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I
n the era of big data, analysts usually explore various statis-
tical models or machine-learning methods for observed 
data to facilitate scientific discoveries or gain predictive 
power. Whatever data and fitting procedures are employed, 

a crucial step is to select the most appropriate model or meth-
od from a set of candidates. Model selection is a key ingredi-
ent in data analysis for reliable and reproducible statistical 
inference or prediction, and thus it is central to scientific stud-
ies in such fields as ecology, economics, engineering, finance, 
political science, biology, and epidemiology. There has been a 
long history of model selection techniques that arise from 
researches in statistics, information theory, and signal process-
ing. A considerable number of methods has been proposed, 

following different philosophies and exhibiting varying per-
formances. The purpose of this article is to provide a compre-
hensive overview of them, in terms of their motivation, large 
sample performance, and applicability. We provide integrated 
and practically relevant discussions on theoretical properties 
of state-of-the-art model selection approaches. We also share 
our thoughts on some controversial views on the practice of 
model selection.

Why model selection
Vast developments in hardware storage, precision instrument 
manufacturing, economic globalization, and so forth have 
generated huge volumes of data that can be analyzed to extract 
useful information. Typical statistical inference or machine-
learning procedures learn from and make predictions on data 
by fitting parametric or nonparametric models (in a broad 
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sense). However, there exists no model that 
is universally suitable for any data and 
goal. An improper choice of model or 
method can lead to purely noisy discover-
ies, severely misleading conclusions, or 
disappointing predictive performances. 
Therefore, a crucial step in a typical data 
analysis is to consider a set of candidate 
models (referred to as the model class) and 
then select the most appropriate one. In 
other words, model selection is the task of 
selecting a statistical model from a model 
class, given a set of data. We may be interested, e.g., in the 
selection of

■■ variables for linear regression
■■ basis terms, such as polynomials, splines, or wavelets in 

function estimation
■■ order of an autoregressive (AR) process
■■ number of components in a mixture model
■■ most appropriate parametric family among a number of 

alternatives
■■ number of change points in time series models
■■ number of neurons and layers in neural networks
■■ best choice among logistic regression, support vector machine, 

and neural networks
■■ best machine-learning techniques for solving real-world data 

challenges on an online competition platform.
There have been many overview papers on model selection 

scattered in the communities of signal processing [1], statistics 
[2], machine learning [3], epidemiology [4], chemometrics [5], 
and ecology and evolution [6]. Despite the abundant literature 
on model selection, existing overviews usually focus on deriva-
tions, descriptions, or applications of particular model selec-
tion principles. In this article, we aim to provide an integrated 
understanding of the properties and practical performances of 
various approaches by reviewing their theoretical and practical 
advantages, disadvantages, and relations.

Some basic concepts

Notation
We use { : }pM Hm m mm !i= i  to denote a model (in the for-
mal probabilistic sense), which is a set of probability density 
functions to describe the data , , .z zn1 f  Here, Hm  is the 
parameter space associated with .Mm  A model class, 
{ } ,Mm m M!  is a collection of models indexed by .m M!  The 
number of models (or the cardinality of M ) can be fixed or 
depend on the sample size .n  For each model ,Mm  we de
note by dm  the dimension of the parameter in model .Mm  
Its log-likelihood function is written as ( ),m n m m7 ,i i =

( , , ),logp z zn1m fi  and the maximized log-likelihood value is

	 ( ), ( , , ),argmaxp z zwith,n m m m n1
Hm m

m, fi i =
!i

i
t t � (1)

the maximum likelihood estimator (MLE) under model .Mm  We 
will write ( ),n m m, it  as ,n m,t  for simplicity. We use p* and E* to 

denote the true data-generating distribution 
and expectation with respect to the true data-
generating distribution, respectively. In the 
parametric framework, there exists some 
m M!  and some Hm!i*  such that p* is 
exactly .p *i  In the nonparametric framework, 
p* is excluded in the model class. We some-
times call a model class { }Mm m M!  well-
specified (respectively, misspecified) if the 
data-generating process is in a parametric 
(respectively nonparametric) framework. We 
use p"  and d"  to denote convergence in 

probability and in distribution (under p*), respectively. We use 
( , )VN n  to denote a Gaussian distribution of mean n and cova-

riance ,V  2|d  to denote a chi-squared distribution with d degrees 
of freedom, and · 2  to denote the Euclidean norm. The word va
riable is often referred to as the covariate in a regression setting.

A typical data analysis can be thought of as consisting of 
two steps.

■■ Step 1: For each candidate model { , },pM Hm m mm !i= i  
fit all of the observed data to that model by estimating its 
parameter .Hm m!i

■■ Step 2: Once we have a set of estimated candidate models 
( ),p m Mm !iu  select the most appropriate one for either in

terpretation or prediction.
We note that not every data analysis and its associated model 

selection procedure formally rely on probability distributions. 
Examples of model-free methods are nearest-neighbor learn-
ing, certain reinforcement learning, and expert learning. Before 
we proceed, it is helpful to first introduce the following two 
concepts: the model fitting and the best model.

The model fitting 
The fitting procedure (also called parameter estimation) given 
a certain candidate model Mm  is usually achieved by mini-
mizing the following (cumulative) loss:

	 ( , ) .arg min s p zm
t

n

t
1Hm m

mi =
!i

i

=

u / 	 (2)

In (2), each p mi  represents a distribution for the data, and ( , ),s $ $  
referred to as the loss function (or scoring function), is used to 
evaluate the goodness of fit between a distribution and the obser-
vation. A commonly used loss function is the logarithmic loss

	 ( , ) ( ),logs p z p zt t= - � (3)

the negative logarithm of the distribution of .zt  Then, (2) pro-
duces the MLE for a parametric model. For time series data, 
(3) is written as , , ,logp z z zt t1 1f- -^ h  and the quadratic loss 

( , ) , ,s p z z E z z zt t p t t1 1
2

f= - -^ h" ,  is often used, where the 
expectation is taken over the joint distribution p  of , , .z zt1 f

The best model
Let p pm m= it u  denote the estimated distribution under model 

.Mm  The predictive performance can be assessed via the 
out-sample prediction loss, defined as
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	 , ( ), ( ) ,E s p Z s p z z p z dzm m=* *t t^ ^^ h hh # � (4)

where Z  is independent with and identically distributed as the 
data used to obtain .pmt  Here, Z  does not have the subscript t  
as it is the out-sample data used to evaluate the predictive per-
formance. There can be a number of variations to this in terms 
of the prediction loss function [8] and time dependency. In 
view of this definition, the best model can be naturally defined 
as the candidate model with the smallest out-sample predic-
tion loss, i.e.,

, .arg minm E s p Z
m

m0
M

=
!

*t t^ ^ hh

In other words, Mm0t  is the model whose predictive power 
is the best offered by the candidate models. We note that the 
best is in the scope of the available data, the class of models, 
and the loss function.

In a parametric framework, typically the true data-generat-
ing model, if not too complicated, is the best model. In this vein, 
if the true density function p*  belongs to 
some model Mm  or, equivalently, p p *= i*  
for some Hm!i*  and ,m M!  then we 
seek to select such Mm  (from { } )MMm m!

with probability going to one as the sample 
size increases, which is called consistency 
in model selection. In addition, the MLE 
of p mi  for Hm m!i  is known to attain 
Cramer–Rao lower bound asymptotically. 
In a nonparametric framework, the best 
model depends on the sample size—typically 
the larger the sample size, the larger the 
dimension of the best model because more 
observations can help reveal weak variables 
(whose effects are relatively small) that are out of reach at a 
small sample size. As a result, the selected model is sensitive to 
the sample size, and selection consistency becomes statistically 
unachievable. We revisit this point in the “Because All Models 
Are Wrong, Why Pursue Consistency in Selection?” section.

We note that the aforementioned equivalence between the 
best model and the true model may not hold for regression set-
tings where the number of independent variables is large rela-
tive to the sample size. Here, even if the true model is included 
as a candidate, its dimension may be too high to be appropri-
ately identified based on relatively small data. Then the para-
metric framework becomes practically nonparametric. We will 
emphasize this point in the “An Illustration on Fitting and the 
Best Model” section.

Goals of data analysis and model selection
There are two main objectives in learning from data. One is 
for scientific discovery, understanding of the data-generation 
process, and interpretation of the nature of the data. A scien-
tist, e.g., may use the data to support a physical model or id
entify genes that clearly promote early onset of a disease. 
Another objective of learning from data is for prediction, i.e., 
to quantitatively describe future observations. Here the data 

scientist does not necessarily care about obtaining an accurate 
probabilistic description of the data. Of course, one may also 
be interested in both directions.

In tune with the two different objectives, model selection 
can also have two directions: model selection for inference 
and model selection for prediction. The first one is intended to 
identify the best model for the data, which hopefully provides 
a reliable characterization of the sources of uncertainty for sci-
entific insight and interpretation. And the second is to choose a 
model as a vehicle to arrive at a model or method that offers top 
performance. For the former goal, it is crucially important that 
the selected model is not too sensitive to the sample size. For 
the latter, however, the selected model may simply be the lucky 
winner among a few close competitors, yet the predictive per-
formance can still be (nearly) the best possible. If so, the model 
selection is perfectly fine for the second goal (prediction), but 
the use of the selected model for insight and interpretation may 
be severely unreliable and misleading. Associated with the 
first goal of model selection for inference or identifying the 

best candidate is the following concept of 
selection consistency.

Definition 1
A model selection procedure is consistent if 
the best model is selected with probability 
going to one as .n " 3  In the context of 
variable selection, in practical terms, model 
selection consistency is intended to mean 
that the important variables are identified 
and their statistical significance can be as
certained in a follow-up study of a similar 
sample size but the rest of the variables can-
not. In many applications, prediction accu-

racy is the dominating consideration. Even when the best 
model as defined earlier cannot be selected with high proba-
bility, other models may provide asymptotically equivalent 
predictive performance. The following asymptotic efficiency 
property demands that the loss of the selected model or meth-
od is asymptotically equivalent to the smallest among all of 
the candidates.

