
Internet Appendix for “Leader-Follower Dynamics in

Shareholder Activism”

Doruk Cetemen∗ Gonzalo Cisternas† Aaron Kolb‡

S. Viswanathan§

April 7, 2025

Contents

I Repeated trades (Proof of Proposition 2 and Figure 2) 2

I.A Learning, pricing, and optimality . . . . . . . . . . . . . . . . . . . . . . . 3

I.B Existence for small σ: ρ = φ . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I.C Existence for small σ: general ρ ∈ [0, φ) . . . . . . . . . . . . . . . . . . . 7

I.D Hybrid model: leader trades, then both trade . . . . . . . . . . . . . . . . 11

II Passive leader (Proof of Proposition 3) 12

II.A Private initial positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

II.B Private signals of exogenous components of firm value . . . . . . . . . . . 14

III Follower friendly to firm (Proof of Proposition 4) 16

IV Proofs for Section 5 18

IV.A Proof of Proposition 6: asymmetric productivity . . . . . . . . . . . . . . 18

IV.B Proof of Proposition 6: symmetric productivity . . . . . . . . . . . . . . . 20

IV.C N followers (Proof of Proposition 7) . . . . . . . . . . . . . . . . . . . . . 21

V Results and proofs for Section 6 25

∗Department of Economics, Royal Holloway University of London, doruk.cetemen@rhul.ac.uk.
†Research and Statistics Group, Federal Reserve Bank of New York, gonzalo.cisternas@ny.frb.org.
‡Kelley School of Business, Indiana University, kolba@iu.edu.
§Fuqua School of Business, Duke University, viswanat@duke.edu.

1

mailto: doruk.cetemen@rhul.ac.uk
mailto: gonzalo.cisternas@ny.frb.org
mailto:kolba@indiana.edu
mailto:viswanat@duke.edu


V.A Non-PBS linear equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

V.B Existence and uniqueness for small σ (Proof of Proposition 8) . . . . . . . 26

VI Endogenizing initial positions 30

VI.A Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

VI.B Inducing positive correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 32

VI.C Inducing negative correlation . . . . . . . . . . . . . . . . . . . . . . . . . 35

VI.D Asymmetric random assignment of leader and follower roles . . . . . . . . 38

I Repeated trades (Proof of Proposition 2 and Figure

2)

We begin by analyzing the model where both players trade simultaneously in two periods,

as in Proposition 2. In Section I.D, we turn to the the hybrid model where the leader trades

alone first and then both players trade in the second period, as in Figure 2.

We focus on linear equilibria in which players follow symmetric strategies; player i’s trade

in period j is denoted θij, where

θi1 = α1X
i
0 + δ1µ, (IA.1)

θi2 = α2(X i
1 − M̃1) + β2(X i

0 −M1), (IA.2)

where X i
0 is the initial position, X i

1 = X i
0 + θi1 is the updated position after the first period,

M̃1 is the MM’s mean posterior belief (after period 1) about either player’s updated position,

and M1 is the MM’s mean posterior belief about either player’s initial position.

To illustrate the manipulation incentive in the first period suppose by way of contradiction

that there is an equilibrium in which δ1 = −α1. Consider trader i of type X i
0 = µ > 0, so

that player i’s expectations of player j’s trade in period 1 and both players’ trades in period

2 are all 0, and moreover, player i’s conjectured optimal trade in period 1 is 0. The right

hand side of the first order condition in period 1 evaluated at 0 reduces to

−(β2 + α2(1 + α1))
∂M1

∂Ψ1

X i
0︸ ︷︷ ︸

value of manipulation

, (IA.3)

since ∂M̃1

∂Ψ1
= (1 + α1)∂Mt

∂Ψ1
. Now X i

0 = µ > 0, and in the equilibrium we construct, β2 +

α2(1 + α1) > 0. Furthermore, ∂M1

∂Ψ1
= α1(φ+ρ)

2α2
1(φ+ρ)+σ2 > 0. Together, these inequalities imply

the value of manipulation is negative. Thus, the first order condition is not satisfied at the
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conjectured strategy if δ1 = −α1, and in particular, player i could do better with a small

negative trade. Importantly, this argument holds independently of the sign of ρ (provided

ρ 6= −φ), in contrast to the baseline model. Intuitively, a lower trade in period 1 reduces the

MM’s belief about both players’ initial (and current) position, reducing the price in period

2 and leading to a larger period 2 trade by the other player. In contrast, in the baseline

model, the analogous value of manipulation depends on the MM’s belief about the second

trader alone, and the response of that belief to the first period trade depends on the sign of

ρ.

We begin by characterizing learning, pricing, and optimality conditions. We then prove

existence of equilibrium for small σ > 0; for technical reasons, we analyze the cases ρ = φ

and ρ ∈ [0, φ) separately.1

I.A Learning, pricing, and optimality

Players begin with the usual prior mean and variance about each other’s positions

Y i
0 = µ+

ρ

φ
(X i

0 − µ), (IA.4)

ν0 = φ− ρ2

φ
. (IA.5)

Since the second period strategies have the gap form, the prior price is

P0 = 2µ(1 + α1 + δ1). (IA.6)

After observing period 1 order flow Ψ1, the MM’s updated beliefs are

M1 = E[X i
0|Ψ1] = µ+

α1(φ+ ρ)

2α2
1(φ+ ρ) + σ2

{Ψ1 − 2(α1 + δ1)µ}, (IA.7)

γ1 = Var(X i
0|Ψ1) =

α2
1(φ− ρ)(φ+ ρ) + φσ2

2α2
1(φ+ ρ) + σ2

, (IA.8)

M̃1 = E[X i
1|Ψ1] = (1 + α1)M1 + δ1µ, (IA.9)

γ̃1 = Var(X i
1|Ψ1) = (1 + α1)2γ1, (IA.10)

ρ1 = Cov(X i
0, X

j
0 |Ψ1) =

−α2
1(φ− ρ)(φ+ ρ) + ρσ2

2α2
1(φ+ ρ) + σ2

, (IA.11)

ρ̃1 = Cov(X i
1, X

j
1 |Ψ1) = (1 + α1)2ρ1. (IA.12)

1In the first case, α2/σ and β2/σ have positive, finite limits as σ → 0, while in the second case, they
diverge.
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The MM’s price in period 1 is simply

P1 = 2M̃1, (IA.13)

since it anticipates gap strategies in period 2. Price impact is therefore

Λ1 =
2(1 + α1)α1(φ+ ρ)

2α2
1(φ+ ρ) + σ2

. (IA.14)

Each player also updates its belief about the other’s initial and updated position based on

the period 1 residual order flow:

Y i
1 = Ei[Xj

0 |Ψ1] = Y i
0 +

α1ν0

α2
1ν0 + σ2

{Ψ1 − θi1 − α1Y
i

0 − δ1µ}, (IA.15)

Ỹ i
1 = Ei[Xj

1 |Ψ1] = (1 + α1)Y i
1 + δ1µ. (IA.16)

In period 2, the MM’s pricing formula is

P2 = P1 +
Cov(X i

2 +Xj
2 ,Ψ2|Ψ1)

Var(Ψ2|Ψ1)
Ψ2, where (IA.17)

Cov(X i
2 +Xj

2 ,Ψ2|Ψ1) = (2γ1 + 2ρ1)[(1 + α2)(1 + α1) + β2](α2(1 + α1) + β2), (IA.18)

Var(Ψ2|Ψ1) = (2γ1 + 2ρ1)(α2(1 + α1) + β2)2 + σ2. (IA.19)

Player i’s objective is

E
[
−(P0 + Λ1[θi1 + θj1 − 2µ(α1 + δ1)])θi1 − (P1 + Λ2[θi2 + θj2])θi2

+
(X i

0 + θi1 + θi2)2

2
+ (Xj

0 + θj1 + θj2)(X i
0 + θi1 + θi2)|X i

0

]
.

The FOC wrt θi2, given Ψ1, is

0 = −(P1 + Λ2[θi2 + Ei[θj2|Ψ1]])− Λ2θ
i
2 + (X i

0 + θi1 + θi2) + Ei[Xj
0 + θj1 + θj2|Ψ1], (IA.20)

where θi1 = X i
1−X i

0 and where P1 and expectations Ei[·|Ψ1] can be written as functions of M1

and M̃1 by first writing Ψ1 in terms of M̃1 and µ, and then writing µ = [M̃1−(1+α1)M1]/δ1.

This equation is linear in X i
1 and X i

0. Matching coefficients on X i
1 and X i

0 then yields two

equations in (α1, α2, β2) (δ1 does not appear here); it is easy to check that if these two

equations are satisfied, then the equations associated with the coefficients on M1 and M̃1 are

also satisfied, so the first order condition with respect to θi2 as a whole is satisfied.
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The FOC wrt θi1 (using that the second period trade is at an optimum) is

0 = −(P0 + Λ1(θi1 + Ei[θj1]− 2µ(α1 + δ1)))− Λ1θ
i
1 − (Λ1 + Λ2[−α2

∂M̃1

∂Ψ1

− β2
∂M1

∂Ψ1

])Ei[θi2]

+ (X i
0 + θi1 + Ei[θi2]) + Ei[Xj

0 + θj1 + θj2] + [−α2
∂M̃1

∂Ψ1

− β2
∂M1

∂Ψ1

](X i
0 + θi1 + Ei[θi2]),

where the terms are (i) marginal cost of the first period trade, (ii) price impact in first period,

(iii) price impact (from first period trade) on second period trade (via both P1 and expected

period-2 trade by other player), (iv) value of marginal share from own contribution, (v) value

of marginal share from other’s contribution, and (vi) value of change in other player’s effort

(due to altered second period trade) applied to expected terminal holdings. This equation

is linear in (X i
0, µ). Setting the coefficient on X i

0 to 0 gives a third equation in (α1, α2, β2),

and the coefficient on µ yields an equation in (α1, δ1, α2, β2).

I.B Existence for small σ: ρ = φ

We characterize the limits of (α̃1, α̃2, β̃2) := (α1/σ, α2/σ, β2/σ) as σ → 0.

Denote the equations derived from the X i
1 and X i

0 terms of the second-period first order

condition by (FOC2-X i
1) and (FOC2-X i

0). Likewise, denote the equations derived from the

X i
0 and µ term of the first period FOC by (FOC1-X i

0) and (FOC1-µ).

We use the implicit function theorem. Taking σ → 0 in the first order conditions yields

0 = 1 + 4α̃2
1φ− 4α̃2

2φ+ 4β̃2
2φ, (IA.21)

0 = 1 + 4α̃2
1φ− 8α̃2β̃2φ− 8β̃2

2φ, (IA.22)

0 = F (α̃1, α̃2, β̃2, φ), (IA.23)

0 = G(α̃1, δ̃1, α̃2, β̃2, φ). (IA.24)

The full system, and verification of the arguments that follow, can be found in the Math-

ematica file. The reader can access the full equations and expressions in the Mathematica

file ActivismTwiceRepeated-PerfectCorr.nb on the authors’ websites. We first prove that

this system has a solution. Subtracting the second equation from the first and simplifying

yields α̃2 = 3β̃2 (discarding a solution for which the signs differ). Substituting this back into

the first equation yields

β̃2 =

√
1 + 4α̃2

1φ

32φ
. (IA.25)
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Using these substitutions, the third equation has only the variable α̃1. The right hand side

is positive at 0 and negative at 1√
φ
, so by the intermediate value theorem, there is a root in

(0, 1√
φ
), which pins down α̃2 and β̃2. Note that α̃2, β̃2 > 0.

Finally, by adding (FOC1-X i
0) and (FOC1-µ) and dropping nonzero factors, we obtain a

unique characterization for δ̃1 given any solution α̃1:

0 = 2(α̃1 + δ̃1) + α̃2 + β̃2. (IA.26)

Since α̃2 and β̃2 are positive, δ̃1 < −α̃1.

Next, we argue that there exists a solution to the system of first order conditions for all

sufficiently small σ > 0. After the change of variables (but before taking σ → 0), the system

of equations (FOC2-X i
1), (FOC2-X i

0), and (FOC1-X i
0) can be written as 0 = f(x, σ), where

x = (α̃1, α̃2, β̃2) and where f is of class C1. Let x∗(0) denote any solution as identified in

the previous step. The Jacobian matrix evaluated at (x∗(0), 0) has determinant

− 32φ
3
2

27(1 + 4z2)
7
2

[7
√

2− 20
√

2z2 + 72z
√

1 + 4z2],

where z := α̃1

√
φ ∈ (0, 1), which is easily shown to be negative for all z ∈ (0, 1). Thus there

exists an interval [0, σ), some σ > 0, such that for all σ ∈ [0, σ), there is a unique solution

x∗(σ) to the system, continuously differentiable in σ. Moreover, (FOC1-µ) is linear in δ̃1

with nonzero slope for sufficiently small σ, so the solution extends to the larger system in

(α̃1, δ̃1, α̃2, β̃2). Since 0 < α̃1(0) < 1√
φ
, the same inequalities hold for α̃1(σ) for sufficiently

small σ; reversing the change of variables, we have 0 < α1 < αK . Continuity arguments

establish that α2, β2 > 0 and δ1 < −α1 for sufficiently small σ > 0.

