-6.6% (Bebchuk et al. 2013, Brav et al, 2022)

awareness: informed of the presence of others and of potential targets
- SEC regulation circa 1992 permits **limited communication**
- 2000-2010: +400 engagements involving multiple hedge funds (Becht et al 2017)
Multiplayer engagements: 1) filings and/or 2) *abnormality* (vol, returns) within disclosure window

Not all the abnormality is attributed to the disclosing HF (Wong, 2022)

Sequentiality: incentives argument

⇒ important costs above 10% ⇒ <50% of the terminal position acquired in the 10-day window

HFs prefer less competition → complete position fast

Bebchuk et al (2013): completion on day that 5% is crossed, or +1; Collin-Dufresne and Fos (2015): leader purchases ∼1% largely on crossing date
Multiplayer engagements: 1) filings and/or 2) abnormality (vol, returns) within disclosure window

- Not all the abnormality is attributed to the disclosing HF (Wong, 2022)
Multiplayer-engagements: 1) filings and/or 2) abnormality (vol, returns) within disclosure window

- Not all the abnormality is attributed to the disclosing HF (Wong, 2022)

Sequentiality: incentives argument
Multiplayer-engagements: 1) filings and/or 2) *abnormality* (vol, returns) within disclosure window

- Not all the abnormality is attributed to the disclosing HF (Wong, 2022)

Sequentiality: incentives argument

- important costs above 10% \Rightarrow < 50% of the terminal position acquired in the 10-day window

35
Multiplayer engagements: 1) filings and/or 2) *abnormality* (vol, returns) within disclosure window

- Not all the abnormality is attributed to the disclosing HF (Wong, 2022)

Sequentiality: incentives argument

- important costs above 10% $\implies < 50\%$ of the terminal position acquired in the 10-day window
- HFs prefer less competition \implies complete position fast
Multiplier-engagements: 1) filings and/or 2) abnormality (vol, returns) within disclosure window

- Not all the abnormality is attributed to the disclosing HF (Wong, 2022)

Sequentiality: incentives argument

- important costs above 10% \Rightarrow $< 50\%$ of the terminal position acquired in the 10-day window
- HFs prefer less competition \rightarrow complete position fast

- Bebchuk et al (2013): completion on day that 5% is crossed, or +1;
 Collin-Dufresne and Fos (2015): leader purchases $\sim 1\%$ largely on crossing date
Empirical Evidence: Abnormal Returns & Market Capitalization

Figure 1: Source: Brav et al. (2022)

Model: prices lower than in “normal” (i.e., no-activism) times when $\rho > 0$
Empirical Evidence: Abnormal Returns & “Short” Activists

Figure 2: Source: Li et al. (2022)

Model: prices higher than in “normal” (i.e., no-activism) times when $\rho < 0$
other linear equilibria
Trading against initial position/private information

Remaining case: $\alpha_L < 0$ and/or $\alpha_F < 0$.

ˆ More of a “coordination” flavor

ˆ Negative firm values matter; but not implausible: a negative position can be profitable if it lowers firm value (e.g., Goldstein and Guembel, 2008)

Proposition (i) $\rho > 0$: for $\sigma > 0$ “large”, there exists a linear eqbm with $\alpha_L < 0$ and $\alpha_F < 0$

ˆ “large” $\sigma \to$ manipulation is difficult \to coordination emerges

(ii) $\rho = -\phi$: no linear eqbm. with sign (α_L) = sign (α_F). A linear eqbm. with $\alpha_L < 0 < \alpha_F$ exists for all $\sigma > 0$.

ˆ want to meet on the same side
Remaining case: $\alpha_L < 0$ and/or $\alpha_F < 0$. More of a “coordination” flavor.
Trading against initial position/private information

Remaining case: $\alpha_L < 0$ and/or $\alpha_F < 0$. More of a “coordination” flavor

- If we are both “long,” and I expect you to go short... self-fulfilling
Trading against initial position/private information

Remaining case: $\alpha_L < 0$ and/or $\alpha_F < 0$. More of a “coordination” flavor

- If we are both “long,” and I expect you to go short... self-fulfilling

- Negative firm values matter;
Trading against initial position/private information

Remaining case: $\alpha_L < 0$ and/or $\alpha_F < 0$. More of a “coordination” flavor