Definition 2
A model selection procedure is asymptotically efficient if

	 ,min n1 as
L
L

m

m m
p

M " " 3!

t
� (5)

where mt  is the selected model, ,E s p ZL *m m= -t^ ^ hh

,E s p Z** ^ ^ hh is the adjusted prediction loss, and pmt  denotes 
the estimated density function under model .m

The subtraction of ,E s p Z** ^ ^ hh allows for better compari-
son of competing model selection methods. Another property 
often used to describe model selection is minimax-rate opti-
mality, which will be elaborated on in the “Theoretical Prop-
erties of the Model Selection Criteria” section. A related but 
different school of thought is the structural risk minimization 
in the literature of statistical learning theory. In that context, 
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a common practice is to bound the out-sample prediction loss 
using in-sample loss plus a positive term (e.g., a function of 
the Vapnik–Chervonenkis dimension [9] for a classification 
model). The major difference of the current setting compared 
with that in statistical learning is the (stronger) requirement 
that the selected model should exhibit prediction loss com-
parable to the best offered by the candidates. In other words, 
the positive term plus the in-sample loss should asymptoti-
cally approach the true out-sample loss (as sample size goes 
to infinity).

The goals of inference and prediction as assessed in terms 
of asymptotic efficiency of model selection can often be well 
aligned in a parametric framework, although there exists an 
unbridgeable conflict when a minimax view is taken to assess 
the prediction performance. We will elaborate on this and 
related issues in the “War and Peace—Conflicts Between AIC 
and BIC and Their Integration” section.

In light of all of the preceding discussions, we note that the 
task of model selection is primarily concerned with the selec-
tion of ( ),m MMm !  because once m  is identified, the model 
fitting part is straightforward. Thus, the model selection pro-
cedure can also be regarded as a joint estimation of both the 
distribution family Mm^ h and the parameters in each family 

.Hm m!i^ h

A model class { }Mm m M!  is nested if smaller models are 
always special cases of larger models. For a nested model 
class, the model selection is sometimes referred to as the 
order selection problem. The task of model selection in its 
broad sense can also refer to method (or modeling procedure) 
selection, which we shall revisit in the “Modeling Procedure 
Selection” section.

An illustration on fitting and the best model
We provide a synthetic experiment to illustrate the general 
rules that 1) better fitting does not imply better predictive per-

formance, and 2) the predictive performance is optimal at a 
candidate model that typically depends on both the sample 
size and the unknown data-generating process. As a result, an 
appropriate model selection technique is important to single 
out the best model for inference and prediction in a strong, 
practically parametric framework or to strike a good balance 
between the goodness of fit and model complexity on the 
observed data to facilitate optimal prediction in a practically 
nonparametric framework.

Example 1 
Suppose that a set of time series data { : , , }z t n1t f=  is ob
served, and we specify an AR model class with order at most 

.dn  Each model of dimension (or order) ( , , )k k d1 nf=  is in 
the form of

	 ,z z,t k i
i

k

t i t
1

} f= +
=

-/ � (6)

referred to as the AR(k), where R,k i !}  , ,( ),i k1 f=  ,0,k k !}  
and tf s are independent Gaussian noises with zero mean 
and variance .2v  Adopting quadratic loss, the parameters 

, ,, ,k k k1 f} }  can be estimated by the method of least sq
uares. When the data-generating model is unknown, one 
critical problem is the identification of the (unknown) order 
of the AR model. We need to first estimate parameters with 
different orders , , d1 nf  and then select one of them based on 
a certain principle.

Experiment
In this experiment, we first generate time series data using 
each of the following three true data-generating processes, 
with the sample sizes , , , , , .n 100 500 2 000 3 000=  We then fit 
the data using the model class in Example 1, with maximal 
order .d 15n =
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FIGURE 1. The parametric framework: the best predictive performance is achieved at the true order three. (a) The in-sample loss for each sample size n 
monotonically decreases as the order (model complexity) increases. (b) The predictive performance is only optimal at the true order (circled). (c) The 
most efficient model (circled) is therefore the true model.



20 IEEE Signal Processing Magazine   |   November 2018   |

1)	 Parametric framework: The data are generated in the way 
described by (6) with true order k 30 =  and parameters 

.0 7,3} =, ,  ( , , ) .1 2 3, =

Suppose that we adopt the quadratic loss in Example 1. 
Then we obtain the average in-sample loss

( ) .( )e n k z z,k
t k

n

t k i t i
i

k
1

1

2

1

}= - -
=

-

= +

-t t/ /

In Figure 1(a), we plot ekt  against k  for , , ,k d1 nf=  aver-
aged over 50 independent replications. The curve for each 
sample size n  is monotonically decreasing, because larger 
models fit the same data better. We compute and plot in Figure 1(b) 
the out-sample prediction loss in (4), which is equivalent to 

,E s p Z E Z Z* ,
k

k t t k i t ii 1

2
}= - -=*t t^ ^ `hh j/  in this example. The 

above expectation is taken over the true stationary distribution 
of an independent process of .Zt  (An alternative definition is 
based on the same-realization expectation that calculates the 
loss of the future of an observed time series [10].)  The curves 
in Figure 1(b) show that the predictive performance is only 
optimal at the true order.

Under the quadratic loss, we have , ,E s p Zt 2v=* *^ ^ hh  and 
the asymptotic efficiency (Definition 2) requires that

	
min

E Z Z

E Z Z

,

, , * ,

t k j t jj
k

k d t k i t ii

k

1

2 2

1 1

2 2
n

} v

} v

- -

- -f

-=

= -=

* t

t

t
t

`

`

j

j

/
/

� (7)

converges to one in probability. To describe how the predictive 
performance of each model deviates from the best possible, 
we define the efficiency of each model of order kl to be the 
quantity in (7) with kt  being replaced with kl ( , , ).k d1 nf=l   
Note that the concepts of efficiency and asymptotic efficiency 
in model selection are reminiscent of their counterparts in 

parameter estimation. We plot the efficiency of each candidate 
model in Figure 1(c). Similarly to Figure 1(b), the curves here 
show that the true model is the most efficient model. We note 
that the minus- 2v  adjustment of out-sample prediction loss in 
the above definition makes the property highly nontrivial to 
achieve (see, e.g., [11]–[13]). Consider, e.g., the comparison 
between AR(2) and AR(3) models, with the AR(2) being the 
true data-generating model. It can be proved that without sub-
tracting ,2v  the ratio (of the mean square prediction errors) for 
each of the two candidate models approaches one; by subtract-
ing ,2v  the ratio for AR(2) still approaches one, whereas the 
ratio for AR(3) approaches 2/3.
2)	 Nonparametric framework: The data are generated by the 

moving average (MA) model . ,z 0 8t t t 1f f= - -  with tf  
being independent standard Gaussian.
Similarly to case 1, we plot the results in Figure 2. Dif-

ferent from case 1, the predictive performance is optimal at 
increasing model dimensions as n increases. In such a non-
parametric framework, the best model is sensitive to the sam-
ple size, so that pursuing an inference of a fixed good model 
becomes unrealistic. The model selection task aims to select 
a model that is asymptotically efficient [see Figure 2(c)]. Note 
that Figure 2(b) and (c) is drawn based on the information 
of the underlying true model, which is unavailable in prac-
tice; hence, we need a model selection method to achieve the 
asymptotic efficiency.
3)	 Practically nonparametric framework: The data are gener-

ated in the same way as in case 1, except that .k 100 =

We plot the results in Figure 3. For , ,  , ,n 2 000 3 000=  the 
sample sizes are large enough to support the evidence of a 
true model with a relatively small model dimension. Similarly 
to experiment 1, this is a parametric framework in which the 
optimal predictive performance is achieved at the true model. 
For ,  ,n 100 500=  where the sample sizes are not large enough 
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FIGURE 2. The nonparametric framework: the best predictive performance is achieved at an order that depends on the sample size. (a) The in-sample loss 
for each sample size n monotonically decreases as the order (model complexity) increases. (b) The predictive performance is optimal at increasing orders 
(circled) as n increases.  (c) The order of the most efficient model (circled) therefore increases as n increases.
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compared to the true model dimension, however, fitting too 
many parameters actually causes an increased variance that 
diminishes the predictive power. In such a scenario, even though 
the true model is included as a candidate, the best model is 
not the true model, and it is unstable for small or moderate 
sample sizes as if in a nonparametric setting. In other words, 
the parametric framework can turn into a practically nonpara-
metric framework in the small data regime. It can also work 
the other way around, i.e., for a true nonparametric framework, 
for a large range of sample sizes (e.g., 100– , ),2 000  a relatively 
small parametric model among the candidates continues to be 
the best model [14].

Principles and approaches  
from various philosophies or motivations
A wide variety of model selection methods have been pro-
posed in the past few decades, motivated by different view-
points and justified under various circumstances. Many of 
them originally aimed to select either the order in an AR 
model or a subset of variables in a regression model. We 
review some of the representative approaches in these contexts 
in this section.

Information criteria based on likelihood functions
Information criteria generally refer to model selection methods 
that are based on likelihood functions and applicable to paramet-
ric model-based problems. Here we introduce some information 
criteria whose asymptotic performances are well understood.

Akaike information criterion (AIC) is a model selection 
principle proposed by Akaike [15]. A detailed derivation of it 
from an information theoretic perspective can be found in [1]. 
Briefly speaking, the idea is to approximate the out-sample 
prediction loss by the sum of the in-sample loss and a correc-

tion term. We refer to [1] for a detailed derivation of this correc-
tion term. In the typical setting where the loss is logarithmic, 
the AIC procedure is to select the model Mm  that minimizes

	 ,d2 2AIC ,m n m m,= - +t � (8)

where ,n m,t  is the maximized log likelihood of model Mm  
given n  observations as defined in (1), and dm  is the dimen-
sion of model .Mm  It is clear that more complex models 
(with larger dm ) will suffer from larger penalties.