The last step is to check that second order conditions are satisfied for sufficiently small

σ. In each period j = 1, 2, we calculate the second derivative of player i’s objective with

respect to θij. For period 1, multiplying by σ, taking σ → 0, and suppressing the argument

of α̃1(0) yields

−8α̃1φ[3
√

1 + 4α̃2
1φ−

√
2α̃2

1φ]

3(1 + 4α̃2
1φ)

3
2

< 0.

The analogous calculation for period 2 yields the limit

− 4
√

2φ

3
√

1 + 4α̃2
1φ

< 0.

Thus, the second order conditions are satisfied, so the coefficients found constitute a PBS
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equilibrium.

I.C Existence for small σ: general ρ ∈ [0, φ)

Supporting details for the equations and arguments in this section can be found in the

Mathematica file ActivismTwiceRepeated-ImperfectCorr.nb on the authors’ websites.

When ρ ∈ [0, φ), the method used for the ρ = φ case must be modified. In particular, if

we repeat the same change of variables and examine the limit of the system as σ → 0, the

limit system does not admit a real valued solution. Further, numerical analysis for small

σ > 0 indicates that α2 and β2 tend to nonzero limits; in other words, the scaled variables

α2/σ and β2/σ do not have finite limits. However, if we define β̂2 = β2 + α2(1 + α1) — the

total coefficient on X i
0 in a player’s second period trade along the path of play — numerical

analysis indicates that β̂2/σ does have a finite limit. This coefficient arises if we rewrite the

second period trade as

θi2 = α2∆i + β̂2(X i
0 −M1), (IA.27)

where ∆i := X i
1− (1 +α1)X i

0− δ1µ is the trader’s deviation in the first period and is zero on

the path of play. Therefore, for this part of the proof, we adopt the representation (IA.27)

and derive the equilibrium conditions accordingly to prove existence analytically.

Eliminating X i
1 in the first order condition using X i

1 = ∆i + (1 + α1)X i
0 − δ1µ, the first

order condition in period 2 is linear in ∆i, X i
0, and M1. It is easy to verify that the equation

associated with M1 implies the equation associated with X i
0. The equations associated with

∆i and M1, along with the equations from the first order condition in period 1 associated

with X i
0 and µ, yield four polynomial equations in (φ, ρ, σ, α1, δ1, α2, β̂2). We refer to these

equations as (FOC2-∆i), (FOC2-M1), (FOC1-X i
0), and (FOC1-µ).

After performing a change of variables α̃1 = α1/σ, δ̃1 = δ1/σ, and β̃2 = β̂2/σ (omitting

the hat symbol), we show that the resulting system of equations has a solution at σ = 0.

Evaluating at σ = 0 yields four equations

0 = α̃1(φ− ρ) + 4α2β̃2φ+ 2α̃2
1(α̃1 + 2α2β̃2)(φ2 − ρ2), (IA.28)

0 = 1− 2β̃2
2φ+ 2α̃2

1(φ+ ρ)− 2α̃2
1β̃

2
2(φ2 − ρ2), (IA.29)

0 = F (α̃1, α2, β̃2, φ, ρ), (IA.30)

0 = G(α̃1, δ̃1, α2, β̃2, φ, ρ), (IA.31)

where F and G are polynomial functions, redefined for the purpose of this proof. Equation

7



(IA.29) yields a unique positive solution for β̃2 as a function of α̃1:

β̃2 =

√
1
2

+ α̃2
1(ρ+ φ)

φ+ α̃2
1(φ2 − ρ2)

.

Solving (IA.28) yields a unique solution for α2,

α2 = − α̃1(φ− ρ)(1 + 2α̃2
1(ρ+ φ))

4β̃2(φ+ α̃2
1(φ2 − ρ2))

,

which is a function of only α̃1 via the previous solution for β̃2, and which is strictly negative

provided that α̃1 > 0, as we will show. We elaborate on this point in the following remark.

Remark 1. In contrast to the case where ρ = φ and σ is small, when correlation is imperfect,

α2 < 0 in the equilibrium we construct for small σ. This coefficient captures two forces. The

first, of course, is that an upward deviation increases a trader’s position. The second is that

after an upward deviation, for a fixed public belief, a trader infers a lower trade by the other

trader, and in turn, a lower initial position for the other trader. Under perfect correlation,

the latter channel is absent, and there we find an equilibrium with α2 > 0. However, whenever

there is imperfect correlation, the latter channel is present, and it dominates when noise is

very small; hence, a trader buys less in the second period after an upward deviation. Small

noise implies that equilibrium trades are small relative to positions, and thus the negative

inference about the other trader’s position is large for an upward deviation of fixed size.

We now show that there exists α̃1 ∈ (0, 1√
φ
) solving (IA.30) after plugging in the ex-

pressions for (α2, β̃2) above. Defining ρ̃ = ρ/φ ∈ [0, 1), (IA.30) reduces to 0 = F (α̃1, ρ̃)

(relabeling F ). Direct calculation shows that F (0, ρ̃) = φ(1 + ρ̃)(2 + ρ̃) > 0, while F ( 1√
φ
, ρ̃)

is proportional to a function of ρ̃ alone that is negative for all ρ̃ ∈ [0, 1). Specifically,

F

(
1√
φ
, ρ̃

)
∝ −2ρ̃4

√
6 + 4ρ̃+ ρ̃3(3

√
6 + 4ρ̃+ 4

√
2− ρ̃2) + ρ̃2(10

√
6 + 4ρ̃+ 2

√
2− ρ̃2)

− ρ̃(11
√

6 + 4ρ̃+ 18
√

2− ρ̃2)− 19
√

6 + 4ρ̃− 18
√

2− ρ̃2

≤ 0 + ρ̃3(3
√

6 + 4 + 4
√

2) + ρ̃2(10
√

6 + 4 + 2
√

2)

− ρ̃(11
√

6 + 18
√

2− 1)− 19
√

6− 18
√

2− 1,

where the inequality follows from using ρ̃ ∈ [0, 1) term by term on the right hand side. The

resulting cubic has second derivative 6ρ̃(3
√

10+4
√

2)+20
√

10+4
√

2 which is positive for all

ρ̃ ≥ 0. Moreover, it is straightforward to see that the cubic is negative at 0 and 1. Thus, it

is negative for all ρ̃ ∈ [0, 1), and the same is true for F
(

1√
φ
, ρ̃
)

. this confirms that a solution
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α̃1 to (IA.30) exists in (0, 1√
φ
).

Before characterizing δ̃1, we show that the Jacobian matrix for the system (IA.28)-(IA.30)

has nonzero determinant. Evaluating the determinant using the expressions for α2 and β̃1

and changing variables z = α̃1

√
φ and ρ̃ = ρ

φ
yields an expression that is proportional to

f(z) := (5 + 2ρ̃)
√

1 + 2z2(1 + ρ̃)− 2z[3 + 9ρ̃+ 5ρ̃2 + ρ̃3]
√

2 + 2z2(1− ρ̃2)

+ z2(1 + ρ̃)(60 + ρ̃(13 + ρ̃))
√

1 + 2z2(1 + ρ̃) +
9∑
i=3

ziAi(z),

where Ai(z) ≥ 0 for all i ∈ {3, . . . , 9}, all ρ̃ ∈ [0, 1) and all z ∈ [0, 1] (where z ∈ [0, 1] follows

from α̃1 ∈ (0, 1√
φ
)). We show that f(z) ≥ 0.2 For (z, ρ̃) ∈ [0, 1]× [0, 1),

f(z) ≥ (5 + 2ρ̃)
√

1 + 2z2(1 + ρ̃)− 2z[3 + 9ρ̃+ 5ρ̃2 + ρ̃3]
√

2 + 2z2(1− ρ̃2)

+ z2(1 + ρ̃)(60 + ρ̃(13 + ρ̃))
√

1 + 2z2(1 + ρ̃)

≥ (5 + 2ρ̃)− 2z[3 + 9ρ̃+ 5ρ̃2 + ρ̃3]
√

2 + 2(1− ρ̃2)

+ z2(1 + ρ̃)(60 + ρ̃(13 + ρ̃))

=: f2(z),

where we have used z ∈ [0, 1] to bound the square root in each term. We claim that f2(z) ≥ 0.

Since f2(z) is quadratic and positive at z = 0, it suffices to show that its discriminant is

always negative. That discriminant is

− 4(264 + 269ρ̃− 210ρ̃2 − 243ρ̃3 + 52ρ̃4 + 152ρ̃5 + 82ρ̃6 + 20ρ̃7 + 2ρ̃8)

≤− 4(264 + 269ρ̃− 210ρ̃2 − 243ρ̃3) =: d(ρ̃).

Now d(ρ̃) has one sign change and thus exactly one positive real root. It is easy to verify that

d(1) < 0 < d(2), so the root lies between 1 and 2 and therefore d(ρ̃) < 0 for all ρ̃ ∈ [0, 1). We

conclude that f(z) ≥ f2(z) ≥ 0. Thus, for all sufficiently small σ > 0, there exists a solution

(α̃1, α2, β̃2) to the system of first order conditions (FOC2-∆i), (FOC2-M1), and (FOC1-X i
0),

continuously differentiable in σ.

Turning to δ̃1, note that adding (IA.30) and (IA.31) yields the identity 2(α̃1+δ̃1)+β̃2 = 0,

from which we conclude α̃1 + δ̃1 < 0. As in the proof of of existence for the ρ = φ case,

the equation (FOC1-µ) for δ̃1 is linear in δ̃1 with nonzero slope for sufficiently small σ > 0.

Thus, there exists a solution to the full system of first order conditions that is continuously

2The difference in sign of the determinant from the proof of existence for the ρ = φ case is an artifact of
selecting the coefficient on M1 rather than that on Xi

0 in the second-period first order condition.
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differentiable in σ.

Second-order conditions. The second derivative of the second-period objective is sim-

ply 1 − 2Λ2. As σ → 0, the value of σ(1 − 2Λ2) at our constructed solution converges

to − 4(φ+ρ)β̃2
1+2(ρ+φ)(α̃2

1+β̃2
2)
< 0. Thus, the second-period second order condition is satisfied for

sufficiently small σ > 0.

For the first-period second order condition, we scale by σ and substitute the expressions

for α2 and β̃1, and we again use z = α̃1

√
φ and ρ̃ = ρ

φ
. The limit as σ → 0 can be written

A(z)B(z),

where

B(z) =
z(1 + ρ̃)

√
φ

4(1 + 2z2(1 + ρ̃))
3
2 (2 + ρ̃+ z2(1− ρ̃2))

√
1 + z2(1− ρ̃2)

> 0

and

A(z) = 4
√

2z5(1− ρ̃2)2 + 4
√

2z3(3 + ρ̃)(1− ρ̃2)− 16z2(1− ρ̃2)
√

1 + 2z2(1 + ρ̃)
√

1 + z2(1− ρ̃2)

+ z
√

2(3 + ρ̃)2 − 16(2 + ρ̃)
√

1 + 2z2(1 + ρ̃)
√

1 + z2(1− ρ̃2).

We show that A(z) < 0. Bounding term by term, we have

A(z) ≤ A2(z)

:= 4
√

2(1− ρ̃2)2 + 4
√

2z2(3 + ρ̃)(1− ρ̃2)− 16z2(1− ρ̃2) + z
√

2(3 + ρ̃)2 − 16(2 + ρ̃).

Since ρ̃ ∈ [0, 1), A2(z) is a convex quadratic with

A2(0) = −16(2 + ρ̃) + 4
√

2(1− ρ̃2)2 < 0,

A2(1) = 4
√

2ρ̃4 − 4
√

2ρ̃3 − (19
√

2− 16)ρ̃2 − (8− 5
√

2)ρ̃− (48− 25
√

2).

Note that A2(1) has one sign change, so it has exactly one positive real root. Moreover, by

inspection, A2(1) is negative when ρ̃ = 0 and when ρ̃ = 1. Thus, A2(1) < 0 for all ρ̃ ∈ [0, 1).