- If we are both “long,” and I expect you to go short... self-fulfilling
- *Negative firm values* matter; but not implausible: a negative position can be profitable if it lowers firm value (e.g., Goldstein and Guembel, 2008)
Trading against initial position/private information

Remaining case: $\alpha_L < 0$ and/or $\alpha_F < 0$. More of a “coordination” flavor

- If we are both “long,” and I expect you to go short... self-fulfilling
- *Negative firm values* matter; but not implausible: a negative position can be profitable if it lowers firm value (e.g., Goldstein and Guembel, 2008)

Proposition

(i) $\rho > 0$: for $\sigma > 0$ “large”, there exists a linear eqbm with $\alpha_L < 0$ and $\alpha_F < 0$
Trading against initial position/private information

Remaining case: $\alpha_L < 0$ and/or $\alpha_F < 0$. More of a “coordination” flavor

- If we are both “long,” and I expect you to go short... self-fulfilling

- Negative firm values matter; but not implausible: a negative position can be profitable if it lowers firm value (e.g., Goldstein and Guembel, 2008)

Proposition

(i) $\rho > 0$: for $\sigma > 0$ “large”, there exists a linear eqbm with $\alpha_L < 0$ and $\alpha_F < 0$

- “large” $\sigma \rightarrow$ manipulation is difficult \rightarrow coordination emerges
Trading against initial position/private information

Remaining case: $\alpha_L < 0$ and/or $\alpha_F < 0$. More of a “coordination” flavor

- If we are both “long,” and I expect you to go short... self-fulfilling
- Negative firm values matter; but not implausible: a negative position can be profitable if it lowers firm value (e.g., Goldstein and Guembel, 2008)

Proposition

(i) $\rho > 0$: for $\sigma > 0$ “large”, there exists a linear eqbm with $\alpha_L < 0$ and $\alpha_F < 0$
 - “large” $\sigma \rightarrow$ manipulation is difficult \rightarrow coordination emerges

(ii) $\rho = -\phi$: no linear eqbm. with $\text{sign}(\alpha_L) = \text{sign}(\alpha_F)$. A linear eqbm. with $\alpha_L < 0 < \alpha_F$ exists for all $\sigma > 0$.
Trading against initial position/private information

Remaining case: $\alpha_L < 0$ and/or $\alpha_F < 0$. More of a “coordination” flavor

- If we are both “long,” and I expect you to go short... self-fulfilling

- Negative firm values matter; but not implausible: a negative position can be profitable if it lowers firm value (e.g., Goldstein and Guembel, 2008)

Proposition

(i) $\rho > 0$: for $\sigma > 0$ “large”, there exists a linear eqbm with $\alpha_L < 0$ and $\alpha_F < 0$
 - “large” $\sigma \rightarrow$ manipulation is difficult \rightarrow coordination emerges

(ii) $\rho = -\phi$: no linear eqbm. with $\text{sign}(\alpha_L) = \text{sign}(\alpha_F)$. A linear eqbm. with $\alpha_L < 0 < \alpha_F$ exists for all $\sigma > 0$.
 - want to meet on the same side
Existence of PBS and Refinement

PBS lost if ρ too negative.
Existence of PBS and Refinement

PBS lost if ρ too negative. **Manipulation affects limits to arbitrage**
Existence of PBS and Refinement

PBS lost if ρ too negative. **Manipulation affects limits to arbitrage**

- $\rho > 0$: buying is costly for L due to price impact and manipulation
Existence of PBS and Refinement

PBS lost if ρ too negative. Manipulation affects limits to arbitrage

- $\rho > 0$: buying is costly for L due to price impact and manipulation
- $\rho < 0$: L buys more, more effort by $F \rightarrow$ against price impact \rightarrow convexity
Existence of PBS and Refinement

PBS lost if ρ too negative. Manipulation affects limits to arbitrage

- $\rho > 0$: buying is costly for L due to price impact and manipulation
- $\rho < 0$: L buys more, more effort by $F \rightarrow$ against price impact \rightarrow convexity

Dual role of σ.
Existence of PBS and Refinement

PBS lost if ρ too negative. Manipulation affects limits to arbitrage

- $\rho > 0$: buying is costly for L due to price impact and manipulation
- $\rho < 0$: L buys more, more effort by $F \rightarrow$ against price impact \rightarrow convexity