In the task of AR order selection, it is also common to use

	 logn e k2AICk k= +t � (9)

for the model of order ,k  where ekt  is the average in-sample 
loss based on the quadratic loss. In fact, (9) can be derived 
from (8) by assuming that AR noises are Gaussian and by 
regarding ARs of different orders as .Mm m M!" ,  A predeces-
sor of AIC is the final prediction error criterion (FPE) [16] (also 
by Akaike). An extension of AIC is the Takeuchi’s information 
criterion [17], derived in a way that allows model misspecifica-
tion, but it is rarely used in practice due to its computational 
complexity. In the context of generalized estimating equations 
for correlated response data, a variant of AIC based on quasi-
likelihood is derived in [18].

Finite-sample corrected AIC (AICc) [19] was proposed as a 
corrected version of the AIC for small-sample study. It selects 
the model that minimizes

{ }{ }
.

n d
d d

2
2 1 2

AIC AICcm m
m

m m
= +

- -
+ +

Unless the sample size n  is small compared with model 
dimension ,dm  there is little difference between AICc and 
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FIGURE 3. The practically nonparametric framework: the best predictive performance is achieved at an order that depends on the sample size in the small 
data regime. (a) The in-sample loss for each sample size n monotonically decreases as the order (model complexity) increases. (b) The predictive per-
formance is optimal at increasing orders (circled) as n increases in a certain range. (c) The order of the most efficient model (circled) therefore depends 
on n in a certain range. 
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.AIC  Another modified AIC that replaces the constant two 
with a different positive number has also been studied in [20].

Bayesian information criterion (BIC) [21] is another popular 
model selection principle. It selects the model m that minimizes

	 .logd n2BIC ,m n m m,= - +t � (10)

The only difference with AIC is that the constant two in the 
penalty term is replaced with the logarithm of the sample size. 
The original derivation of BIC by Schwarz turned out to have 
a nice Bayesian interpretation, as its current name suggests.

To see the interpretation, we assume that , ,z zn1 f  are 
the realizations of independent, identically distributed ran-
dom variables, and (·)r  is any prior distribution on i  that 
has dimension .d  We let ( ) ( )logp zn

n i i1, i R= i=  be the log-
likelihood function and nit  the MLE of .i  Based on classical 
Bayesian asymptotics we have (see, e.g., [22, eq. (1.5)]) under 
regularity conditions

	
( ) ( ( ) ( ))

( ) ( ) ( )

exp

det log

n r n r dr

E p z2*
/ /

n n n n n

p
d 2 2 1 2

Rd
2
1

2
1

"

, ,

d

r i i i

r i r

+ + -

- i i

- -

-
* *

t t t

^ h" ,

#
�

(11)

as ,n " 3  for some constant .*i  Note that the right-hand side of 
(11) is a constant that does not depend on n and the left-hand side 
of (11) equals

	 ( , , ) ( ( ) ) .exp logp z z d n
2

n n n1 f , i- +t � (12)

Therefore, selecting a model with the largest marginal like-
lihood ( , , )p z zn1 f  (as advocated by Bayesian model compari-
son) is asymptotically equivalent to selecting a model with the 
smallest BIC in (10). It is interesting to see that the marginal 
likelihood of a model does not depend on the imposed prior at all 
in the large sample limit. Intuitively speaking, this is because, 
in the integration of ( , , ) ( ) ( , , ) ,p z z p z z dn n1 1f 8 fr i i= ii  
the mass is concentrated around nit  with radius ( )O n /1 2-  and 
dimension ,d  so its value is proportional to the maximized 
likelihood value multiplied by the volume approximately at the 
order of ,n /d 2-  which is in line with (12).

Hannan and Quinn (HQ) criterion [23] was proposed as 
an information criterion that achieves strong consistency in 
AR order selection. In other words, if the data are truly gen-
erated by an AR model of fixed order ,k0  then the selected 
order k  converges almost surely to k0  as the sample size 
goes to infinity. We note that strong consistency implies (the 
usual) consistency. In general, this method selects a model 
by minimizing log logc d n2 2HQ ,m n m m,= - +t  (for any con-
stant c 12 ). It can be proved under some conditions that any 
penalty no larger than log logd n2 m  is not strongly consistent 
[23]; therefore, HQ employs the smallest possible penalty to 
guarantee strong consistency.

Bridge criterion (BC) [24], [25] is a recently proposed infor-
mation criterion that aims to bridge the advantages of both 
AIC and BIC in the asymptotic regime. It selects the model 

Mm  that minimizes c d2 1 2BC ,m n m n m
1 1, g= - + + + +- -t ^ h 

(with the suggested c n /
n

2 3= ) over all of the candidate models 
whose dimensions are no larger than ,dmAIC  the dimension of 
the model selected by AIC. Note that the penalty is approxi-
mately ,logc dn m  but it is written as a harmonic number to 
highlight some of its nice interpretations. Its original deriva-
tion was motivated by a recent finding that the information loss 
of underfitting a model of dimension d  using dimension d 1-  
is asymptotically d2|1  for large ,d  assuming that nature gen-
erates the model from a noninformative uniform distribution 
over its model space (in particular the coefficient space of all 
stationary autoregressions) [24, Appendix A]. BC was proved 
to perform similarly to AIC in a nonparametric framework and 
similarly to BIC in a parametric framework. We further dis-
cuss BC in the “War and Peace—Conflicts Between AIC and 
BIC and Their Integration” section.

Methods from other perspectives
In addition to information criteria, some other model selection 
approaches have been motivated from either Bayesian, infor-
mation-theoretic, or decision-theoretic perspectives.

Bayesian posterior probability is commonly used in Bayes-
ian data analysis. Suppose that each model m M!  is assigned 
a prior probability p 0Mm 2^ h  (such that 1Mm mMR =! ^ h ), 
interpreted as the probability that model Mm  contains the 
true data-generating distribution .p*  Such a prior may be 
obtained from scientific reasoning or knowledge from his-
torical data. For each ,m M!  we also introduce a prior, with 
density ( )pm m m7i i  ,Hm m!i^ h  and a likelihood of data 

,p zm m; i^ h  where [ , , ] .z z zn1 f=  A joint distribution on 
, ,z Mm mi^ h is therefore well defined, based on which vari-

ous quantities of interest can be calculated. We first define the 
marginal likelihood of model Mm  by

	 ( ) ( ) .p z p z p dMm m m m m m
Hm

; ; i i i=^ h # 	 (13)

Based on (13), we obtain the following posterior probabili-
ties on models by Bayes formula:
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The maximum a posteriori approach [26] would select the 
model with the largest posterior probability.

Bayes factors are also popularly adopted for Bayesian model 
comparison, defined for a pair of models ,M Mm ml^ h by
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The model Mm  is favored over Mml if .B 1,m m 2l  Bayes 
factors remove the impact of prior probabilities on the models 
from the selection process to focus on the ratio of marginal 
likelihoods. Compared with the Bayesian posterior probability, 
Bayes factors are appealing when it is difficult to formulate 
prior probabilities on models.



23IEEE Signal Processing Magazine   |   November 2018   |

Bayesian marginal likelihood, defined in (13), also referred 
to as the evidence or model evidence, is a quantity naturally 
motivated by Bayes factors. In the presence of multiple models, 
the one with the largest Bayesian marginal 
likelihood is favored over all other models 
in terms of the Bayes factor. Moreover, it 
can be seen that the model with the high-
est marginal likelihood is the model with 
the highest posterior probability given that 
the Bayesian prior probabilities on mod-
els are all equal. Interestingly, this Bayes-
ian principle using marginal likelihood is 
asymptotically equivalent to the BIC (as we 
have introduced in the “Information Criteria Based on Likeli-
hood Function” section). In practice, the preceding Bayesian 
model selection methods can be computationally challenging. 
Calculation of the quantities in (13) and (14) are usually imple-
mented using Monte Carlo methods, especially sequential 
Monte Carlo (for online data) and Markov chain Monte Carlo 
(for batch data) (see, e.g., [27]). It is worth noting that improper 
or vague priors on the parameters of any candidate model can 
have a nonnegligible impact on the interpretability of marginal 
likelihood and Bayes factors in the nonasymptotic regime, and 
that has motivated some recent research on Bayesian model 
selection (see, e.g., [28] and the references therein).

The minimum message length (MML) principle [29] was 
proposed from an information-theoretic perspective. It favors 
the model that generates the shortest overall message, which 
consists of a statement of the model and a statement of the data 
concisely encoded with that model. Specifically, this criterion 
aims to select the model that minimizes

( ) ( ) ( ) ( ),log log log logp p x I d
2
1

2
1 d; ;;i i i l- - + + +

where ( )p i  is a prior, p x ; i^ h is the likelihood function, 
( ) ( ) ( )logI p x p x dx22 28 ; ;i i i i= " ,  is the Fisher informa-

tion, d is the dimension of i , and kd  is the so-called optimal 
quantizing lattice constant that is usually approximated by 

.1 121l =  A detailed derivation and application of MML 
can be found in [30].

The minimum description length (MDL) principle [31]–[34] de
scribes the best model as the one that leads to the best compression  
of a given set of data. It was also motivated by an informa-
tion-theoretic perspective (which is similar to MML). Differ-
ent from MML, which is in a fully Bayesian setting, MDL 
avoids assumptions on prior distribution. Its predictive extension, 
referred to as the predictive minimum description length criterion 
(PMDL), is proposed in [35]. One formulation of the principle is 
to select the model by minimizing the stochastic complex-
ity ( ) ( , , ),log logp z p z z zn

t t t1 2 1 1t1 f;R- -i i= -  in which ti ’s 
are restricted to the same parameter space (with the same 
dimension). Here, each t 1t 2i ^ h is the MLE calculated using 

, , ,z zt1 1f -  and (·)p 1i  can be an arbitrarily chosen prior distri-
bution. The above PMDL criterion is also closely related to the 
prequential (or predictive sequential) rule [36] from a decision-
theoretic perspective.