We conclude that for all (z, ρ̃) ∈ [0, 1] × [0, 1), A2(z) < 0 and therefore A(z) < 0. Hence,

the first-period second order condition is satisfied in the limit σ → 0, and by continuity, it

is satisfied for sufficiently small σ > 0.
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I.D Hybrid model: leader trades, then both trade

Consider a hybrid of the baseline model and the twice repeated model, where the leader trades

alone in the first period and then trades again in the second period, simultaneously with the

follower. It is natural to look for a linear equilibrium in which players trade according to

strategies of the form

θL1 = αLX
L
0 + δLµ, (IA.32)

θL2 = ξ1(XL
0 − E[XL

0 |F1]) + ξ2(XL
1 − E[XL

1 |F1]), (IA.33)

θF = αF (XF
0 −MF

1 ), (IA.34)

with αF > 0. Both players here follow “gap” strategies in the second period. In θL2 , the first

gap encodes the leader’s informational advantage about the follower’s initial position, while

the second gap encodes her informational advantage about her own position entering period

two.

We argue that the leader’s incentive to deviate from a Kyle gap strategy in the first

period is robust to this extension of the model. Note that the leader’s objective function is

E
[
−(P0 + θL1 Λ1)θL1 (IA.35)

−(P1 + (θF + θL2 − E[Ψ2|F1])Λ2)θL2 (IA.36)

+
(XL

0 + θL1 + θL2 )2

2
+ (XF

0 + E[θF |XL
0 ,Ψ1])(XL

0 + θL1 + θL2 )|XL
0

]
. (IA.37)

Suppose by way of contradiction that the leader’s first period trade is a gap strategy:

αL = −δL > 0. Consider the mean type XL
0 = µ > 0. Then (i) E[θL1 |XL

0 ] = E[θL2 |XL
0 ] =

E[θF |XL
0 ] = 0, (ii) E[E[Ψ2|F1]|XL

0 ] = 0, (iii) E[E[θF |XL
0 ,Ψ1]|XL

0 ] = 0. Also, αL = −δL
implies P0 = 2µ. The derivative of the leader’s payoff with respect to θL1 under the candidate

equilibrium strategy is thus

− P0 +XL
0 + E[XF

0 + 0|XL
0 ] +XL

0

d

dθL1
E[E[θF |XL

0 ,Ψ1]|XL
0 ]

= µ
d

dθL1
E[E[θF |XL

0 ,Ψ1]|XL
0 ]

= µ(−αF
dMF

1

dΨ1

) < 0.

Hence, the leader could strictly benefit by deviating downward relative to the conjectured

Kyle strategy.

The benefit to the mean type of leader of shading down her trade to reduce the price in

11



period 2 lies in increasing the follower’s trade and subsequent value creation applied to her

original µ shares. Specifically, since the leader’s own trade has the gap form in the second

period, the mean type has an expected trade in the second period of size zero, so the benefit

of the downward deviation does not operate through the channel of improving the price

for her own second-period trade. However, this shading down is dampened relative to our

baseline leader-follower model since the presence of the leader in the second period reduces

the trading of the follower.

II Passive leader (Proof of Proposition 3)

We divide the proof into two parts: one for the model with private initial positions, and the

other for the model with private signals of exogenous components of firm value. Supporting

details for both parts can be found in the Mathematica file PassiveLeader.nb on the

authors’ websites.

II.A Private initial positions

We prove the following claims. If ρ > 0, then a PBS equilibrium exists, and moreover, in

any PBS equilibrium, 0 < αL < αK , and the leader sells on average. If ρ < 0, there exists

an equilibrium in which αL < −αK , 0 < δL < αK , and the leader still sells on average; and

there is no equilibrium in which αL > 0. In both cases, the follower plays a gap strategy.

Assume ρ 6= 0. The objectives of the activists are now

Leader: sup
θL

E[XF
T X

L
T − P1θ

L|XL
0 , θ

L]

Follower: sup
θF

E[XF
T X

F
T − P2θ

F − 1

2
(XF

T )2|XF
0 ,F1, θ

F ].

For any conjectured linear strategies, price impacts are now

Λ1 =
αLρ(1 + αF )

(α2
Lφ+ σ2)(1− βF )

, (IA.38)

Λ2 =
αF (1 + αF )γF1
α2
Fγ

F
1 + σ2

, (IA.39)

which differ from (7) and (10) only in that the component associated with the leader’s

terminal position is absent.
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The follower’s FOC is

0 = −EF [P1 + Λ2{Ψ2 − E[Ψ2|F1]}]− Λ2θ
F +XF

0 + θF (IA.40)

= −P1 − Λ2(θF − [αFM
F
1 + βFP1 + δFµ])− Λ2θ

F +XF
0 + θF , (IA.41)

and the leader’s FOC is

0 = −EL[P0 + Λ1{Ψ1 − E[Ψ1]}|θL]− θΛ1 + EL[XF
T |θL]

+ (XL
0 + θL)

∂EL[XF
T |θL]

∂θL
.

(IA.42)

Familiar arguments show that the strategy θF = αF (XF
0 −MF

1 ), where αF = αF,1(αL) =√
σ2

γF1
, still satisfies the follower’s FOC; that the follower’s strategy has this characterization

in any PBS equilibrium; and that the follower’s strategy has a gap form in any linear equi-

librium. Moreover, in this model, MF
1 = P1, and βF = −αF , and δF = 0. It is easy to show

that the leader’s FOC implies the identity

αL =
σ2

φαL
− αF

1 + αF
, (IA.43)

where αF = αF,1(αL), and the identity (A.11) for δL.

The SOCs reduce to

0 > 1− 2Λ2 = − 1

αF
, (IA.44)

0 > −2Λ1(1− βF ) = −2
αLρ(1 + αF )

α2
Lφ+ σ2

, (IA.45)

where again αF = αF,1(αL).

The remainder of the proof analyzes separately the two cases ρ > 0 and ρ < 0.

ρ > 0 case: We first claim that there exist a α+
L ∈ (0, αK) solving (IA.43) and that it pins

down a PBS equilibrium. As αL ↓ 0, the RHS of (IA.43) tends to +∞, and at αL = αK ,

the RHS is strictly less than αK . Thus, by the intermediate value theorem, there exists a

solution with αL ∈ (0, αK). Moreover, there is no solution with αL ≥ αK , since this would

imply the RHS of (IA.43) is strictly less than σ2

φαL
≤ αL. Thus, for ρ > 0, αL ∈ (0, αK) in

any PBS equilibrium.

The follower’s SOC (IA.44) is satisfied since αF > 0. The leader’s SOC (IA.45) is also

satisfied since α+
L , ρ > 0. Thus, the strategies characterized by α+

L and αF = αF,1(α+
L ) (along

with βF = −αF , δF = 0, and δL as in (A.11) are part of a PBS equilibrium. The leader’s
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expected trade µ(αL + δL) = µ(α+
L − (αK)2/α+

L ) is negative since α+
L ∈ (0, αK), so the leader

sells on average.

ρ < 0 case: We claim that there exists α−L ∈ (−∞,−αK) solving (IA.43) and that it pins

down a linear equilibrium. When αL = −αK , the RHS of (IA.43) equals −αK− αF
1+αF

< −αK ;

and as αL → −∞, the RHS tends to a finite limit. Thus, by the intermediate value theorem,

there exists α−L ∈ (−∞,−αK) solving (IA.43). The follower’s SOC (IA.44) is satisfied for

the same reason as before, and the leader’s SOC (IA.45) is satisfied since α−L < 0. In such

an equilibrium, the leader’s expected trade is µ(αL + δL) = µ(α−L − (αK)2/α−L ) < 0 since

α−L ∈ (−∞,−αK), so the leader still sells on average. Note that in this case it is impossible

to have αL > 0, since it would not satisfy (IA.45).

II.B Private signals of exogenous components of firm value

Consider the extension from Proposition 1(a), where activist i’s private information V i is

an exogenous component of firm value, and where initial positions are public. Now suppose

that the leader is passive, only trading but not able to influence the firm’s value through

activism. That is, realized firm value is V L + V F +XF
T . The objectives are now

Leader: sup
θL

E[(V L + V F +XF
T )XL

T − P1θ
L|V L, θL]

Follower: sup
θF

E[(V L + V F +XF
T )XF

T − P2θ
F − 1

2
(XF

T )2|V F ,F1, θ
F ].

For ρ positive or not too negative, we characterize an equilibrium in which trades are

θL := αL(V L − µ) + ηL,

θF := αFV
F + βFP1 + δFµ+ ηF = αF (V F −MF

1 ),

where MF
1 := E[V F |F1] (see below) and where αL, αF > 0.

The ex ante expectation of firm value is

P0 = E[XF
0 + V L + V F + θF ] = XF

0 + 2µ.

Given Ψ1, the MM’s updated belief about V L is

ML
1 := E[V L|F1] = µ+

αLφ

α2
Lφ+ σ2

{Ψ1 − ηL} . (IA.46)
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And the MM’s updated belief about V F is

MF
1 := E[V F |F1] = µ+

αLρ

α2
Lφ+ σ2

{Ψ1 − ηL} . (IA.47)

Since the MM expects the follower to trade 0 conditional on first period order flow,

P1 = XF
0 + E[V L + V F + θL|Ψ1]

= XF
0 +ML

1 +MF
1

= P0 + Λ1 {Ψ1 − ηL} ,

where Λ1 := αL(ρ+φ)

α2
Lφ+σ2 .

The follower’s posterior belief about the leader’s component V L is

Y F
1 := Y F

0 +
αLν

F
0

α2
Lν

F
0 + σ2

{
P1 − P0

Λ1

+ αL(µ− Y F
0 )

}
︸ ︷︷ ︸

=Ψ1−(αL(Y F0 −µ)−ηL

.

Let

(
γL1 ρ1

ρ1 γF1

)
denote the posterior covariance matrix of the market maker’s beliefs about

(V L, V F ) after period one. We have

γL1 =
φσ2

α2
Lφ+ σ2

, γF1 =
α2
L[φ2 − ρ2] + φσ2

α2
Lφ+ σ2

, ρ1 =
ρσ2

α2
Lφ+ σ2

, (IA.48)

where again the only difference from before is a missing (1 +αL)2 in γL1 and a missing 1 +αL

in ρ1 since the updating is about V L.

After seeing Ψ2, the market maker again updates beliefs about V L and V F :

MF
2 := MF

1 +
αFγ

F
1

α2
Fγ

F
1 + σ2

Ψ2,

ML
2 := ML

1 +
αFρ1

α2
Fγ

F
1 + σ2

Ψ2.

The price is then

P2 = XF
0 + E[V L + V F + αF (V F −MF

1 )|F2]

= XF
0 +ML

2 +MF
2 + αF (MF

2 −MF
1 )

= P1 + Ψ2

[
αFγ

F
1

α2
Fγ

F
1 + σ2

+ (1 + αF )
αFρ1

α2
Fγ

F
1 + σ2

]
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= P1 + Ψ2
αF [ρ1 + (1 + αF )γF1 ]

α2
Fγ

F
1 + σ2︸ ︷︷ ︸

=:Λ2

.

The first order conditions are

Follower: 0 = Y F
1 + V F +XF

0 + θF − P1 − 2Λ2θ
F

Leader: 0 = Y L
0 + V L +XF

0 + E[θF |V L, θL]− (P0 + Λ1(θL − ηL))− Λ1θ
L + (XL

0 + θL)Λ1βF .

The second order conditions are

0 > 1− 2Λ2, (IA.49)

0 > −2Λ1(1− βF ) = −2
αL[ρ(1 + αF ) + φ]

α2
Lφ+ σ2

, (IA.50)

By substituting in the conjectured strategies and matching coefficients, it is easy to verify

that the FOCs are satisfied by

θL = αL(V L − µ) + ηL,

θF = αF (V F −MF
1 ),

where αL =
√
σ2/φ, αF =

√
σ2/γF1 , and ηL = −XL

0
ραF

ρ(1+αF )+φ
. The follower’s SOC is

satisfied by inspection, while the leader’s SOC is satisfied for ρ positive or not too negative.

It continues to hold that the leader’s average trade is ηL, which implies sign(E[θL|F0]) =

−sign(ρ), as desired.

III Follower friendly to firm (Proof of Proposition 4)

Let the follower’s cost of effort now be 1
2
(W F )2 + κW FEF [WL], where by convention Ei[·]

is the expectation operator for player i at the moment they trade, and where κ ∈ (0, 1).

Note that EF [WL] and Y F
1 , already defined as EF [XL

T ], are equivalent. Thus, the follower’s

optimal effort becomes XF
T − κY F

1 . By the law of iterated expectations, the market price in

each period is the MM’s expectation of XF
T + (1− κ)XL

T .

It follows that the price impact coefficients adjust to

Λ1 =
αLφ

α2
Lφ+ σ2

× (1 + αL)(1− κ) + ρ(1 + αF )/φ

1− βF
, (IA.51)

Λ2 =
αFγ

F
1

α2
Fγ

F
1 + σ2

× [1 + αF + (1− κ)ρ1/γ
F
1 ]. (IA.52)
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The follower’s optimal strategy has exactly the same coefficients and gap form as before.