Dual role of σ. As σ falls (price impact grows)
Existence of PBS and Refinement

PBS lost if \(\rho \) too negative. Manipulation affects limits to arbitrage

- \(\rho > 0 \): buying is costly for \(L \) due to price impact and manipulation
- \(\rho < 0 \): \(L \) buys more, more effort by \(F \rightarrow \) against price impact \(\rightarrow \) convexity

Dual role of \(\sigma \). As \(\sigma \) falls (price impact grows)

- manipulation is easier, so coordination less plausible (e.g., \(\rho > 0 \) region)
Existence of PBS and Refinement

PBS lost if ρ too negative. **Manipulation affects limits to arbitrage**

- $\rho > 0$: buying is costly for L due to price impact and manipulation
- $\rho < 0$: L buys more, more effort by $F \rightarrow$ against price impact \rightarrow **convexity**

Dual role of σ. As σ falls (price impact grows)

- manipulation is easier, so coordination less plausible (e.g., $\rho > 0$ region)
- restores concavity (e.g., $\rho < \underline{\rho} < 0$)
Existence of PBS and Refinement

PBS lost if ρ too negative. Manipulation affects limits to arbitrage

- $\rho > 0$: buying is costly for L due to price impact and manipulation
- $\rho < 0$: L buys more, more effort by $F \rightarrow$ against price impact \rightarrow convexity

Dual role of σ. As σ falls (price impact grows)

- manipulation is easier, so coordination less plausible (e.g., $\rho > 0$ region)
- restores concavity (e.g., $\rho < \underline{\rho} < 0$)

Proposition

Fix $\rho \in (-\phi, \phi)$. If $\sigma > 0$ is sufficiently small, the PBS equilibrium exists and is the unique eqbm. within the linear class
Existence of PBS and Refinement

PBS lost if ρ too negative. **Manipulation affects limits to arbitrage**

- $\rho > 0$: buying is costly for L due to price impact and manipulation
- $\rho < 0$: L buys more, more effort by $F \to$ against price impact \to **convexity**

Dual role of σ. As σ falls (price impact grows)

- manipulation is easier, so coordination less plausible (e.g., $\rho > 0$ region)
- restores concavity (e.g., $\rho < \rho < 0$)

Proposition

Fix $\rho \in (−\phi, \phi)$. If $\sigma > 0$ is sufficiently small, the PBS equilibrium exists and is the unique eqbm. within the linear class

market illiquidity refines the equilibrium under study
Concluding remarks

Disclosure > 5% is a key institutional feature. Model still relevant:

- block completion < 10 days; ways to circumvent filing; campaigns < 5% →
- Forced to disclose at all levels? Randomization(?) (Huddart et al, ECMA 2001)
Concluding remarks

Disclosure > 5% is a key institutional feature. Model still relevant:

- block completion < 10 days; ways to circumvent filing; campaigns < 5% ↑
- Forced to disclose at all levels? Randomization(?) (Huddart et al, ECMA 2001)

Terminal effort stage

- form 13D: stating intentions/plans
- implicit commitment (though amendments occur...)

41
Concluding remarks

Disclosure > 5% is a key institutional feature. Model still relevant:
- block completion < 10 days; ways to circumvent filing; campaigns < 5% ↑
- Forced to disclose at all levels? Randomization(?) (Huddart et al, ECMA 2001)

Terminal effort stage
- form 13D: stating intentions/plans
- implicit commitment (though amendments occur...)

Leader can trade at $T = 2$?
- Manipulation still present, but direct force of follower scaling back ($\sqrt{\sigma/2\phi}$)
Concluding remarks

Disclosure > 5% is a key institutional feature. Model still relevant:
- block completion < 10 days; ways to circumvent filing; campaigns < 5%
- Forced to disclose at all levels? Randomization? (Huddart et al, ECMA 2001)

Terminal effort stage
- form 13D: stating intentions/plans
- implicit commitment (though amendments occur...)

Leader can trade at \(T = 2 \)?
- Manipulation still present, but direct force of follower scaling back \(\sqrt{\sigma/2\phi} \)

Full dynamics: multiple activists in all trading rounds
- effect present even with i.i.d. initial positions
- over time: neg. corr (MM’s learning) but evolving positions \(\rightarrow \) pos. corr