Deviance information criterion (DIC) [37] was derived as a 
measure of Bayesian model complexity. Instead of being de
rived from a frequentist perspective, DIC can be thought of as 

a Bayesian counterpart of AIC. To define 
DIC, a relevant concept is the deviance under 
model :m  ( ) ,logD p y C2m m ;i i= - +^ h  
where C  does not depend on the model 
being compared. Also, we define the effec-
tive number of parameters of the model 
to  be  ( ) ( ( )),p E D D ED z m m zi i= - ;;i i  
where ( )E z $;i  is the expectation taken 
over i  conditional on all of the observed 
data z  under model .Mm  Then the DIC 

selects the model Mm  that minimizes

	 ( ) .D E p2DICm m z Di= +;i^ h 	 (15)

The conceptual connection between DIC and AIC can be 
readily observed from (15). The MLE and model dimension in 
AIC are replaced with the posterior mean and effective number 
of parameters, respectively, in DIC. Compared with AIC, DIC 
enjoys some computational advantage for comparing complex 
models whose likelihood functions may not even be in analytic 
forms. In Bayesian settings, Markov chain Monte Carlo tools 
can be utilized to simulate posterior distributions of each can-
didate model, which can be further used to efficiently compute 
DIC in (15).

Methods that do not require parametric assumptions
Cross validation (CV) [38], [39] is a class of model selection 
methods widely used in machine-learning practice. CV does 
not require the candidate models to be parametric, and it 
works as long as the data are permutable and one can assess 
the predictive performance based on some measure. A specific 
type of CV is the delete-1 CV method [40] [or leave-one-
out (LOO)]. The idea is as follows. For brevity, let us con-
sider a parametric model class as before. Recall that we 
wish to select a model Mm  with as small out-sample loss 

,E s p Zmi* u^ ^ hh  as possible. Its computation involves an un
known true data-generating process, but we may approximate it 
by , ,sn p zn

i i
1

1 ,m iR i
-

= -
t^ h  where ,m ii -

t  is the MLE under model 
Mm  using all of the observations except .zi  In other words, 
given n observations, we leave each one observation out in 
turn and attempt to predict that data point by using the n 1-  
remaining observations, and we record the average prediction 
loss over n rounds. Interestingly, the LOO was shown to be asymp-
totically equivalent to either AIC/Takeuchi’s information crite-
rion under some regularity conditions [40].

In general, CV works in the following way. It first ran-
domly splits the original data into a training set of nt  data 

n n1 1t# # -  and a validation set of n n nv t= -  data; each 
candidate model is then trained from the nt  data and vali-
dated on the remaining data (i.e., to record the average vali-
dation loss). This procedure is independently replicated a 
few times (each with a different validation set) to reduce 
the variability caused by splitting. Finally, the model with the 

Interestingly, the LOO 
was shown to be 
asymptotically equivalent 
to either AIC/Takeuchi’s 
information criterion 
under some regularity 
conditions. 
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smallest average validation loss is selected, and it is retrained 
using the complete data for future prediction.

A special type of CV is the so-called k -fold CV (with k  being 
a positive integer). It randomly partitions data into k  subsets 
of (approximately) equal size; each model is trained on k 1-  
folds and validated on the remaining one fold. The procedure is 
repeated k  times, and the model with the smallest average valida-
tion loss is selected. The k -fold CV is perhaps more commonly 
used than LOO, partly due to the large computational complexity 
involved in LOO. The holdout method, as often used in data com-
petitions (e.g., Kaggle competition), is also a special case of CV. 
It does data splitting only once, one part as the training set and 
the remaining part as the validation set. We note that there exist 
fast methods, such as generalized cross validation (GCV) [90], as 
surrogates to LOO to reduce the computational cost. Some addi-
tional discussion on CV will be provided in the “Clarification of 
Some Misconceptions” section.

Methods proposed for specific types of applications
There have been some other criteria proposed for specific 
types of applications, mostly for time series or linear regres-
sion models.

The predictive least-squares (PLS) principle proposed by 
Rissanen [41] is a model selection criterion based on his PMDL 
principle. PLS aims to select the stochastic regression model 
by minimizing the accumulated squares of prediction errors 
(in a time-series setting), defined as

,y xPLS , ,m t m t
T

m t
t t

n

1
1

2

0

b= - -

= +

^ h/

where yt  is each response variable, x ,m t  is the vector of covari-
ates corresponding to model ,m  and ,m t 1b -  is the least-squares 
estimate of model Mm  based on data before time .t  The time 
index t0  is the first index such that tb  is uniquely defined. 
Conceptually, PLS is not like AIC and BIC, which select the 
model that minimizes a loss plus a penalty. It seems more like 
the counterpart of LOO in sequential contexts. Interestingly, it 
has been proved that PLS and BIC are asymptotically close, 
both strongly consistent in selecting the data-generating model 
(in a parametric framework) [42]. Extensions of PLS where the 
first index t0  is a chosen sequence indexed by n  have also been 
studied. It has been shown, e.g., that PLS with /t n 10 "  shares 
the same asymptotic property of AIC under some conditions 
(see, e.g., [43, Example 8]).

Generalized information criterion GIC nm^ h [12], [44] repre-
sents a wide class of criteria whose penalties are linear in 
model dimension. It aims to select the regression model Mm  
that minimizes

.e
n
dGIC ,m m

n n m
2

n
m v= +m t
t

Here, n
2vt  is an estimator of ,2v  the variance of the noise, 

and e n y ym m
1

2
2= --t t  is the mean square error between 

the observations and least-squares estimates under regression 
model .Mm  nm  is a deterministic sequence of n  that controls 
the tradeoff between the model fitting and model complexity. 

If we replace n
2vt  with ( ) ,n d nem m

1- - t  it can be shown under 
mild conditions that minimizing GIC nm  is equivalent to mini-
mizing [12, p. 232]

	 .log e
n
d

m
n mm+t � (16)

In this case, 2nm =  corresponds to AIC, and lognnm =  
corresponds to BIC. Mallows’s Cp  method [45] is a special 
case of GIC with ( )n d nen m m

2 1v = -
D -t tr r  and ,2nm =  where mr  

indexes the largest model that includes all of the covariates.

Theoretical properties of the model selection criteria
Theoretical examinations of model selection criteria have cen-
tered on several properties: consistency in selection, asymptotic 
efficiency, and minimax-rate optimality. Selection consistency 
targets the goal of identifying the best model or method on its 
own for scientific understanding, statistical inference, insight, 
or interpretation. Asymptotic efficiency and minimax-rate opti-
mality (defined in Definition 3, which follows) are in tune with 
the goal of prediction. Before we introduce the theoretical prop-
erties, it is worth mentioning that many model selection meth-
ods can also be categorized into two classes according to their 
large-sample performances, represented by AIC and BIC. In 
fact, it has been known that AICc, FPE, and GCV are asymp-
totically close to AIC, whereas Bayes factors, HQ, and the orig-
inal PLS are asymptotically close to BIC. For some other 
methods, such as CV and GIC, their asymptotic behavior usual-
ly depends on the tuning parameters. GIC nm  is asymptotically 
equivalent to AIC when 2nm =  and to BIC when .lognnm =  
In general, any sequence of nm  satisfying n " 3m  would 
exhibit the consistency property shared by BIC. As a corollary, 
the Cp  method (as a special case of GIC2 ) is asymptoti-
cally equivalent to AIC. For CV with nt  training data and 
nv  validation data, it is asymptotically similar to AIC when 

/n n 0v t "  (including the LOO as a special case) and to BIC 
when /n nv t " 3 [12, eq. (4.5)].

In general, AIC and BIC have served as the golden rules 
for model selection in statistical theory during their existence. 
Though cross validations or Bayesian procedures have also 
been widely used, their asymptotic justifications are still rooted 
in frequentist approaches in the form of AIC, BIC, and so forth. 
Therefore, understanding the asymptotic behavior of AIC and 
BIC is crucial in both theory and practice. We thus focus on 
the properties of AIC and BIC in the rest of this section and the 
“War and Peace—Conflicts Between AIC and BIC and Their 
Integration” section. It is remarkable that the asymptotic water-
shed of AIC and BIC (and their closely related methods) simply 
lies in whether the penalty is a fixed, well-chosen constant or 
goes to infinity as a function of .n

First of all, AIC is proved to be minimax-rate optimal for 
a range of variable selection tasks, including the usual subset 
selection and order selection problems in linear regression and 
nonparametric regression based on series expansion with such 
bases as polynomials, splines, or wavelets (see, e.g., [46] and 
the references therein). Consider, e.g., the minimax risk of esti-
mating the regression function f F!  under the squared error
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	 ( ) ( ) ,inf supn E f x f x
f f i

n

i i
1

1

2

F
-

!

-

=
*t
t^ h/ 	 (17)

where ft  is over all estimators based on the observations and 
( )f xi  is the expectation of the ith  response variable (or the ith 

value of the regression function) conditional on the ith vector 
of variables .xi  Each xi  can refer to a vector of explanatory 
variables, or polynomial basis terms, and so on. For a model 
selection method ,o  its worst-case risk is , ,sup R f nf F o =! ^ h

{ ( ) ( )} ,n E f x f xn
i ii

1 2
1

-o
-

= *
t/  with fot  being the least-squares 

estimate of f  under the variables selected by .o

Definition 3 
A method o  is said to be minimax-rate optimal over F  if 

, ,sup R f nf F o! ^ h converges at the same rate as the minimax 
risk in (17).

Another good property of AIC is that it is asymptotically 
efficient [as defined in (5)] in a nonparametric framework (see, 
e.g., [11] and [47]). In other words, the predictive performance 
of its selected model is asymptotically 
equivalent to the best offered by the candi-
date models (even though it is sensitive to 
the sample size).