The leader’s first order condition is now

0 = −EL[P0 + Λ1{Ψ1 − E[Ψ1]}|θL]− θΛ1 + (XL
0 + θL) + EL[W F |θL]

+ (XL
0 + θL)

∂EL[W F |θL]

∂θL

= −EL[P0 + Λ1{Ψ1 − E[Ψ1]}|θL]− θΛ1 + (XL
0 + θL) + EL[XF

T |θL]

+ (XL
0 + θL)

∂EL[XF
T |θL]

∂θL
− EL[κY F

1 |θL]− (XL
0 + θL)

∂EL[κY F
1 |θL]

∂θL
.

Matching coefficients in the usual way yields the identity δL = − σ2

φαL
and an equation in-

volving αL and αF (after eliminating βF , δF , and δL as in the baseline model). For the case

ρ = 0, this equation reduces to

αL =
αLφ(αL(1− κ)− κ) + σ2

αLφ(2 + αL)− σ2

⇐⇒ 0 = (1 + αL)[αL(αL + κ)φ− σ2].

The right hand side is strictly increasing in αL on [0,∞) and has exactly one positive root,

and it satisfies αL < αK . This implies δL = − σ2

φαL
< −αK , so the leader’s expected trade

is (αL + δL)µ < 0. Moreover, right hand side of the equation above is increasing in κ for

αL > 0, this root is decreasing in κ, as is the leader’s expected trade. The second order

conditions are easy to check.

Figure 1 shows the effect of introducing κ > 0 on equilibrium trading strategy coefficients.

Most importantly, the leader’s coefficient αL decreases at all ρ. In particular, this results

in αL < αK at ρ = 0, and by the identity for δL above, this implies that the leader sells

on average, with µ(αL + δL) < 0, even for ρ = 0. A consequence of the reduction in αL is

that the market maker’s variance γF1 about the follower is reduced, and therefore follower’s

coefficient αF = σ/
√
γF1 increases in response as shown in the figure.

The intuition for the drop in αL comes from a new channel: the leader would like to

manipulate the follower’s belief about the leader’s terminal position to directly influence the

follower’s effort. This channel operates as long as the follower is not already certain about

the leader’s position due to perfect correlation in initial positions; in other words, it is active

even when the original manipulation effect is shut down by setting ρ = 0.
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Figure 1: The leader’s coefficient αL and follower’s coefficient αF for κ = 0 (baseline model) and
κ = .5 while varying ρ. The other parameter values are σ = φ = 1.

IV Proofs for Section 5

IV.A Proof of Proposition 6: asymmetric productivity

We first prove the part of the proposition about asymmetric productivity, where one player

has productivity parameter ζ > 0 and the other is an unproductive or passive investor who

cannot influence firm value through effort. It is immediate that the productive player’s

optimal effort is ζ times its terminal position. Assume ρ = φ.

As in our baseline model, there is a unique PBS equilibrium for sufficiently small σ > 0.

Let Vi,prod(σ) denote the expected payoff of the productive trader when their role is i ∈ {L, F}
(with the passive investor having the opposite role), and similarly, let Vi,pass(σ) denote the

payoff for the passive investor in role i, with the productive trader having the opposite role.

As in the analysis of small σ in the paper, trading disappears as σ → 0, and thus, based on

the initial positions and optimal effort for the produtive player,

lim
σ→0

VL,prod(σ) = lim
σ→0

VF,prod(σ) = V 0
prod := ζ(µ2 + φ)/2

lim
σ→0

VL,pass(σ) = lim
σ→0

VF,pass(σ) = V 0
pass := ζ(µ2 + φ),

where µ2 + φ = E[XL
0 X

F
0 ] given the perfect correlation. Since these limiting payoffs are

independent of the timing (i.e., assignment of roles), we instead examine rates of convergence

by calculating the limits

V̄i,j := lim
σ→0

Vi,j(σ)− V 0
j

σ
, i ∈ {L, F}, j ∈ {prod, pass},
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and we prove the proposition by showing that

V̄L,prod > V̄F,prod and V̄F,pass > V̄L,pass.

First consider the case where the passive investor trades first, and where the follower has

productivity ζ > 0. The players’ objectives thus reduce to

Leader: sup
θL

E[ζXF
T X

L
T − P1θ

L|XL
0 , θ

L]

Follower: sup
θF

E[(ζXF
T )XF

T − P2θ
F − 1

2ζ
(ζXF

T )2|XF
0 ,F1, θ

F ].

It is easy to establish our familiar result that in a PBS equilibrium, the follower trades

according to θF = αF (XF
0 −MF

1 ), where αF = σ√
γF1

. It also continues to be the case that

δL = −σ2/(φαL). Hence, strategies are characterized by (αL, αF ).

It is useful to perform a change of variables ri := αi/σ, i ∈ {L, F}. Immediately,

rF =
√

1+r2Lφ

φ
. The XL

0 -component of the leader’s first order condition, pinning down rL,

reduces to

ζ
1 + rFσ − rL(rF + rL + rF rLσ)φ

1 + r2
Lφ

= 0.

Taking σ → 0 and solving the resulting system of equations in (rL, rF ) gives

lim
σ→0

(rL, rF ) = (r0
L,pass, r

0
F,prod) :=

(
1√
3φ
,

2√
3φ

)
.

Plugging arbitrary coefficients (rL, rF ) into the the players’ objectives yields the expected

payoffs

VL,pass(σ) = ζ

[
µ2 + φ+ σ(1 + rLσ)

√
φ

1 + r2
Lφ

+
rLσφ

1 + r2
Lφ

]
, (IA.53)

VF,prod(σ) =
ζ

2

[
µ2 +

φ(−r4
Fσ

2φ+ r2
F (σ2 + φ)(1 + r2

Lφ) + (1 + r2
Lφ)2 + 2rFσ(1 + r2

Lφ))

(1 + r2
Lφ)(1 + φ(r2

F + r2
L))

]
.

(IA.54)

To calculate V̄L,pass and V̄F,prod, subtract V 0
pass and V 0

prod from (IA.53) and (IA.54), respectively;

divide through by σ; and take σ → 0 (using (rL, rF )→ (r0
L,pass, r

0
F,prod)). This yields

(V̄L,pass, V̄F,prod) =

(
ζ

3
√

3φ

4
, ζ

√
3φ

4

)
.
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Next, consider the case where the player with productivity ζ > 0 is the leader and the

passive investor is the follower. A similar analysis to that above establishes that

lim
σ→0

(rL, rF ) = (r0
L,prod, r

0
F,pass) :=

(
1√
φ
,

√
2

φ

)
.

Hence, taking the limit as σ → 0 of the appropriate expected payoff expressions yields

(
V̄L,prod, V̄F,pass

)
=

(
ζ

√
φ

2
, ζ

(4 +
√

2)φ

4

)
.

By inspection, V̄L,prod > V̄F,prod and V̄F,pass > V̄L,pass, concluding the proof.

IV.B Proof of Proposition 6: symmetric productivity

We now prove that if both players have the same productivity parameter ζ, then when noise

is sufficiently small, the leader’s payoff is higher than the follower’s. For sufficiently small

σ > 0, there is a unique PBS equilibrium. Let Vi(σ) denote the expected payoff for player

i ∈ {L, F} in this equilibrium. We have

lim
σ→0

VL(σ) = lim
σ→0

VF (σ) = V 0 :=
3

2
ζ(µ2 + φ),

where the fraction 3
2

= 1 + 1
2

is due to a player enjoying the full benefit of the other’s effort,

but incurring the cost associated with its own effort.

Since the limit is the same for both players, we compare rates of convergence and prove

the proposition by showing that

V̄L > V̄F , where V̄i := lim
σ→0

Vi(σ)− V 0

σ
.

As in the asymmetric case, we use the change of variables ri = αi/σ. As σ → 0,

(rL, rF )→ (r0
L, r

0
F ), where

r0
L =

√
9−
√

33

6φ
∈
(

0,
1√
φ

)
, (IA.55)

r0
F =

√
1 + (r0

L)2φ

φ
. (IA.56)
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It is straightforward to calculate

V̄L = ζ
(r0
F + 2r0

L)φ

1 + (r0
L)2φ

,

V̄F = ζ

[
−µ2 1− (r0

L)2φ

rLφ
+ rLφ+

2r0
F

1 + ((r0
F )2 + (r0

L)2)φ

]
.

Using (IA.56) and simplifying,

V̄L − V̄F = ζ(1− (r0
L)2φ)

[
µ2

r0
Lφ

+
r0
Lφ

1 + (r0
L)2φ

]
> 0

where 1− (r0
L)2φ > 0 due to the upper bound in (IA.55).

IV.C N followers (Proof of Proposition 7)

Fix µ, σ, φ, ρ. Let µsµ denote the prior mean for each follower, φsφ the variance, and ρsρ

the covariance between the leader and each follower, where sµ, sφ, sρ will vary with N . The

setup described in Section 5.2 is captured by sµ = 1/N , sφ = 1/N2, and sρ = 1/N .

Define γsum
1 = N2γF1 , the market maker’s posterior variance of the sum of all followers’

positions. In any PBS equilibrium, the followers play gap strategies and their FOC yields

αF =
√

Nσ2

γsum1
=
√

σ2

NγF1
. Incorporating this into the leader’s FOC then yields the following

equation generalizing (A.14):

(Nρsρ + φ+ αLφ)(σ2 − α2
Lφ)

Nρsρ[αL(1 + αL)φ− σ2]
=

√
σ4 + σ2α2

Lφ

N [φsφσ2 + α2
L(φ2sφ − (ρsρ)2)]

. (IA.57)

Arguments similar to those earlier show that for ρ > 0, (IA.57) has a solution αL in (α̂, αK),

there is no other solution for αL ≥ 0, and SOCs are satisfied. The FOC also implies that the

coefficient on µ is δL = − σ2

φαL
. Hence, we have characterized the unique PBS equilibrium.

We now turn to comparative statics wrt N . After plugging in our values for (sµ, sφ, sρ),

(IA.57) reduces to

(ρ+ φ+ αLφ)(σ2 − α2
Lφ)

ρ[αL(1 + αL)φ− σ2]
=

√
N(σ4 + σ2α2

Lφ)

φσ2 + α2
L(φ2 − ρ2)

. (IA.58)

When these intersect at αL ∈ (α̂, αK), the left hand side crosses the right hand side from

above. Then since the right hand side is increasing in N , the equilibrium value of αL is

decreasing in N . It is also straightforward to show that the left side of (IA.58) is decreasing
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in αL on (α̂,∞), so each side of (IA.58) is increasing in N . Since the right hand side is

precisely αF , this establishes that αF is increasing in N . Note that while the decay in αL

raises γF1 in αF =
√

σ2

NγF1
all else equal, this effect does not overturn the direct downward

effect that larger N has on γF1 , as γF1 ≤ φ/N2 for any linear strategy of the leader.

Since the followers play gap strategies, ex ante firm value is still (2 + αL + δL)µ =

(2 +αL−σ2/(φαL))µ for all N . Since αL is decreasing in N , ex ante firm value is decreasing

in N .

For later use, we show that limN→∞ αL = α̂ > 0, where α̂ was defined earlier as the

positive root of αL(1 + αL)φ − σ2. As N → ∞, the right hand side of (IA.58) explodes as

the rest of the expression in the square root is bounded. Thus, the left hand side must also

explode, which requires its denominator to vanish. Given that αL > 0, this implies that αL

converges to α̂.

We now turn to the asymptotic result. The leader’s expected payoff is

E
[
−P1θ

L +
(XL

0 + θL)2

2
+ (XL

0 + θL)N(XF
0 + αF (XF

0 −MF
1 ))

]
. (IA.59)

We simplify (IA.59) one term at a time. The first term equals

− E[(P0 + Λ1[Ψ1 − (αL + δL)µ])θL]

= −E[P0(αLX
L
0 + δLµ) + Λ1αL(XL

0 − µ)(αLX
L
0 + δLµ)]

= −[(2 + αL + δL)(αL + δL)µ2 + Λ1α
2
Lφ] =: S1. (IA.60)

Since αL and δL have finite limits as N →∞, and Λ1 = αL(ρ+φ(1+αL))

σ2+α2
Lφ

also has a finite limit,

this term overall is therefore uniformly bounded in N .

The expectation of the second term in (IA.59) equals

S2 :=
1

2
E
[
(XL

0 (1 + αL) + δLµ)2
]

=
1

2
[(1 + αL + δL)2µ2 + φ(1 + αL)2], (IA.61)

which is also uniformly bounded in N .

Using that E[XF
0 −MF

1 ] = 0 by the law of iterated expectations, the third term in (IA.59)

simplifies as:

E[(XL
0 (1 + αL) + δLµ)N(XF

0 + αF (XF
0 −MF

1 ))]

= (1 + αL)(1 + αF )NE[XL
0 X

F
0 ] + δLNµ

2sµ − E[XL
0 (1 + αL)NαFM

F
1 ]

= (1 + αL)(1 + αF )N(µ2sµ + ρsρ) + δLNµ
2sµ − E[XL

0 (1 + αL)NαFM
F
1 ]
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= (1 + αL)(1 + αF )N(µ2sµ + ρsρ) + δLNµ
2sµ

− E[XL
0 (1 + αL)NαF

{
µsµ +

αLρsρ
α2
Lφ+ σ2

[αLX
L
0 + δLµ− (αL + δL)µ]

}
.

(IA.62)

We now simplify the last term in (IA.62):

E
[
XL

0 (1 + αL)NαF

{
µsµ +

αLρsρ
α2
Lφ+ σ2

[αLX
L
0 + δLµ− (αL + δL)µ]

}]
= E

[
XL

0 (1 + αL)NαF

{
µsµ +

αLρsρ
α2
Lφ+ σ2

αL(XL
0 − µ)

}]
= (1 + αL)NαFµ

2sµ + (1 + αL)NαF
αLρsρ

α2
Lφ+ σ2

αLE[XL
0 (XL

0 − µ)]

= (1 + αL)NαFµ
2sµ + (1 + αL)NαF

αLρsρ
α2
Lφ+ σ2

αLVar(XL
0 )

= (1 + αL)αFµ
2 + (1 + αL)αF

αLρ

α2
Lφ+ σ2

αLφ.

Incorporating this in (IA.62), the third term of (IA.59) equals

S3 := (1 + αL)(1 + αF )(µ2 + ρ) + δLµ
2 −

[
(1 + αL)αFµ

2 + (1 + αL)αF
α2
Lρφ

α2
Lφ+ σ2

]
= (1 + αL)(µ2 + ρ) + δLµ

2 + αFρ(1 + αL)
σ2

α2
Lφ+ σ2

, (IA.63)

where we have canceled N with 1/N in sµ and sρ.

The leader’s payoff is the sum of (IA.60), (IA.61), and (IA.63): ΠL = S1 + S2 + S3. To

show that the rate of growth is
√
N , we calculate

lim
N→∞

ΠL√
N

= lim
N→∞

S1√
N

+ lim
N→∞

S2√
N

+ lim
N→∞

S3√
N

= 0 + 0 + lim
N→∞

S3√
N

=

(
lim
N→∞

αF√
N

)(
lim
N→∞

(1 + αL)ρ
σ2

α2
Lφ+ σ2

)
,

where we have used that in S3, (1 + αL)(µ2 + ρ) + δLµ
2 is uniformly bounded in N . To take

limits in the last line, we use the fact that for ρ ∈ (0, φ], limN→∞ αL = α̂ > 0, as shown

earlier in the proof. The two factors in the product then have limits

lim
N→∞

αF√
N

= lim
N→∞

√
(σ4 + σ2α2

Lφ)

φσ2 + α2
L(φ2 − ρ2)

=

√
(σ4 + σ2α̂2φ)

φσ2 + α̂2(φ2 − ρ2)
,
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lim
N→∞

(1 + αL)ρ
σ2

α2
Lφ+ σ2

= (1 + α̂)ρ
σ2

α̂2φ+ σ2
.

Since these limits are positive and finite, so is their product, and we conclude that ΠL

grows asymptotically at rate
√
N .

The following lemma formalizes the last statement of the proposition.

Lemma IA.1. Assume ρ = φ, and let Πseq
L and Πsim

L denote the leader’s payoff in the

sequential- and simultaneous-move games, respectively. When N is sufficiently large, the

leader’s payoff advantage from going first is increasing in N . Specifically, Πseq
L and Πsim

L

grow at rate
√
N asymptotically, and limN→∞

Πseq
L −Πsim

L√
N

> 0.

Proof. Proposition 7 characterizes the asymptotics of Πseq
L , so consider the simultaneous-

move game. The FOCs lead to the following system of equations: αL =
1− ρ

φ
ΛαF+ ρ

φ
(1+αF )

2Λ−1
, αF =

N(1− ρ
φ

ΛαL+ ρ
φ

(1+αL))

(N+1)Λ−N , where Λ = (1+αL)(φαL+ραF )+(1+αF )(φαF+ραL)

φ(α2
L+α2

F )+2αLαF ρ+σ2 .

For the case ρ = φ, we obtain (αL, αF ) =

(
σ√

(N+1)φ
, Nσ√

(N+1)φ

)
. The leader’s payoff is

again of the order
√
N , with coefficient limN→∞

αF√
N

(1+αL)Cov(XL
0 , X

F
0 ) = limN→∞

αF√
N

(1+

αL)φ = σ
√
φ. To complete the proof, we show that this is strictly less than the correspond-

ing coefficient in the sequential-move game, namely
√

(σ4+σ2α̂2φ)
φσ2 (1 + α̂)φ σ2

α̂2φ+σ2 . By routine

simplifications,

σ
√
φ ≤

√
(σ4 + σ2α̂2φ)

φσ2
(1 + α̂)φ

σ2

α̂2φ+ σ2

⇐⇒ 1 ≤
√
σ2 + α̂2φ(1 + α̂)

σ

α̂2φ+ σ2

⇐⇒
√
σ2 + α̂2φ ≤ (1 + α̂)σ

⇐⇒ σ2 + α̂2φ ≤ (1 + α̂)2σ2 (since both sides are positive)

⇐⇒ 0 ≤ α̂[α̂(σ2 − φ) + 2σ2].

Since α̂ solves σ2 − α̂(1 + α̂)φ = 0, the right hand side is

α̂[α̂(σ2 − φ) + 2σ2] = α̂[α̂σ2 + α̂2φ− σ2 + 2σ2] = α̂[α̂σ2 + α̂2φ+ σ2] ≥ 0,

establishing the inequality.
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V Results and proofs for Section 6

This section analyzes non-PBS linear equilibria of the baseline model, as described in Section

6, and contains a proof of Proposition 8.

V.A Non-PBS linear equilibria

The results in the following proposition were referred to in Section 6.

Proposition IA.1. (i) Positive correlation: If ρ > 0, then for sufficiently large σ > 0,

there exists a linear equilibrium with αL, αF < −
√
σ2/φ < 0.

(ii) Perfect negative correlation: If ρ = −φ, there is no linear equilibrium in which αL and

αF have the same sign. A linear equilibrium in which αL < 0 < αF exists for all σ > 0.

Proof. For part (i), we prove that for sufficiently large σ, there is a solution to (A.15) with

αL < 0. We then check the conditions (A.12), (A.13), and φ(1 + αL) + ρ 6= 0 and apply the

“converse” part of Proposition A.1.

Recall from Proposition A.1 that (A.15) is the equation for αL associated with αF =

−
√
σ2/γF1 , the negative root of (A.7). Since γF1 < φ, this immediately implies αF <

−
√
σ2/φ. After a change of variables x = αL/σ in (A.15),

−

√
1 + x2φ

φ+ x2(φ2 − ρ2)
=

(
ρ+φ
σ

+ φx
)

(x2φ− 1)

ρ[1− xφ/σ − x2φ]
. (IA.64)

When x = −1/
√
φ, the right hand side vanishes, while the left hand side is strictly negative.

Now choose σ sufficiently large that
(
ρ+φ
σ

+ φx
)
< 0 for all x ≤ −1/

√
φ. Define α† to be

the negative root of αL(1 + αL)φ − σ2, and define x† = α†/σ < −1/
√
φ to be the unique

negative root of the denominator of (IA.64), where x† ↑ −1/
√
φ as σ ↑ ∞. The right hand

side of (IA.64) is well-defined and continuous on (x†,−1/
√
φ] and moreover, it has limit −∞

as x ↓ x†. Thus, by the intermediate value theorem, there exists a solution xL to (IA.64) in

(x†,−1/
√
φ). By reversing the change of variables, we recover αL = σxL < −

√
σ2/φ solving

the leader’s FOC. Moreover, by the squeeze theorem, limσ↑∞ xL = −1/
√
φ. Note that as

σ ↑ ∞, xF := αF/σ = −
√

1+x2φ
φ+x2(φ2−ρ2)

→ −
√

2
2φ−ρ2/φ =: x∞F

To verify (A.12), note that this is equivalent to the condition 1−x2
Lφ−2xL

(
ρ+φ
σ

+ ρxF
)
≤

0. As σ ↑ +∞, the left hand side has limit 1−1−2(−1/
√
φ)ρx∞F = 2ρx∞F /

√
φ < 0, so (A.12)

is satisfied for sufficiently large σ.
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As for (A.13), using that αF,2 < 0, it suffices to show that

σ2[x2
L(φ2 − ρ2) + xLσρ+ (φ+ ρ)] ≤ 0.

Recall that xL has finite limit as σ → +∞, so the dominating term is σ3xLρ < 0. We

conclude that (A.13) is satisfied for sufficiently large σ.

Finally, observe that since the left side of (IA.64) is nonzero, at our solution the right

side is also nonzero, and thus ρ+φ
σ

+ φxL = 1
σ
[φ(1 + αL) + ρ] 6= 0. Hence Proposition A.1

applies, giving us existence for large σ.

For part (ii), we begin with the observation that for ρ = −φ, (A.13) becomes

σ2φαFαL ≤ 0. (IA.65)

Hence, there is no equilibrium in which αF and αL are both strictly positive or both strictly

negative, and (14)-(15) imply αL 6= 0 and αF 6= 0.

We now establish the existence of an equilibrium with αL < 0 < αF . Note that for ρ =

−φ, as long as αL 6= 0 (which must hold in any equilibrium), the condition φ(1+αL)+ρ 6= 0

is satisfied. When ρ = −φ and αF = αF,1, (A.14) simplifies to

√
σ2/φ+ α2

L = αL
α2
Lφ− σ2

αL(1 + αL)φ− σ2
. (IA.66)

In particular, an equilibrium with αF = αF,1 exists if and only if there exists αL satisfying

(IA.66) such that both SOCs are satisfied. Now the left hand side of (IA.66) is positive, while

the right hand side vanishes at αL = −σ/
√
φ, has limit +∞ as αL ↓ α†, and is continuous on

(α†,−σ/
√
φ), where α† was previously defined as the negative root of αL(1 +αL)φ−σ2, and

recall that α̂ is the positive root. Thus, (IA.66) has a solution in this interval. We finally

check (A.12), which is now σ2 − α2
Lφ + 2αLφαF ≤ 0. This is satisfied since αL < −σ/

√
φ

implies σ2−α2
Lφ < 0, and clearly 2αLφαF < 0. Since αF and αL have opposite signs, (A.13)

is satisfied. Hence, existence follows from Proposition A.1.

V.B Existence and uniqueness for small σ (Proof of Proposition

8)

Since Proposition A.2 establishes existence and uniqueness for all σ > 0 when ρ = 0, assume

ρ 6= 0. We will show that for sufficiently small σ > 0, there is a unique pair (αL, αF )

satisfying (A.7), (A.23), (A.12), and (A.13). Further, we will show that φ(1 + αL) + ρ 6= 0,

so existence follows from Proposition A.1.
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In any equilibrium, (αL, αF ) must solve (A.23). By squaring both sides of this equation,

using (A.7), and multiplying through by the nonzero denominator, we get (A.26). Now as

σ → 0, the coefficients of the polynomial Q converge to those of

Qσ=0(αL) := −α6
Lφ

2[ρ+ φ+ αLφ]2(φ2 − ρ2), (IA.67)

which has a root of multiplicity 6 at 0 and of multiplicity 2 at −ρ+φ
φ

.

By Lemma A.2, for any ε > 0, there exists δ > 0 such that if σ ∈ (0, δ), Q has 6 complex

roots within distance ε of 0 and 2 complex roots within ε of −ρ+φ
φ

. For ε sufficiently small

that these neighborhoods do not intersect, and δ chosen accordingly, let α1, . . . , α6 denote

the 6 roots near 0, and let α7 and α8 denote the roots near −ρ+φ
φ

. We maintain these

assumptions on ε and δ throughout the proof.

The following lemma rules out α7 and α8 from being part of an equilibrium.

Lemma IA.2. For sufficiently small σ > 0, each of α7 and α8 is either complex or otherwise

fails (A.12).

Proof. The left side of (A.12) is continuous in (σ, αL) at
(

0,−ρ+φ
φ

)
, where it evaluates to

(φ + ρ)2/φ > 0. Hence, choosing ε > 0 sufficiently small, and δ > 0 sufficiently small as

described before the lemma, if either α7 or α8 is real, it fails (A.12).

Remark 2. Having ruled out α7 and α8, note that if σ is sufficiently small, then for any real

αL ∈ {α1, . . . , α6}, ρ+φ+αLφ 6= 0. This fact is useful two fold: (i) this criterion appears in

the sufficiency part of Proposition A.1, and (ii) due to (A.23), using that ρ 6= 0 and αF,1 6= 0

and αF,2 6= 0 for αL real, we have σ2 − αL(1 + αL) 6= 0 for sufficiently small σ for αL real.