BIC, on the other hand, is known to be 
consistent in selecting the smallest true 
data-generating model in a parametric 
framework (see, e.g., [12] and [23]). Sup-
pose, e.g., that the data are truly generated 
by an AR(2) and the candidate models are 
AR(2), AR(3), and an MA model that is 
essentially ( ) .AR 3  Then AR(2) is selected with probability 
going to one as the sample size tends to infinity. MA(1) is not 
selected because it is a wrong model, and AR(3) is not selected 
because it overfits [even though it nests AR(2) as its special 
case]. Moreover, it can be proved that the consistency of BIC 
also implies that it is asymptotically efficient in a parametric 
framework [12], [24]. We will elaborate more on the theoretical 
properties of AIC and BIC in the next section.

War and peace—Conflicts between AIC and BIC  
and their integration
In this section, we review some research advances in the under-
standing of AIC, BIC, and related criteria. The choice of AIC 
and BIC to focus on here because they represent two corner-
stones of model selection principles and theories. We are 
only concerned with the settings where the sample size is 
larger than the model dimension. Details of the following dis-
cussions can be found in such original papers as [11], [12], 
[24], [47]–[49], and the references therein.

Recall that AIC is asymptotically efficient for the non-
parametric framework and is also minimax optimal [46]. In 
contrast, BIC is consistent and asymptotically efficient for the 
parametric framework. Despite the good properties of AIC 
and BIC, they have their own drawbacks. AIC is known to be 
inconsistent in a parametric framework where there are at least 
two correct candidate models. As a result, AIC is not asymp-

totically efficient in such a framework. If data are truly gener-
ated by an AR(2), e.g., and the candidate models are AR(2), 
AR(3), and so forth, then AR(2) cannot be selected with prob-
ability going to one by AIC as the sample size increases. The 
asymptotic probability of it being selected can actually be ana-
lytically computed [48]. BIC, on the other hand, does not enjoy 
the properties of minimax-rate optimality and asymptotic effi-
ciency in a nonparametric framework [12], [50].

Why do AIC and BIC work in those ways? Theoretical 
arguments in those aspects are highly nontrivial and have 
motivated a vast literature since the formulations of AIC and 
BIC. Here we provide some heuristic explanations. For AIC, 
its formulation in (8) was originally motivated by searching 
the candidate model p that is the closest in Kullback–Leibler 
(KL) divergence (denoted by DKL ) from p to the data-gener-
ating model .p*  Because ,min D p p*p KL ^ h is equivalent to 

( )min logE pp -*  for a fixed ,p*  AIC is expected to perform 
well in minimizing the prediction loss. But AIC is not con-
sistent for a model class containing a true model and at least 

one oversized model, because fitting the 
oversized model would only reduce the first 
term 2 ,n m,- t  in (8) by a random quantity 
that is approximately chi-square distributed 
(by, e.g., Wilks’s theorem [51]), whereas 
the increased penalty on the second item 
d2 m  is at a constant level, which is not large 

enough to suppress the overfitting gain in 
fitness with high probability. Selection 
consistency of BIC in a parametric frame-
work is not surprising due to its nice Bayes-

ian interpretation (see the “Principles and Approaches from 
Various Philosophies or Motivations” section). However, its 
penalty logd nm  in (10) is much larger than the d2 m  in AIC, so 
it cannot enjoy the predictive optimality in a typical nonpara-
metric framework (if AIC already does so).

To briefly summarize, for asymptotic efficiency, AIC (res
pectively, BIC) is only suitable in nonparametric (respectively, 
parametric) settings. Figure 4 illustrates the two situations. 
There has been a debate between AIC and BIC in model 
selection practice, centering on whether the data-generat-
ing process is in a parametric framework or not. The same 
debate was sometimes raised under other terminology. In a 
parametric (respectively, nonparametric) framework, the 
true data-generating model is often said to be well specified 
(respectively, misspecified) or finite (respectively, infinite) 
dimensional. (To see a reason for such terminology, consider, 
e.g., the regression analysis using polynomial basis function 
as covariates. If the true regression function is indeed a poly-
nomial, then it can be parameterized with a finite number 
of parameters; if it is an exponential function, then it cannot 
be parameterized with any finite dimensional parameter.) 
Without prior knowledge on how the observations were 
generated, determining which method to use becomes very 
challenging. It naturally motivates the following fundamental 
question: Is it possible to have a method that combines the 
strengths of AIC and BIC?

There has been a debate 
between AIC and BIC in 
model selection practice, 
centering on whether the 
data-generating process is 
in a parametric framework 
or not. 
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The combining of strengths can be defined in two ways. 
First, can the properties of minimax-rate optimality and con-
sistency be shared? Unfortunately, it has been theoretically 
shown under rather general settings that there exists no model 
selection method that achieves both optimality and consis-
tency simultaneously [49]. For any model selection procedure 
to be consistent, i.e., it must behave suboptimally in terms of 
minimax rate of convergence in the prediction loss. Second, 
can the properties of asymptotic efficiency and consistency 
be shared? In contrast to minimax-rate optimality, which 
allows the true data-generating model to vary, asymptotic 
efficiency is in a pointwise sense, meaning that the data are 
already generated by some fixed (unknown) data-generating 
model. Therefore, the asymptotic efficiency is a requirement 
from a more optimistic view and thus weaker in some sense 
than the minimaxity. Recall that consistency in a parametric 
framework is typically equivalent to asymptotic efficiency 
[12], [24]. Clearly, if an ideal method can combine asymptotic 
efficiency and consistency, it achieves asymptotic efficiency 
in both parametric and nonparametric frameworks. That 
motivated an active line of recent advances in reconciling the 
two classes of model selection methods [24], [43], [52].

In particular, the new model selection method BC was re
cently proposed (see the “Principles and Approaches from Vari-
ous Philosophies or Motivations” section) to simultaneously 
achieve consistency in a parametric framework and asymptotic 
efficiency in both (parametric and nonparametric) frameworks. 
The key idea of BC is to impose a BIC-like heavy penalty for 
a range of small models but to alleviate the penalty for larger 
models if more evidence is supporting an infinite dimensional 
true model. In that way, the selection procedure is automati-
cally adaptive to the appropriate setting (either parametric or 
nonparametric). A detailed statistical interpretation of how BC 
works in both theory and practice and how it relates to AIC and 
BIC is elaborated in [24].

Moreover, in many applications, data analysts would like to 
quantify to what extent the framework under consideration can 
be practically treated as parametric, or, in other words, how 
likely the postulated model class is well specified. This moti-
vated the concept of the parametricness index (PI) [14], [24], 
which assigns a confidence score to model selection. One defi-
nition of PI, which we shall use in the following experiment, is 
this quantity on [ , ]:0 1

d d d d d dPIn m m m m m mBC AIC BC ICBC AIC B= - - + -^ h

if the denominator is not zero, and 1PIn =  otherwise. Here, 
dmo  is the dimension of the model selected by the method .o  
Under some conditions, it can be proved that 1PIn p"  in a 
parametric framework and 0PIn p"  otherwise.

Experiments
We now revisit Example 1 in the “An Illustration on Fitting and 
the Best Model” section and numerically demonstrate the per-
formances of different methods based on 100 replications and 

.n 500=  For each of the three cases, we compute the means 
and standard errors of the efficiency [defined in (7)], dimension 
of the selected model, and PI and summarize them in Table 1. 
In case 1, BIC and BC perform much better than AIC in terms 
of efficiency, and PI is close to 1. This is expected from theory, 
as we are in a parametric setting. In cases 2 and 3, which are 
(practically) nonparametric, BC performs similarly to AIC, 
much better than BIC, and PI is closer to zero.

In practice, AIC seems more widely used compared with 
BIC, perhaps mainly due to the thinking that all models are wrong 
and minimax-rate optimality of AIC offers more robustness 
in adversarial settings than BIC. Nevertheless, the parametric 
setting is still of vital importance. First of all, being consistent 
in selecting the true model if it is really among the candidates 
is certainly mathematically appealing, and a nonparametric 

The Selection Is Consistent and
Asymptotically Efficient

The Selection Is
Asymptotically Efficient

Well Specified Misspecified

BIC, GICλn
 (with λn → ∞), PLS, HQ,

Delete-d CV (with d /n → 1), BC

GICλn
 

(with a Fixed λn ≠ 2)

Fivefold CV, Tenfold CV

AIC, GIC2, Cp, FPE,

GCV, LOO, BC

FIGURE 4. A graph illustrating a parametric setting where the model class (by large square) includes the true data-generating model (by small red square) 
and a nonparametric setting where the model class (by large circle) excludes the true data-generating model, along with an asymptotically efficient 
model (by red circle) in the second case. It also lists some popular methods suitable for either situation and a class of GIC and CV that are asymptotically 
suboptimal for regression models.
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framework can be a practically parametric framework. More 
importantly, when decisions need to be made on the use of 
certain variables, the concept of consistency that avoids over-
selection of variables is practically very important. If medical 
researchers need to decide if certain genes should be further 
studied in costly experiments, e.g., the protection of overfit-
ting of BIC avoids recommending variables that are hard to be 
justified statistically in a follow-up study, whereas AIC may 
recommend quite a few variables that may have some limited 
predictive values but their effects are too small to be certain 
with the limited information in the data for decision making 
and inference purposes.

The war between AIC and BIC originates from two fun-
damentally different goals: one to minimize certain loss for 
prediction purpose and the other to select the best model for 
inference purpose. A unified view on reconciling two such dif-
ferent goals wherever possible is a fundamental issue in model 
selection, and it remains an active line of research. We have wit-
nessed some recent advances in that direction, and we expect 
more discoveries to flourish in the future.

High-dimensional variable selection
The methods introduced in the “Principles and Approaches 
from Various Philosophies or Motivations” section were 
designed for small models, where the dimension dn  is often 
required to be o n^ h in technical proofs. In this section, we 
elaborate on high-dimensional regression variable selection, an 
important type of model selection problems in which dn  can 
be comparable with or even much larger than .n  To alleviate 
the difficulties, the data-generating model is often assumed to 
be a well-specified linear model, i.e., one of the following can-
didate models.