Thus, any real solution to (A.26) solves (A.25).

We can now rule out equilibria in which αF = αF,2, as these fail the follower’s second

order condition when σ is sufficiently small. To do so, we use asymptotic properties of the

roots of (A.26) as σ → 0.

It is useful to define a change of variables z = αL/σ in (A.26) and divide through the

resulting equation by σ6, obtaining an equivalent equation

0 = Q̃(z, σ) := σH(z) + F (z), (IA.68)

where H(z) is a polynomial of degree 8 and where F (z) is a polynomial independent of σ

that has the form c6z
6 + c4z

4 + c2z
2 + c0.3 For each i ∈ {1, 2, . . . , 6}, define zi = αi/6.

3In particular, F (z) = −z6(φ−ρ)φ2(φ+ρ)3+z4φ[−2ρ4−4ρ3φ+2ρφ3+φ4]+z2(ρ2+ρφ+φ2)2−φ(ρ+φ)2.
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Lemma IA.3. F has 6 distinct roots, denoted ẑ1, . . . , ẑ6, of which exactly two are positive,

two are negative, and two are complex. As σ → 0, z1, . . . , z6 converge to ẑ1, . . . , ẑ6.

Proof. We first characterize the roots of F . Consider the cubic polynomial G(y) = c6y
3 +

c4y
2 + c2y + c0, where F (y) = G(y2). We have G(0) < 0 and limy→−∞G(y) = +∞, so G

has a negative root. Also, we have limy→+∞G(y) = −∞ and G(1/φ) = 2ρ2φ > 0, so G has

two distinct positive roots: one in (0, 1/φ) and one in (1/φ,+∞). Since G is cubic, there are

no other roots (real or complex). Now the negative root of G corresponds to two distinct

complex roots of F , and the positive roots of G each correspond to both one positive and

one negative root of F , all distinct.

We now turn to the convergence claim in the lemma. Next, set K = 1 + maxi∈{1,...,6} |ẑi|,
and define a compact set K = {z ∈ C : |z| ≤ K}. By definition, all roots of F lie in K.

Further, note that on K, for any sequence (σn)n∈N with σn ↓ 0, the sequence (Q̃(·, σn))n∈N of

functions defined on K is equicontinuous and converges pointwise to F since σH(z) vanishes;

thus, by the Arzela-Ascoli theorem, the sequence converges uniformly to F on K.

Choose η > 0 less than 1 and less than the minimum distance between any ẑi and ẑj,

where i, j ∈ {1, . . . , 6} and i 6= j. Then for all η ∈ (0, η), for each i ∈ {1, . . . , 6}, 0 is the

unique value of t ∈ (1− η, 1 + η) such that 0 = F (tẑi). Further, F (tẑi) takes opposite signs

at t = 1 + η and t = 1 − η. By uniform convergence, for each such η, it holds that for

all sufficiently small σ > 0, and for all i ∈ {1, . . . , 6}, Q̃((1 + η)ẑi, σ) and Q̃((1 − η)ẑi, σ)

have the same signs as F ((1 + η)ẑi) and F ((1 − η)ẑi), respectively; thus, for all sufficiently

small σ > 0, there exists ti(σ) in (1 − η, 1 + η) such that Q̃(ti(σ)ẑi, σ) = 0, and therefore,

{z1, . . . , z6} = {t1(σ), . . . , t6(σ)}. Relabelling so that zi = ti(σ), we have zi → ẑi for each

i ∈ {1, . . . , 6}.

We now analyze the follower’s SOC.

Lemma IA.4. If σ > 0 is sufficiently small, then (i) there is no equilibrium in which

αF = αF,2, and (ii) for αF = αF,1, (A.13) is satisfied for all real roots of Q among a1, . . . , a6.

Proof. Having ruled out equilibria in which αL ∈ {α7, α8} (when σ > 0 is small), we show

that for αF = αF,2 and for sufficiently small σ > 0, (A.13) fails for all real roots among

α1, . . . , α6. By Lemma IA.3, each αi/σ, i ∈ {1, . . . , 6}, converges to a finite nonzero limit ẑi.

Hence, for sufficiently small σ > 0, if αL = αi, for some i ∈ {1, . . . , 6} is real, the factor in

square brackets in (A.13) is bounded below by

α2
i (φ

2 − ρ2) + σ2(φ+ ρ)− |αiρ|σ2 ≥ α2
i (φ

2 − ρ2) + σ2(φ+ ρ)− |ρzi|σ3
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= σ2(z2
i (φ

2 − ρ2) + φ+ ρ− |ρzi|σ),

where z2
i (φ

2 − ρ2) + φ+ ρ− |ρzi|σ → ẑi(ρ
2 − ρ2) + φ+ ρ > 0. Since −αF,2 > 0, this implies

that (A.13) fails.

For αF = αF,1, the same bound above holds, but since −αF,1 < 0, (A.13) is satisfied.

From the proof of Proposition A.4, any equilibrium value of αL must solve (A.14) (with

αF = αF,1) or (A.15)(with αF = αF,2). By Lemma IA.4 part (i), αL must solve (A.14).

We now turn to the leader’s SOC.

Lemma IA.5. If σ > 0 is sufficiently small, then (i) there is no equilibrium in which αL ≤ 0,

and (ii) if αL > 0 is a real root of (A.26) and αF = αF,1, then (A.12) is satisfied.

Proof. For part (i), we only need to consider the roots α1, . . . , α6, since for sufficiently small

σ α7 and α8 cannot be part of an equilibrium by Lemma IA.2. By Lemma IA.4, we further

only need to consider αF = αF,1, for which (A.12) becomes

σ2 − α2
Lφ− 2αL

(
ρ+ φ+ ρσ

√
σ2 + (αL/σ)2σ2φ

φ+ (αL/σ)2(−(ρ)2 + (φ)2)

)
≤ 0. (IA.69)

Clearly, this is violated if αL = 0. And since αL → 0 in proportion to σ by Lemma IA.3, for

small σ, the dominating term is −2αL(ρ+φ), which is positive (violating (IA.69)) if αL < 0.

For part (ii), we again only need to consider the roots α1, . . . , α6, since for sufficiently

small σ, α7 and α8 are not positive real numbers as they converge to −ρ+φ
φ

. Following the

same calculation above, for sufficiently small σ, the left hand side of (A.12) has the same

sign as −2αL(ρ+ φ), which is negative for αL > 0, satisfying (A.12).

In light of Lemma IA.5, we use Lemma IA.3 to show that for sufficiently small σ > 0,

there is exactly one positive solution to (A.14), and thus one equilibrium candidate. We

establish this in the following lemma:

Lemma IA.6. For sufficiently small σ > 0, equation (A.26) has exactly two positive roots,

one solving (A.14) and the other solving (A.15).

Proof. Any (positive) solution to (A.14) or (A.15) must be a (positive) root of (A.26). From

the proof of Proposition A.4, (A.26) has at least two positive roots, one for each equation

(A.14) and (A.15), so it suffices to show that these are the only two positive roots of (A.26).

Using the change of variables z = αL/σ, Q̃(·, σ) has at least two positive real roots for all

sufficiently small σ. But Q̃(·, σ) cannot have more than two positive roots for all sufficiently

small σ. To see this, recall that for small σ, α7 and α8 are complex or negative, so any
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positive roots must be among α1, . . . , α6. And if there were more than two such positive

roots, then by Lemma IA.3, F would have more than two nonnegative roots, a contradiction.

Mapping back to αL = zσ, this implies that (A.26) has exactly two roots for sufficiently small

σ, (A.14) and (A.15) each have exactly one.

From Lemmas IA.4, IA.5, and IA.6, for sufficiently small σ > 0, there is exactly one pair

(αL, αF ) solving (A.7), (A.10), (A.13), and (A.12), and thus at most one equilibrium. By

Remark 2, we can invoke the “converse” part of Proposition A.1, establishing existence.

VI Endogenizing initial positions

In this section, we analyze an extension of the model with pre-game trading and show numer-

ically that it can endogenize perfect positive correlation and imperfect negative correlation,

as mentioned in Section 7.

VI.A Setup

There are two identical traders i = 1, 2 who start with no ownership of the firm’s stock and

simultaneously place orders θi. A market maker (MM) observes total order flow

Ψ0 = θ1 + θ2 + σZ0,

where σ > 0 is a known constant (the same as in the leader-follower game) and Z0 ∼ N(0, 1),

and executes at a price Ppre. Suppose the firm’s value has an exogenous additive component

v ∼ N(0, σ2
v), and the each agent observes a noisy signal

si = v + εi

where ε1, ε2 are jointly normal with mean 0 and the following covariance matrix:

(
σ2
ε ρεσ

2
ε

ρεσ
2
ε σ2

ε

)
.

After this round of trading, we assume that v is publicly revealed.4 Then, with probability

q, it is publicly revealed that there are activism opportunities at the target firm, meaning

that our leader-follower game is played, and firm value (per share) is the sum of v and the

players’ efforts. In Sections VI.B and VI.C, we assume that the roles of leader and follower

4We consider the perfect revelation of the exogenous component not because we cannot carry two forms
of private information (block sizes and fundamental value), but because it simplifies the task of generating
positive/negative correlation while fitting 100% in our baseline model. Even if we consider two-dimensional
private information, activists using linear strategies for the both pieces of private information; hence this
does not effect our point of generating the initial correlation structure.
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are assigned to the players with equal probabilities; in Section VI.D, we allow roles to be

assigned with asymmetric exogenous probabilities. Finally, with complementary probability

1− q the game ends (the leader-follower sub-game does not arise).

In Sections VI.B and VI.C, we focus on symmetric linear equilibria, where

(i) Traders trade in the pregame according to symmetric strategies αsi;

(ii) The MM uses a linear pricing rule Ppre = φ+ Λ0Ψ0 in the pregame;5

(iii) Traders follow optimal (role-specific) strategies in the leader-follower game, and the

MM uses a linear pricing rule.

In Section VI.D, we look for asymmetric linear equilibria where , with respect to (i) the

pregame strategy coefficients are player-specific; and with respect to (iii) the strategies and

pricing rule in the leader-follower game further depend on the players’ identities i ∈ {1, 2}.

Overview of results We show that this framework can produce both positive and negative

correlation by adjusting the correlation in the noise of the players’ pregame signals.

• Positive correlation (Section VI.B): We specialize to the case ρε = 1 and numerically

establish the existence of an equilibrium. From the perspective of the market maker,

players’ initial positions entering the leader-follower game have perfect positive cor-

relation. The restriction to ρε = 1 is purely to simplify the expressions involved; by

continuity the result extends to ρε in a neighborhood of 1.

• Negative correlation (Section VI.C): We specialize to the case ρε = 0, i.e. players

receive conditionally i.i.d. signals of v, and establish the existence of an equilibrium.

From the perspective of the MM, conditional on the pregame order flow and v, players’

positions now have (imperfect) negative correlation.

• Asymmetric role assignments (Section VI.D): Assuming ρε = 1, we show how a change

in the probability of that a player becomes the leader affects trading strategies in the

pregame. This in turn affects the leader-follower game strategies, since the variances

MM’s beliefs depend on the pregame strategies.

The solution of this model with pre-game trading is more complicated, mainly due to two

additional forces. First, deviations in the pre-game lead to private information that can be

payoff-relevant in the sequential game for our players—the continuation game changes after

5We use Ppre to distinguish from P0, the expected firm value at the beginning of the leader-follower game
(after v has been revealed).

31



deviations. Specifically, with perfectly correlated signals, players must use both their signal

and their actual position resulting from pre-game trading to best respond in the continuation

game; they use the signal to forecast the other player’s position (who they assume is on

path), but after deviations in the pre-game, the player’s own position is decoupled from

the signal. With conditionally i.i.d. signals, however, the pre-game signals are only needed

in the pre-game, since after the revelation of v, a player’s own signal becomes irrelevant

for forecasting the other’s signal or position—the player’s own position is the only relevant

private information in the continuation game, on and off path.

Second, there is a non-trivial fixed point at play: the coefficient in the trading strategy in

the pre-game shapes the degree of correlation in initial blocks in our sequential game which,

via continuation payoffs, in turn matters for the determination of the aforementioned coeffi-

cient itself in pregame. This fixed point problem is particularly complex in the asymmetric

role assignments extension, as the strategies in the leader-follower game when the leader is

player 1 affect the analogous strategies when the leader is player 2, and vice versa.

VI.B Inducing positive correlation

In this section, assume ρε = 1. We reduce the problem of existence of a (symmetric linear)

equilibrium to a fixed point equation in α, which we solve numerically. This equilibrium

generates perfectly correlated positions from the perspective of the market maker.

Belief updating in the pregame Under perfectly correlated signals, player i knows

s−i = si. Now given conjectured equilibrium strategies and order flow Ψ0, the market

maker’s updated beliefs are

µv := E[v|Ψ0] =
2ασ2

v

4α2(σ2
v + σ2

ε ) + σ2
Ψ0,

µθ := E
[
θi|Ψ0

]
=

2α2(σ2
v + σ2

ε )

4α2(σ2
v + σ2

ε ) + σ2
Ψ0.

Recall that in the leader follower game, with prior mean µ, expected firm value is (2 +

αL + δL)µ. Hence, given Ψ0, the MM sets price

Ppre = µv + q(2 + αL + δL)µθ.

At the end of the pregame, players update based on (Ψ0, v) due to v becoming public.

Because of the presence of noise traders, deviations are hidden and hence each player correctly

assumes the other is on path; thus player i believes X−i0 = αsi with probability 1.
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The MM assumes both players are on path and have identical positions. The MM’s

posterior mean given (Ψ0, v) is

µX := E[X i
0|v,Ψ0] = αv +

Cov(Ψ0, Xi|v)

Var(Ψ0|v)
(Ψ0 − 2αv)

= αv +
Cov(2α(v + ε) + σZ0, α(v + ε)|v)

Var(2α(v + ε) + σZ0|v)
(Ψ0 − 2αv)

= αv +
2α2σ2

ε

4α2σ2
ε + σ2

(Ψ0 − 2αv).

The posterior variance is

φ := Var(X i
0|v,Ψ0) =

α2σ2
εσ

2

4α2σ2
ε + σ2

. (IA.70)

Due to perfectly correlated signals, the traders do not use (Ψ0, v) to update beliefs about

each other’s signals and positions.

Best response problems in the leader-follower game In this subsection, we solve the

players’ best response problems in the leader-follower game after arbitrary histories of the

pregame.

In a conjectured equilibrium, the relevant state variables entering the leader-follower

game are (X i
0, si, µX , v), where µX := E[X i

0|Ψ0, v]. A few comments are in order:

1. Although the prior expectation of si is just v, the public posterior expectation “µs”

about si given (Ψ0, v) is not v; higher Ψ0 is indicative of higher errors εi.

2. However, on the path of play of the pre-game, X i
0 = αsi, and the MM assumes players

are on path, so µX is a sufficient statistic for µs: µs = µX/α.

3. Also on the path of play, X i
0 is a sufficient statistic for si, but since players can deviate

in the pre-game, si is a relevant state entering the leader-follower game.

4. All first-order beliefs and higher-order beliefs about (X i
0, si) can be written in terms of

(X i
0, si, µX , v).

Write the expanded strategies of the players in the leader-follower game as

θL = α̂LX
L
0 + δLµ+ ν̂LsL,

θF = α̂F (XF
0 −MF

1 ) + ν̂F (sF −MF
1 /α) = α̂FX

F
0 + ν̂F sF + βF (P1 − v) + δFµ,
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where we abbreviate µX to µ, and where MF
1 /α = E[sF |Ψ1,Ψ0, v].

These will coincide with the on-path equilibrium strategies we already know:

αL = α̂L +
ν̂L
α
,

αF = α̂F +
ν̂F
α
.

The follower’s objective is

sup
θF

E[(v +XL
0 + θL +XF

0 + θF )(XF
0 + θF )− (P1 + Λ2Ψ2)θF − 1

2
(XF

0 + θF )2|XF
0 , sF ,F1, θ

F ],

where F1 is the sigma-algebra generated by (Ψ0,Ψ1, v). The first order condition is

0 = E[v +XL
0 + θL +XF

0 + θF − P1 − 2Λ2θ
F |XF

0 , sF ,F1, θ
F ] (IA.71)

= v + αsF (1 + αL) + δLµ+XF
0 + θF − P1 − 2Λ2θ

F . (IA.72)

Plugging in the extended strategy and matching coefficients yields

α̂F =
1

2 + αL
αF ,

ν̂F =
α(1 + αL)

2 + αL
αF ,

and indeed, on path, we have α̂FX
F
0 + ν̂F sF = α̂FX

F
0 + ν̂FX

F
0 /α = αFX

F
0 . Intuitively, the

private state sF informs the follower about the contribution to firm value of (1 + αL)XL
0

in the leader’s terminal position, while the private state XF
0 informs him about his own

contribution XF
0 , and XF

0 = XL
0 on path as we are assuming perfect correlation in the

signals.

The leader’s first-order condition is

0 = E
[
v +XL

0 + θL +XF
0 + θF − (P0 + Λ1 {Ψ1 − (αL + δL)µ})− θLΛ1

+(XL
0 + θL)Λ1βF |XL

0 , sL,F0, θ
L
]

(IA.73)

= v +XL
0 + θL + αsL(1 + αF ) + δFµ+ (βF − 1)E

[
P1|XL

0 , sL,F0, θ
L
]
− θLΛ1 + (XL

0 + θL)Λ1βF ,

(IA.74)

where F0 is generated by (Ψ0, v) and where

E
[
P1|XL

0 , sL,F0, θ
L
]

= P0 + Λ1

{
θL − (αL + δL)µ

}
.
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Matching coefficients on XL
0 and sL yields expressions for α̂L and ν̂L in terms of the

already known (baseline model) equilibrium coefficients:

α̂L =
1 + βFΛ1

2(1− βF )Λ1 − 1
,

ν̂L =
α(1 + αF )

2(1− βF )Λ1 − 1
,

and thus α̂L
ν̂L

= 1+βFΛ1

α(1+αF )
.

Outline of remaining steps to establish fixed point numerically

1. From the optimal extended strategies in the leader-follower game, we obtain the players’

expected payoffs (immediately after leader-follower roles are assigned) from arbitrary

histories in the pregame as quadratic functions VL(X i
0, si, v, µX), VF (X i

0, si, v, µX), for

any conjectured α, where φ determined by (IA.70).

2. Using these continuation payoffs, we write down trader i’s maximization problem in

the pre-game:

sup
θi

E[−Ppreθ
i + (1− q)vθi +

q

2
(VL(θi, si, v, µX) + VF (θi, si, v, µX))].

3. Next, we obtain a fixed point equation for α by imposing the first-order condition with

respect to θi and then evaluate at the conjectured equilibrium strategy θi = αsi.

4. Numerically, we show that this equation has a solution α∗ > 0; see left panel of Figure

2. Moreover, α∗ homogeneous of degree 0 in (σ, σv, σε).

For details, the reader can access the Mathematica file inducingpositivecorrelation-sy

mmetric.nb on the authors’ websites.

VI.C Inducing negative correlation

Throughout this section, assume that ρε = 0, so that pre-game signals are uncorrelated

conditional on v. We again reduce the problem of existence of an equilibrium to a fixed

point equation in α and solve it numerically. This equilibrium generates negatively correlated

positions from the perspective of the market maker conditional on the public information

(Ψ0, v).
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Belief updating in the pregame Given si, player i’s beliefs about s−i and v are as

follows:6

• s−i|si ∼ N
(

σ2
v

σ2
v+σ2

ε
si,

σ2
ε (σ2

ε+2σ2
v)

σ2
v+σ2

ε

)
,

• v|si ∼ N
(

σ2
v

σ2
v+σ2

ε
si,

σ2
vσ

2
ε

σ2
v+σ2

ε

)
.

Let µθ := E
[
θ1+θ2

2
|Ψ0

]
, µv := E[v|Ψ0], and µX := E

[
θ1+θ2

2
|Ψ0, v

]
. As E[Ψ0] = 0, we have

µθ =
Cov

(
θ1+θ2

2
,Ψ0

)
Var (Ψ0)

Ψ0 =
α2(2σ2

v + σ2
ε )

2α2(2σ2
v + σ2

ε ) + σ2
Ψ0, (IA.75)

µv =
Cov (v,Ψ0)

Var (Ψ0)
Ψ0 =

2ασ2
v

2α2(2σ2
v + σ2

ε ) + σ2
Ψ0. (IA.76)

As in the previous section, the MM sets price

Ppre = µv + q(2 + αL + δL)µθ,

now with µv and µθ given by (IA.75)-(IA.76).

After v is publicly revealed, the MM’s beliefs update as follows:

µX := E[X i
0|Ψ0, v] = αv +

α2σ2
ε

2α2σ2
ε + σ2

Ψ0, (IA.77)

φ := Var(θi|Ψ0, v) = α2σ2
ε

[
1− α2σ2

ε

2α2σ2
ε + σ2

]
=
α2σ2

ε (α
2σ2

ε + σ2)

2α2σ2
ε + σ2

, (IA.78)

ρ := Cov(θ1, θ2|Ψ0, v) = − α4σ4
ε

2α2σ2
ε + σ2

. (IA.79)

Note that in the numerical solution we find, α 6= 0, so indeed ρ < 0; that is, the pregame

induces negatively correlated positions.

Unlike in the perfect correlation case, the players must also use Ψ0 and v to update about

the other’s positions entering the pregame. Players assume each other are on path. Given

X i
0—which is θi from the pre-game—and v, players’ private beliefs, on and off path, entering

the leader-follower game are X−i0 |X i
0 ∼ N(Y i

0 , ν
i
0), where

Y i
0 = E[αS−i|Ψ0, θ

i, v] = v +
ασ2

ε

α2σ2
ε + σ2

(Ψ0 − θi − αv),

νi0 =
σ2
εσ

2

σ2 + α2σ2
ε

.

6The posterior covariance is not needed.
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While players could use v to form better estimates of each other’s signals, since those

signals are payoff irrelevant in the continuation game, and thus this exercise is unnecessary.

(Indeed, as above, signals are not used to forecast the other’s position.)

The leader-follower continuation game From the preceding discussion, players’ only

relevant private information in the leader-follower game is their position X i
0. Expected pay-

offs will depend on v, but v does not affect the players’ strategies (when the follower’s strategy

is written as θF = αF (XF
0 −MF

1 )), since it is a public additive component of firm value. Let

VL(x, µ, v) and VF (x, µ, v) (quadratic functions) denote the players’ expected payoffs from

the leader-follower continuation game after roles are assigned, with the information structure

parameters φ and ρ given by (IA.77)-(IA.79) given a conjectured coefficient α.

Player i’s best response problem in the pregame is now

sup
θi

E[−Ppreθ
i + (1− q)vθi +

q

2
(VL(θi, µX , v) + VF (θi, µX , v))].

The first order condition yields a fixed point equation for α, and we show numerically

that it has a solution α∗ > 0, inducing negatively correlated positions; see the right panel of

Figure 2. This solution is again homogeneous of degree zero in (σ, σv, σε).

Remark 3. If we further specialize to σv = 0, then players’ signals are no longer payoff

relevant even in the pre-game, and the model effectively induces a mixed strategy equilibrium,

with the signals serving as independent randomization devices. Since signals are then payoff

irrelevant, the first order condition is the same for each signal, and this means that players

are indifferent over all possible trades.
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Figure 2: First order condition (FOC) in pregame evaluated at the conjectured strategy α, as a
function of α. Parameter values: σ = σv = σε = q = 1, ρε = 1 (left) and ρε = 0 (right).

The left and right panels of Figure 1 show the fixed points leading to perfect positive

correlation and (imperfect) negative correlation, respectively. The fixed point in the perfect

positive correlation case is larger, reflecting more intense trading in the pre-game; this is
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consistent with the “rat race” phenomenon in dynamic trading models with correlated private

information (Foster and Viswanathan, 1996). For details on the negative correlation case,

the reader can access the Mathematica file inducingnegativecorrelation.nb on the

authors’ websites.

VI.D Asymmetric random assignment of leader and follower roles

In our extended model that endogenizes initial positions with pregame trading, the leader

and follower roles are assigned randomly with equal probability, independent of the first

period outcome, making the pre-game symmetric. Let us now suppose that the leader and

follower roles (in the sequential trading game that follows the pre-game trading round) are

randomly assigned according to a parameter r ∈ [1/2, 1] before the pre-game, but maintain

the other features of the setup. To reduce the notational burden, we assume that the leader-

follower game will take place with probability q = 1. We assume r is the probability that

player 1 is selected to be the leader (and player 2 the follower), while 1− r is the probability

that player 2 is selected to be the leader (and player 1 the follower). For simplicity, assume

perfectly correlated pre-game signals. Pre-game trades occur simultaneously. Note that for

r > 1/2, the game is no longer symmetric unless r = 1
2
, therefore players have different

incentives in the pre-game. We now look for linear equilibria as follows:

• In the pregame, trader i ∈ {1, 2} trades according to χis.