Each model M  assumes that ,y xi i iMb fR= +!  with 
f  being random noises. Here, with a slight abuse of nota-
tion, we have also used M  to denote a subset of { , , },d1 nf  
and each data point is written as , , , ,z y x xd1 nf= 6 @  with y  
being the observed response and xi  being the (either fixed or 
random) covariates. Here, dn  instead of d  is used to highlight 
that the number of candidate variables may depend on the 
sample size .n

The variable selection problem is also known as support 
recovery or feature selection in different literature. The main-
stream idea to select the subset of variables is to either solve a 
penalized regression problem or iteratively pick up significant 
variables. The proposed methods differ from each other in terms 
of how they incorporate unique domain knowledge (e.g., sparsi-
ty, multicollinearity, group behavior) or what desired properties 
(e.g., consistency in coefficient estimation, consistency in vari-
able selection) to achieve. The list of methods we will introduce 
is far from complete. Wavelet shrinkage, iterative thresholding, 
Dantzig selector, q, -regularization with ( , )q 0 1!  (see, e.g., 
[53]–[57]), e.g., will not be covered.

Penalized regression for variable selection
In a classical setting, a model class is first prescribed to data 
analysts (either from scientific reasoning or from exhaustive 

search over dn  candidate variables), and then a criterion is used 
to select the final model (by applying any properly chosen 
method explained in the “Principles and Approaches from 
Various Philosophies or Motivations” section). When there is 
no ordering of variables known in advance and the number of 
variables dn  is small, one may simply search over 2dn  possible 
subsets and perform model selection. But it is usually compu-
tationally prohibitive to enumerate all possible subsets for large 

,dn  especially when dn  is comparable with or even larger than 
the sample size .n  Note also that the problem of obtaining a 
sparse representation of signal y through some chosen basis xi  
(say polynomial, spline, or wavelet basis) usually falls under 
the framework of variable subset selection as well (but with a 
different motivation). Such a representation can be practically 
useful in, e.g., compressing image signals, locating radar 
sources, or understanding principal components.

Suppose that we have response Yn  and design matrix Xn

whose entries are n observations of , , , .y x xd1 nf6 @  For high-
dimensional regression, a popular solution is to consider the 
following penalized regression that amalgamates variable 
selection and prediction simultaneously in operation. Solve

	 ; , ,arg min Y X pn n
j

d

j2
2

1

n

; ;b b b m c= - +
b =

t ^ h) 3/ � (18)

and let :i 0i !bt" , be the selected subset of variables. Here, 
the ; ,p b m c^ h is a penalty function of b  with tuning parame-
ters ,m c  (which are usually determined by cross validation). 
It is crucial that the penalty function is not differentiable at 

0b =  so that the resulting solution becomes sparse when m  
gets large.

Least absolute shrinkage and selection operator (LASSO) 
[58] in the form of ;p t; ;b m m=^ h  is perhaps the most com-
monly used penalty function. Here, m  is a tuning parameter 
that controls the strength of the penalty term. Increasing m  
leads to fewer variables selected. In practice, data analysts can 
either 1) numerically sweep over a range of m  or 2) use the 
least-angle regression method [59] to find all of the possible 
candidate models (also called the solution paths) and then 

Table 1. The AR order selection: The average efficiency, dimension,  
and PI (along with standard errors).

AIC BC BIC 

Case 1 Efficiency 0.78 (0.04) 0.93 (0.02) 0.99 (0.01)

Dimension 3.95 (0.20) 3.29 (0.13) 3.01 (0.01)

PI 0.93 (0.03)

Case 2 Efficiency 0.77 (0.02) 0.76 (0.02) 0.56 (0.02)

Dimension 9.34 (0.25) 9.29 (0.26) 5.39 (0.13)

PI 0.13 (0.03)

Case 3 Efficiency 0.71 (0.02) 0.67 (0.02) 0.55 (0.02)

Size 6.99 (0.23) 6.61 (0.26) 4.02 (0.10)

PI 0.35 (0.05)
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select the model with the best cross-validation performance. In 
a time series setting where LASSO solutions need to be con-
tinuously updated, fast online algorithms have been proposed 
(e.g., in [60]). Given that the data are truly generated by a lin-
ear model, tight prediction error bounds have been established 
for LASSO. Though originally designed for linear regression, 
LASSO has been also extended to a wide range of statistical 
models, such as generalized linear models 
(see [61] and the references therein).

Smoothly clipped absolute deviation 
(SCAD) [62] is another penalized regression 
that can correct the bias in LASSO esti-
mates that comes from the 1, -penalty func-
tion being unbounded. It was also shown 
to exhibit oracle property, meaning that, as 
the sample size and model dimension go 
to infinity, all and only the true variables 
will be identified with probability going to 
one, the estimated parameters converge in probability to the 
true parameters, and the usual asymptotic normality holds as 
if all of the irrelevant variables have already been excluded. 
More discussions on such an oracle property will be included 
in the “Clarification of Some Misconceptions” section. The 
penalty of SCAD is in the form of
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In choosing a parsimonious set of variables, LASSO tends 
to overshrink the retained variables. In the SCAD penalty, the 
idea is to let m  and c  jointly control that the penalty first sup-
presses insignificant variables as LASSO does and then tapers 
off to achieve bias reduction. The tuning parameters in SCAD 
can be chosen by sweeping over a range of them and then 
applying cross validation.

Minimax concave penalty (MCP) [63] in the form of
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is a penalized regression that works in a similar way as SCAD. 
Under some conditions, MCP attains minimax convergence 
rates in probability for the estimation of regression coeffi-
cients. Figure 5 illustrates the penalties in LASSO, SCAD, and 
MCP for 1m =  and .3c =

Elastic net [64] in the form of ;p t t1 2
2;;b m m m= +^ h  is 

proposed to address several shortcomings of LASSO when 
the covariates are highly correlated. The 
solution bt  of the elastic net penalty exhib-
its mixed effects of the LASSO and ridge 
penalties. Recall that ridge regression in the 
form of ;p t2b m m=^ h  introduces bias to 
the regression estimates to reduce the large 
variances of ordinary least-squares esti-
mates in the case of multicollinearity, and 
that LASSO tends to select a sparse subset. 
Interestingly, under elastic net, highly cor-
related covariates will tend to have similar 

regression coefficients. This property, distinct from LASSO, is 
appealing in many applications when data analysts would like 
to find all of the associated covariates rather than selecting only 
one from each set of strongly correlated covariates.

Group LASSO [65] is another penalty introduced to res
trict that all of the members of each predefined group of 
covariates are selected together. Different from (18), the pen-
alty of the regression is not a sum of n terms but is replaced 
with ,r

j I1 2jm bR =  where I jb  is a subvector of b  indexed by 
I j  (the jth group), and , ,I Ir1 f  form a partition of { , , } .n1 f  
It can be proved that I jbt  is restricted to be vanishing togeth-
er for each j  [65]. The groups are often predefined using 
prior knowledge.

Adaptive LASSO [66] has been introduced to overcome the 
inconsistency in variable selection of LASSO. It replaces the 
penalty in (18) with ,j

d
j

u
j1

n ; ; ; ;m b bR =
-u  where jbu  is referred 

to as a pilot estimate that can be obtained in various ways 
(e.g., by least squares for d nn 1  or univariate regressions for 
d nn $ ). Adaptive LASSO was shown to exhibit the aforemen-
tioned oracle property. The adaptive LASSO can be solved by 
the same efficient algorithm for solving the LASSO, and it can 
be easily extended for generalized linear models as well.

In addition to the preceding penalized regression, a class of 
alternative solutions is known as greedy algorithms (or step-
wise algorithms), which select a set of variables by making 
locally optimal decisions in each iteration.

Orthogonal matching pursuit (OMP) [67], [68], also referred 
to as the forward stepwise regression algorithm, is a very pop-
ular greedy algorithm that also inspired many other greedy 
algorithms. The general idea of OMP is to iteratively build a 
set of variables that are the most relevant to the response. It 
works in the following way. In each iteration, the variable most 
correlated with the current residual (in absolute value) is added 
to the subset (which is initialized as the empty set). Here, the 
residual represents the component of the observation vector y 
not in the linear span of the selected variables. Stopping crite-
ria that guarantee good asymptotic properties, such as consis-
tency in variable selection, remain an active line of research. 

A unified view on 
reconciling two such 
different goals wherever 
possible is a fundamental 
issue in model selection, 
and it remains an active 
line of research.
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FIGURE 5. The penalties in LASSO, SCAD, and MCP.
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The OMP algorithm can sequentially identify all of the sig-
nificant variables with high probability under some conditions, 
such as weak dependences of the candidate variables (see, e.g., 
[69] and  [70] and the references therein).

Least-angle regression (LARS) [59] is a greedy algorithm 
for stepwise variable selection. It can also be used for comput-
ing the solution paths of LASSO. Different from OMP, it does 
not permanently maintain a variable once it is selected into 
the model. Instead, it only adjusts the coef-
ficient of the most correlated variable until 
that variable is no longer the most correlat-
ed with the recent residual. Briefly speak-
ing, LARS works in the following way. It 
starts with all coefficients ib  being zeros. 
In each iteration, it looks for the variable xi  
most correlated with the current residual r  
and increases its coefficient ib  in the direc-
tion of the sign of its correlation with y. 
Once some other variable x j  has the same 
correlation with r  as xi  has, it increases ib  
and jb  in the direction of their joint least squares until another 
variable has the same correlation with the residual. The proce-
dure is repeated until all of the variables are in the model or the 
residuals have become zero.

Properties of the penalized regression methods
Theoretical examinations of the penalized regression methods 
have mainly focused on the properties of tight prediction error 
bounds and consistency in selection. These asymptotic prop-
erties are mostly studied by assuming a parametric frame-
work, i.e., data are truly generated by a linear regression 
model. Analysis for nonparametric, high-dimensional regres-
sion models has been also investigated in terms of oracle 
inequalities for prediction loss [71] and nonlinear additive 
models [72], [73].