• The MM uses a linear pricing rule Ppre = φ+ Λ0Ψ0 in the pregame

• In the leader-follower game, the players follow expanded strategies

θL,i = α̂L,iX
L,i
0 + δL,iµXi + ν̂L,isL,i,

θF,i = α̂F,i(X
F,i
0 −M

F,i
1 ) + ν̂F,i(sF,i −MF,i

1 /χF,i) = α̂F,iX
F,i
0 + ν̂F,isF,i + βF,i(P1 − v) + δF,iµXi ,

which, along the path of play, will have the same form as in the baseline model: θL,i =

αL,iX
L,i
0 + δL,iµXi and θF,i = αF,iX

F,i
0 +βF,iP1 + δF,iµXj . (Note that µXi and µXj are propor-

tional by a constant.) Since problem is no longer symmetric we need to keep track of the

identity of the leader and the follower.

Belief updating in the pregame Given the conjectured equilibrium strategies and order

flow Ψ0, the market maker’s updated beliefs are

µv := E[v|Ψ0] =
(χ1 + χ2)σ2

v

(χ1 + χ2)2(σ2
v + σ2

ε ) + σ2
Ψ0,
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µθi := E
[
θi|Ψ0

]
=

χi(χ1 + χ2)(σ2
v + σ2

ε )

(χ1 + χ2)2(σ2
v + σ2

ε ) + σ2
Ψ0.

Hence, given Ψ0, the MM sets price

Ppre = µv + r ((1 + αL,1 + δL,1)µθ1 + µθ2) + (1− r) ((1 + αL,2 + δL,2)µθ2 + µθ1) .

At the end of the pregame, players update based on (Ψ0, v) due to v becoming public.

Because of the presence of noise traders, deviations are hidden and hence each player correctly

assumes the other is on path; thus player i believes X−i0 = χjsi with probability 1. The

MM assumes both players are on path and have perfectly correlated positions. The MM’s

posterior mean given (Ψ0, v) is

µXi := E[X i
0|v,Ψ0] = χiv +

Cov(Ψ0, X
i
0|v)

Var(Ψ0|v)
(Ψ0 − (χ1 + χ2)v) (IA.80)

= χiv +
Cov((χ1 + χ2)(v + ε) + σZ0, χi(v + ε)|v)

Var((χ1 + χ2)(v + ε) + σZ0|v)
(Ψ0 − (χ1 + χ2)v)

(IA.81)

= χiv +
χi(χ1 + χ2)σ2

ε

(χ1 + χ2)2σ2
ε + σ2

(Ψ0 − (χ1 + χ2)v). (IA.82)

The posterior variance is

φi := Var(X i
0|v,Ψ0) =

χ2
iσ

2
εσ

2

(χ1 + χ2)2σ2
ε + σ2

. (IA.83)

Due to perfectly correlated signals, the traders do not use (Ψ0, v) to update beliefs about

each other’s signals and positions. We define P0 as the MM’s expectation of firm value after

v and identity of the leader are revealed but before the leader-follower game starts. Assume

agent i is assigned as the leader,

P0 = v + µXi(1 + αL,i + δL,i) + µXj . (IA.84)

Note that Ppre is the MM’s expectation of P0 after the MM observes Ψ0 but just before v

and the identity of leader is revealed.

Best response problems Suppose the agent i becomes the follower and agent j is the

leader, then follower’s objective in the leader-follower game is

sup
θF,i

E[(v +XL,j
0 + θL,j +XF,i

0 + θF,i)(XF,i
0 + θF,i)− (P1 + Λ2Ψ2)θF,i − 1

2
(XF,i

0 + θF,i)2|XF,i
0 , sF,i,F1, θ

F,i],
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where F1 is the sigma-algebra generated by (Ψ0,Ψ1, v). The first order condition is

0 = E[v +XL,j
0 + θL,j +XF,i

0 + θF,i − P1 − 2Λ2θ
F,i|XF,i

0 , sF ,F1, θ
F,i]

= v + χjsF (1 + αL,j) + δL,jµXj +XF,i
0 + θF,i − P1 − 2Λ2θ

F,i, (IA.85)

where µXj = µXiχj/χi. Plugging in the extended strategy and matching coefficients yields

αF,i = σ/

√
γF,i1 , (IA.86)

α̂F,i =
αF,i

1 + (1 + αL,j)χj/χi
,

ν̂F,i = χj(1 + αL,j)α̂F,i,

βF,i = −α̂F,i,

δF,i = δL,jα̂F,iχj/χi.

The leader’s first-order condition (agent j) is

0 = E
[
v +XL,j

0 + θL,j +XF,i
0 + θF,i − (P0 + Λ1

{
Ψ1 − (αL,j + δL,j)µXj

}
)− θL,jΛ1

+(XL,j
0 + θL,j)Λ1βF,i|XL,j

0 , sL,j,F0, θ
L,j
]

= v +XL,j
0 + θL,j + χisL(1 + αF,i) + δF,iµXi + (βF,i − 1)(P0 + Λ1

{
θL,j − (αL,j + δL,j)µXj

}
)

− βF,iv − θL,jΛ1 + (XL,j
0 + θL,j)Λ1βF,i,

where F0 is generated by (Ψ0, v) and µXi = µXjχi/χj. Matching coefficients on XL,j
0 , sL,

and µXj
7 yields

α̂L,j =
1 + βF,iΛ1

2(1− βF,i)Λ1 − 1
,

ν̂L,j =
χi(1 + αF,i)

2(1− βF,i)Λ1 − 1
,

δL,j = − σ2

αL,jφL,j
.

On the path of play, the weight on XL,j
0 is

αL,j = α̂L,j + ν̂L,j/χj =
1 + βF,iΛ1 + (χi/χj)(1 + αF,i)

2(1− βF,i)Λ1 − 1
, (IA.87)

7The v-terms in the FOC already cancel out, so there is no coefficient on v in the leader’s strategy.
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which is an equation in (αL,j, αF,i) given our earlier characterization of βF,i. By the same

arguments as before, there is a pair of positive real values of (αL,j, αF,i) that solves the system

(IA.86) and (IA.87).

Given their pregame trades (i.e., positions), realized pregame order flow Ψ0, the revealed

v, and the leader/follower role assignments, the players obtain quadratic expected continu-

ation payoffs for the leader-follower game: VL,i(θ
i, s, v, µXi , µXj) and VF,i(θ

i, s, v, µXj , µXi).

The first order condition for player i’s pregame trade is

0 =
∂

∂θi
E[−Ppreθ

i + rV L,i(θi, s, v, µXi , µXj) + (1− r)V F,i(θi, s, v, µXj , µXi)]. (IA.88)

Together, the first order conditions (IA.88) for player i = 1, 2 in the pregame and the

first order conditions for player i = 1, 2 as leader in the leader-follower game (IA.87) yield a

system of four equations in (χ1, χ2, αL,1, αL,2), as all other strategy coefficients can be written

in terms of these coefficients. We solve this system numerically by solving all four equations

simultaneously. Although (αL,1, αL,2) can be solved numerically in terms of (χ1, χ2) alone,

this would still leave a system in (χ1, χ2), and it would still not be possible to plot an analog

of Figure 2. The reader can access the full equations and the solution in the Mathematica

file includingpositivecorrelation-asymmetricroleassignments.nb on the authors’

websites.

Equilibrium and intuition Let us examine how player 1’s equilibrium behavior varies

with r ∈ [1/2, 1] from a time-0 perspective, but after learning her type s. To this end, recall

that on the path of play activist i places a pre-game trade of

χis. (IA.89)

Meanwhile, if she happens to become the leader, she completes her block according to the

strategy

αL,iX
L,i
0 + δL,iµXi , (IA.90)

where XL,i
0 = χis and µXi = E[XL,i

0 |v,Ψ0]. Averaging µL,i over (Ψ0, v) delivers activist i’s

expected trade conditional on being a leader of type s:

E[θL,i|s] = χiαL,is+ δL,iE
[
E
[
XL,i

0 |v,Ψ0

]
|s
]

(IA.91)

= χiαL,is+ δL,iE
[
χiv +

χi(χ1 + χ2)σ2
ε

(χ1 + χ2)2σ2
ε + σ2

(Ψ0 − (χ1 + χ2)v)
∣∣s]

= χi(αL,i +
σ2
v

σ2
v + σ2

ε

δL,i)s+ δL,i
χi(χ1 + χ2)2σ2

ε

(χ1 + χ2)2σ2
ε + σ2

σ2
ε

σ2
ε + σ2

v

s
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= χi

(
αL,i + δL,i

(
σ2
v

σ2
v + σ2

ε

+
σ2
ε

σ2
ε + σ2

v

(χ1 + χ2)2σ2
ε

(χ1 + χ2)2σ2
ε + σ2

))
s. (IA.92)

The first equality follows from XL,i
0 = χis; the second uses equation (IA.82); and the final

two use that E[v|s] = σ2
v

σ2
v+σ2

ε
s, together with the fact that noise trading is independent of s .

Equipped with this, player i’s terminal position conditional on being a leader of type s

reads

E[XL,i
T |s] = χis+ χi

(
αL,i + δL,i

(
σ2
v

σ2
v + σ2

ε

+
σ2
ε

σ2
ε + σ2

v

(χ1 + χ2)2σ2
ε

(χ1 + χ2)2σ2
ε + σ2

))
s. (IA.93)

The following figure shows how the players’ equilibrium coefficients, as well as their

expected trades and terminal positions, vary with r.
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Figure 3: Coefficients as a function of r, fixing σ = σε = σv = 1. Upper left panel:
(χ1, χ2, αL,1, αL,2); Upper right panel: (χ1, χ2, χstatic). Lower panel: Player 1’s expected trades
and terminal position conditional on s = 1.

The top left panel displays the strategy coefficient in the pre-round: χ1 in continuous

red for player 1, and in dashed the counterpart for player 2, both as a function of r. The

main message is the decreasing pattern of player 1’s coefficient: (1) player 1 scales down

her purchases as r grows and she is more likely to be the leader (player two responds with a

coefficient χ2 that is increasing as a result). The panel on the right then plots the coefficient

on the now initial block χis for each of our players: αL,1 in continuous blue, while αL,2 in
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dashed (the original χi coefficients are at the bottom for comparison), showing now that (2)

player 1, if becoming a leader, would attach more weight to her initial block as r increases.

Whether this maps into more or less buying depends on the “public” part of the strategy.

For this we look at the bottom panel for player 1’s expected trades conditioning only on s:

the middle curve is her pre-round trade χ1s (same as in the first panel); the bottom curve

is her expected trade if chosen a leader, E[θL,i|s] as in (IA.92); and at the top is the sum

of both, or player 1’s expected terminal position E[XL,i
T |s] as given in (IA.93). There are

two additional messages here: first, (3) player 1 does buy more aggressively as r grows when

finalizing her block ; second, (4) conditional on being a leader, player 1’s average terminal

position falls with r.8

The takeaways (1)–(4) are interesting. First, (4) is consistent with our model’s message

that having an opportunity to move first would yield a weaker incentive to build a block—

now we have a version of that logic using the intensive margin r ∈ [1/2, 1]. Equipped

with this, how exactly (1), (2) and (3) are linked is noteworthy. As player 1 trades less

aggressively in the first round and builds a smaller block, she knows that she constitutes

a smaller fraction of the total uncertainty related to the firm (i.e., Var(χ1s) = χ2
1Var(s) is

increasing in χ1), which limits her price impact. With prices that move less, the manipulation

motive is weakened in favor of exploiting trading gains, leading to both αL,1 and player 1’s

expected trade conditional on being a leader to grow with r, explaining (2) and (3). But

why would the likely leader trade less in the pre-round, our point (1)? One possibility is

that she anticipates the trading losses that she incurs when acting as a leader, which are

encoded in the deviation from the “Kyle optimum.” Optimizing those losses from a time

zero perspective would likely require choosing an initial block size that is smaller, because

this reduces the trading gains that are given up at the moment of acting as a leader. This,

in turn, eases the tension between manipulating the follower and making trading profits.

Altogether, this variation reveals that while a higher likelihood of being a leader reduces

the overall incentive to acquire shares—as measured by player 1’s terminal position—it also

triggers more aggressive block-building conditional on being a leader. This has interesting

implications on the dynamics of block-building. Concretely, an activist leader initially places

increasingly small trades—reminiscent of trying to camouflage her buildup—as she expects

a higher chance of enjoying both monopoly and manipulation rents in the future. When

this time comes, her smaller footprint in the market leads the activist to build her block

with more confidence while not discouraging others to add value. Smaller initial blocks for

8Player 1 buys when she is a leader because her type s is larger than the mean, which we have normalized
to zero. On the other hand, the blue vs. red ranking in the bottom panel depends on parameters: for instance,
by setting σε = 10, blue can cross red from below. Indeed, for σε large the expected value of E[XL,i

0 |Ψ0, v]
conditional on s is close to 0, therefore muting the contribution of a negative δL,i in the leader’s strategy.
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leaders—understood as the blocks that are owned before gearing towards an attack—then

constitute an equilibrium property of this broader leader-follower theory of activism.
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