The goal for prediction in high-dimensional regression fo
cuses the control of the prediction loss (usually squared loss) 
bound so that it eventually vanishes even for a very large num-
ber of variables dn  (compared with the sample size n). Sup-
pose that data are generated, e.g., by ,Y Xn nb f= +*  where 

,Y Rn
n!  ,Rdn!b*  and , .I0N n

2+f v^ h  Let * 0b  denote the 
number of nonzero entries in .*b  Then, under certain restrict-
ed eigenvalue assumptions [71], there exist some constants 
c 2 21 2  and c 02 2  such that the LASSO solution satisfies 
n X Xn n

1
2
2
#b b--

*
t  logc n dn2

2
0

1v b -
*  with probability 

at least d1 /
n

c1 81
2

- - , if we choose logc n dn1m v= . Note that 
the choice of m  depends on an unknown c1v  that, though it 
does not scale with ,n  can have an effect for small sample size. 
Notably, the number of variables dn  is allowed to be much 
larger than n to admit a good predictive performance, as long 
as logdn  is small compared with .n  Similar tight bounds can 
be obtained by making other assumptions on b*  and .Xn

Selection consistency, as before, targets the goal of iden-
tifying the significant variables for scientific interpretation. 
The property of asymptotic efficiency we introduced before 
is rarely considered in high-dimensional regressions, because 

it is implied by selection consistency in the parametric setting. 
For any vector ,Rdn!b  let r b^ h denote the indicator vector 
of b  such that for any , , ,j d r1 0n if b == ^ h  if ,0ib =  and 
r 1i b =^ h  otherwise. Selection consistency requires that the 
probability of r rb b=t ^^ hh  converges in probability to one 
(as n " 3). Under various conditions, such as fixed design or 
random design matrices, consistency of LASSO in estimating 
the significant variables has been widely studied under such 

various technical conditions as sparsity, 
restricted isometry [74], mutual coherence 
[75], irrepresentable condition [76], and 
restricted eigenvalue [71], which create the-
oretical possibilities to distinguish the true 
subset of variables from all of the remaining 
subsets for large .n

At the same time, it has been known that 
LASSO is not generally consistent in param-
eter/coefficient estimation. This motivates 
the methods, such as SCAD, MCP, adaptive 
LASSO, and so forth, that correct the esti-

mation bias of LASSO. These three methods are also known 
to enjoy the so-called oracle property. The oracle property is 
perhaps more widely considered than selection consistency for 
high-dimensional regression analysis, because the penalized 
regression methods target simultaneous parameter estimation 
and prediction loss control. An oracle estimator [62] must be con-
sistent in variable selection and parameter estimation, and satis-
fy 1) the sparsity condition, meaning that P r r 1"b b=*

t^ ^h h" ,  
as ,n " 3  where the inequality is componentwise; and 2) the 
asymptotic normality , ,n I0NS S d S

1"b b b- -t^ ^^h hh  where 
S is the support set of ,b  Sb  is the subvector of *b  indexed by 
,S  and ( )I Sb  is the Fisher information knowing S in advance. 

Intuitively speaking, an oracle estimator enjoys the properties 
achieved by the MLE knowing the true support. We will revisit 
the oracle property in the “Controversy over the Oracle Prop-
erty” section.

Practical performance of penalized regression methods
With the huge influx of high-dimensional regression data, the 
penalized regression methods have been widely applied for 
sparse regression where a relatively small (or tiny) number of 
variables are selected out of a large number of candidates. In 
applications with a gene expression type of data, e.g., although 
the number of subjects may be only tens or hundreds, a sparse 
set of genes is typically selected out of thousands of choices. 
This has created a lot of excitement, with thousands of publica-
tions of such research and applications. This celebrated sparsi-
ty feature of penalized regression methods has generated an 
optimistic view that, even with, e.g., fewer than a hundred 
observations, the modern variable selection tool can identify 
a sparse subset out of thousands or even many more variables 
as the set of the most important ones for the regression prob-
lem. The estimated model is often readily used for data-driv-
en discoveries.

There is little doubt that penalized regression methods have 
produced many successful results for the goal of prediction 

The war between AIC and 
BIC originates from two 
fundamentally different 
goals: one to minimize 
certain loss for prediction 
purpose and the other to 
select the best model for 
inference purpose. 
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(see, e.g., [77]). As long as a proper cross validation is done 
for tuning parameter selection, the methods can often yield 
good predictive performance. However, given the challenge of 
high dimension and diverse data sources, the different penal-
ized regression methods may have drastically different relative 
performance for various data sets. Therefore, proper choice of 
a method is important, to which end cross validation may be 
used, as will be presented in the next section.

For the goal of model selection for inference, however, the 
picture is much less promising. Indeed, many real applications 
strongly suggest that the practice of using the selected model 
for understanding and inference may be far from reliable. It has 
been reported that the selected variables from these penalized 
regression methods are often severely unstable, in the sense 
that the selection results can be drastically different under a 
tiny perturbation of data (see [78] and the references therein). 
Such high uncertainty damages reproducibility of the statis-
tical findings [79]. Overall, being overly optimistic about the 
interpretability of high-dimensional regression methods can 
lead to spurious scientific discoveries.

The fundamental issue still lies in the potential discrepancy 
between inference and prediction, which is also elaborated in 
the “War and Peace—Conflicts Between AIC and BIC and 
Their Integration” and “Controversy over the Oracle Property” 
sections. If data analysts know in advance that the true model 
is exactly (or close to) a stable low-dimensional linear model, 
then the high-dimensional methods with the aforementioned 
oracle property may produce stable selection results not only 
good for prediction but also for inference purposes. Other-
wise, the produced selection is so unstable that analysts can 
only focus on prediction alone. In practice, data analysts may 
need to utilize data-driven tools, such as model averaging [80], 
resampling [81], and confidence set for models [82], or model 
selection diagnostic, such as the parametricness index intro-
duced in the “War and Peace—Conflicts Between AIC and 
BIC and Their Integration” section, to make sure the selected 
variables are stable and properly interpretable. Considerations 
along these lines also lead to stabilized variable selection 
methods [81], [83], [84]. The instability of penalized regression 
also motivated some recent research on postselection inference 
[85], [86]. Their interesting results in specific settings call for 
more research for more general applications.

Modeling procedure selection
The discussions in the previous sections have focused on 
model selection in the narrow sense, where the candidates are 
models. In this section, we review the use of CV as a general 
tool for modeling procedure selection, which aims to select 
one from a finite set of modeling procedures [87]. Multiple 
modeling procedures such as AIC, BIC, and CV could be 
used for variable selection, and one of those procedures 
(together with the model selected by the procedure) is se
lected using an appropriately designed CV (which is at the 
second level). Another example is the emerging online com-
petition platforms, such as Kaggle, that compare new problem-
solving procedures and award prizes using cross validation. 

The best procedure is defined in the sense that it outperforms, 
with high probability, the other procedures in terms of out-
sample prediction loss for sufficiently large n (see, e.g., [13, 
Definition 1]).

There are two main goals of modeling procedure selection. 
The first is to identify with high probability the best procedure 
among the candidates. The property of selection consistency 
is of interest here. The second goal of modeling procedure 
selection is to approach the best performance (in terms of out-
sample prediction loss) offered by the candidates, instead of 
pinpointing which candidate procedure is the best. Note again 
that, in case there are procedures that have similar best per-
formances, we do not need to single out the best candidate to 
achieve the asymptotically optimal performance.

Similarly to model selection, for the task of modeling pro-
cedure selection, CV randomly splits n data into nt  train-
ing data and nv  validation data (so n n nt v= + ). The first 
nt  data are used to run different modeling procedures, and 
the remaining nv  data are used to assess the predictive per-
formance. We will see that, for the first goal, the evaluation 
portion of CV should be large enough. For the second goal, a 
smaller portion of the evaluation may be enough to achieve 
optimal predictive performance.

In the literature, much attention has been focused on 
choosing whether to use the AIC procedure or BIC proce-
dure for data analysis. For regression variable selection, it has 
been proved that the CV method is consistent in choosing 
between AIC and BIC given , ,n n nt v t" "3 3  and some 
other regularity assumptions [87, Th. 1]. In other words, the 
probability of BIC being selected goes to one in a parametric 
framework, and the probability of AIC being selected goes 
to one otherwise. In this way, the modeling procedure selec-
tion using CV naturally leads to a hybrid model selection 
criterion that builds upon strengths of AIC and BIC. Such 
a hybrid selection combines some theoretical advantages 
of both AIC and BIC. This aspect is seen in the context of 
the “War and Peace—Conflicts Between AIC and BIC and 
Their Integration” section. The task of classification is some-
what more relaxed compared with the task of regression. To 
achieve consistency in selecting the better classifier, the split-
ting ratio may be allowed to converge to infinity or any posi-
tive constant, depending on the situation [13]. In general, it is 
safe to let nt " 3  and /n nv t " 3  for consistency in modeling 
procedure selection.

Closely related to this discussion is the following paradox. 
Suppose that a set of newly available data is given to an ana-
lyst. The analyst would naturally add some of the new data in 
the training phase and some in the validation phase. Clear-
ly, with more data added to the training set, each candidate 
modeling procedure is improved in accuracy; with more data 
added to the validation set, the evaluation is also more reli-
able. It is tempting to think that improving the accuracy on 
both training and validation would lead to a sharper compari-
son between procedures. However, this is not the case. The 
prediction error estimation and procedure comparison are two 
different targets.
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The cross-validation paradox says that better training and 
better estimation (e.g., in both bias and variance) of the pre-
diction error by CV together do not imply better modeling 
procedure selection [13], [87]. Intuitively speaking, when com-
paring two procedures that are naturally close to each other, 
the improved estimation accuracy achieved by adopting more 
observations in the training part only makes the procedures 
more difficult to be distinguishable. The consistency in identi-
fying the better procedure cannot be achieved unless the vali-
dation size diverges fast enough.

Experiments
We illustrate the cross-validation paradox using the synthetic 
data generated from the linear regression model y x1 1b= + 

,x x2 2 3 3b b f+ +  where b =  [ , , ] ,1 2 0 T  and the covariates X j  
, ,j 1 2 3=^ h and noise f  are independent standard Gaussian. 

Given n observations , , , ,y x x x, , , , ,i i i i i n1 2 3 1 f=^ h  we compare 
the following two different uses of linear regression. The 
first is based on X1  and ,X2  and the second is based on all 
three covariates. Note that, in this experiment, selecting the 
better procedure is equivalent to selecting a better model. 
The data-generating model indicates that x3  is irrelevant for 
predicting ,y  so that the first procedure should be better than 
the second. Suppose that we start with 100 observations. We 
randomly split the data 100 times, each with 20 training data 
and 80 validation data, and record which procedure gives the 
smaller average quadratic loss during validation. We then 
add 50 new data to the training set and 50 to the validation 
set and record again which procedure is favored. We con-
tinuing doing this until the sample size reaches 500. By run-
ning ,0001  independent replications, we summarize the 
frequency of the first procedure being favored in Table 2. As 
the paradox suggests, the accuracy of identifying the better 
procedure does not necessarily increase when more observa-
tions are added to both the estimation phase and the valida-
tion phase.

Clarification of some misconceptions

Pitfall of one-size-fits-all recommendation of data splitting 
ratio of cross validation
There are widespread general recommendations on how to 
apply cross validation for model selection. It is stated in the 
literature, e.g., that tenfold CV is the best for model selection. 
Such guidelines seem to be unwarranted. First, it mistakenly 
disregards the goal of model selection. For prediction purpos-
es, LOO is actually preferred in tuning parameter selection for 
traditional nonparametric regression. In contrast, for selection 
consistency, tenfold often leaves too few observations in eval-
uation to be stable. Indeed, fivefold often produces more sta-
ble selection results for high-dimensional regression. Second, 
k -fold CV, regardless of ,k  in general, is often unstable in the 
sense that a different dividing of data can produce a very dif-
ferent selection result. A common way to improve perfor-
mance is to randomly divide the data into k folds several times 
and use the average validation loss for selection.

For model selection, CV randomly splits n data into nt  
training data and nv  validation data. Common practices using 
fivefold, tenfold, or 30% for validation do not exhibit asymp-
totic optimality (either consistency or asymptotic efficiency) in 
simple regression models, and their performances can be very 
different depending on the goal of applying CV. In fact, it is 
known that the delete-nv  CV is asymptotically equivalent to 
GIC nm  with ( )n n n 1n vm = - +  for linear regression mod-
els under some assumptions [12]. It is also known that GIC nm  
achieves asymptotic efficiency in a nonparametric framework 
only with ,2nm =  and asymptotic efficiency in a parametric 
framework only with n " 3m  (as n " 3). In this context, 
from a theoretical perspective, the optimal splitting ratio /n nv t  
of CV should either converge to zero or diverge to infinity to 
achieve asymptotic efficiency, depending on whether the set-
ting is nonparametric or parametric.

For modeling procedure selection, it is often necessary to 
let the validation size take a large proportion (e.g., half) to 
achieve good selection accuracy. In particular, the use of LOO 
for the goal of comparing procedures is the least trustworthy 
(see the “Modeling Procedure Selection” section).

Experiment
We show how the splitting ratio can affect CV for model 
selection using the Modified National Institute of Standards 
and Technology database [88], which consists of ,00070  
images of handwritten digits (from 0 to 9) with 28 28#  pix-
els. We implement six candidate feed-forward neural network 
models for classification. The first four models have one hid-
den layer, and the number of hidden nodes are 17, 18, 19, and 
20. The fifth model has two hidden layers with 20 and four 
nodes; the sixth model has three hidden layers with 20, two, 
and two nodes. Because the true data-generating model for the 
real data is unavailable, we take ,00035  data (often referred to 
as the test data) out for approximating the true prediction loss 
and use the remaining data to train and validate. For model 
selection, we run CV with different / .n nv t  For each ratio, we 
compute the average validation loss of each candidate model 
based on ten random partitions. We then select the model with 
the smallest average loss and calculate its true predictive loss 
using the remaining ,00035  data. The results recorded in 
Table 3 indicate that a smaller splitting ratio /n nv t  leads to 
better classification accuracy. This is in line with the existing 
theory, because the neural network modeling is likely to be of 
nonparametric nature. This example also provides a comple-
menting message to the cross-validation paradox. At ratio 
0.95, the training sample size is too small to represent the full 

Table 2. The cross-validation paradox: More observations in training 
and evaluation do not lead to higher selection accuracy in selecting the 
better procedure.

Sample size n 100 200 300 400 500 

Training size nt 20 70 120 170 220 

Accuracy 98.3% 94.9% 93.7% 92.3% 92.5%
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sample size, so the ranking of the candidate models estimated 
from training data can be unstable and deviate from the rank-
ing of models estimated from the full data set.

Because all models are wrong, why pursue consistency in 
selection?
Because the reality is usually more complicated than a para-
metric model, perhaps everyone agrees that all models are 
wrong and the consistency concept of selecting the true model 
in a parametric framework cannot hold in the rigid sense. One 
view on such selection consistency is that, in many situations, 
a stable parametric model can be identified, and it can be 
treated as the true model. Such an idealization for theoretical 
investigation with practical implications is no more sinful than 
deriving theories under nonparametric assumptions. The true 
judge should be the performance in real applications. The 
notion of consistency in a nonparametric framework, however, 
is rarely used in the literature. In fact, it was shown that there 
does not exist any model selection method that can guarantee 
consistency in nonparametric regression settings (see, e.g., 
[25]). This partly explains why the concept of asymptotic effi-
ciency (which is a weaker requirement) is more widely used 
in nonparametric frameworks.

Controversy over the oracle property
The popular oracle property (as mentioned in the “Properties 
of the Penalized Regression Methods” section) for high-
dimensional variable selection has been a focus in many 
research publications. However, it has been criticized by some 
researchers (see, e.g., [89]). At first glance, the oracle property 
may look very stringent. But we note that its requirement is 
fundamentally only as stringent as consistency in variable 
selection. In fact, if all of the true variables can be selected 
with probability tending to one by any method, then one can 
obtain MLE or the like restricted to the relevant variables for 
optimal estimation of the unknown parameters in the model. 
To our knowledge, there is neither claim nor reason to believe 
that the original estimator should be better than the refitted 
one by MLE based on the selected model. Though the oracle 
property is not theoretically surprising beyond consistency, it 
is still interesting and nontrivial to obtain such a property with 
only one stage of regression (as SCAD and MCP do). These 
methods, when armed with efficient algorithms, may save the 
computational cost in practice.

It was emphasized in [89] that the oracle estimator does not 
perform well in a uniform sense for point or interval estimation 
of the parameters. A price paid for the oracle property is that 
the risk of any oracle estimator (see [62]) has a supremum that 
diverges to infinity, i.e.,

{ } ,sup E n
T

Rp
" 3b b b b- -

!b
b

t t^ ^h h

as sample size n " 3  (see, e.g., [89]). Here, we let Eb  
denote expectation with respect to the true linear model with 
coefficients .b  In fact, for any consistent model selection 
method, we can always find a parameter value that is small 
enough so that the selection method tends to not include it 
(because it has to avoid overselection), yet the parameter 
value is big enough so that dropping it has a detrimental 
effect in rate of convergence (see, e.g., [49] and [90]). Al
though uniformity and robustness are valid and important 
considerations, we do not need to overly emphasize such 
properties. Otherwise, we are unduly burdened to retain not 
very useful variables in the final model and have to lose the 
ability in choosing a practically satisfying parsimonious 
model for interpretation and inference.

Some general recommendations
Model selection, no matter how it is done, is exploratory in 
nature and cannot be confirmatory. Confirmatory conclusions 
can only be drawn based on well-designed follow-up studies. 
Nevertheless, good model selection tools can provide valu-
able and reliable information regarding explanation and pre-
diction. Obviously there are many specific aspects of the 
data, nature of the models and practical considerations of the 
variables in the models, and so on that make each model 
selection problem unique to some degree. In spite of that, 
based on the literature and our own experiences, we give some 
general recommendations.
1)	 Keep in mind the main objective of model selection. 

First, if one needs to declare a model for inference, model 
selection consistency is the right concept to think about. 
Model selection diagnostic measures need to be used to 
assess the reliability of the selected model. In a high-
dimensional setting, penalized regression methods are 
typically highly uncertain. For selection stability, when 
choosing a tuning parameter by cross validation, e.g., 
fivefold tends to work better than tenfold (see, e.g., [78]). 
Second, if one’s main goal is prediction, model selection 
instability is less of a concern, and any choice among the 
best performing models may give a satisfying prediction 
accuracy. In a parametric framework, consistent selection 
leads to asymptotic efficiency. In a nonparametric frame-
work, selection methods based on the optimal tradeoff 
between estimation error and approximation error lead to 
asymptotic efficiency. When it is not clear if a (practical-
ly) parametric framework is suitable, we recommend the 
use of an adaptively asymptotic efficient method (e.g., the 
BC criterion).

2)	 When model selection is for prediction, the minimax con-
sideration gives more protection in the worst case. If one 
postulates that the nature is adversary, the use of a mini-
max optimal criterion (e.g., AIC) is safer (than, e.g., BIC).

3)	 When prediction is the goal, one may consider different 
types of models and methods and then apply cross validation 

Table 3. The classification for handwritten digits: Smaller tends to give 
better predictive performance.

Ratio 0.95 0.9 0.5 0.1 0.05 

Accuracy 72.24% 90.28% 91.47% 91.47% 92.99%
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to choose one for final prediction. If one needs to know 
which model or method is really the best, a large 
enough proportion (e.g., one-third or even half) for vali-
dation is necessary. If one just cares about the prediction 
accuracy and has little interest in declaring the chosen 
one being the best, the demand on the validation size 
may be much lessened.
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