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Abstract—The non-stationary nature of neural activity pre-
vents Brain-Computer Interfaces (BCIs) from leveraging data
sets collected at different recording sites, such as cortical depths.
As a result, invasive BCIs are continuously retrained on up-
to-date site-specific data which is inefficient. In this paper we
study the important intra-subject problem where neural activity
signals collected at different cortical sites within a given subject
are jointly used to train a decoder of motor intentions that
generalizes well across the entire range of sites. We use directed
graphical model with hidden latent variables that are cen-
sored via adversarial training that produces site-invariant low-
dimensional representations of the neural activity. We evaluate
the performance of our method on an experiment in which two
macaque monkeys perform memory-guided visual saccades to
one of eight target locations. The data sets are collected across
range of cortical sites, from superficial to deep cortical sites. The
results demonstrate that the site-invariant latent representations
result in improved neural decoding by a peak margin of ≈ 50%,
relative to the baseline approach where the neural decoder is
trained on site-dependent features. The findings reported in this
paper are an important step towards the development of efficient
intra-subject BCIs that generalize well across range of cortical
sites.

I. INTRODUCTION

A. Motivation

The main objective of Brain-Computer Interfaces (BCIs) is
to translate neural activity signals into control commands with
the aim of restoring, supplementing and enhancing neurologi-
cal functions [1], [2]. Some of the most important applications
of BCIs include clinical practices for treating neurological
disorders such as epilepsy, Parkinson’s disease, Alzheimer’s
disease and other debilitating conditions, neural prosthetics for
restoring lost or impaired motor functions, public safety, and
the tactical domain [3], [4].

Invasive BCIs that are implanted chronically in the brain
tissue and measure neural activity modalities that offer high
spatial and temporal resolution such as action potentials and
local field potentials (LFPs), offer strong candidate solutions
for emerging domain applications. Nevertheless, their utility
depends on satisfying a number of criteria with respect to
(w.r.t.) the reliability, efficiency and safety summarized in
the following three requirements. First and foremost, invasive
BCIs should generalize well across different recording sites
within the same same subject (also known as the intra-subject
problem), including different cortical depths and cortical re-
gions. Second, invasive BCIs should generalize well across
unseen representatives of the same population (i.e., the inter-

or cross-subject problem). Last but not least, invasive BCIs
should generalize well even with limited training data. This
requirement is of particular importance since acquiring train-
ing data is an expensive and time-consuming process; it is also
a motivating factor for addressing the inter- and intra-subject
problems mentioned earlier as this could potentially alleviate
data scarcity by allowing BCI algorithms to be trained on data
collected across different recording sites and/or subjects.

Despite the tremendous amount of progress over the last
several decades, the implementation of reliable and efficient
invasive BCIs remains a challenging problem. An important
factor contributing to the difficulty arises from the non-
stationary nature of the neural activity signals, whose statisti-
cal properties vary dramatically even under slight changes of
the recording conditions [1], [5]. As a result, BCI algorithms
trained and optimized on data collected from a given recording
site (for instance, superficial cortical depth), fail to perform
reliably when directly applied to data collected from different
recording site (e.g., deep cortical site) even when both the
training and the testing data are collected from the same
subject at the same time. The issues also arise in the time-
domain, i.e., when a BCI algorithm trained on data collected
from given recording site in a given time interval, is applied to
decode data collected from the same site at different time, even
if the subject performs an identical task. Finally, the problem
becomes notoriously challenging in inter-subject setups where,
unless the subject-dependent variability of the data is not
addressed properly, otherwise highly reliable BCI algorithms
are rendered ineffective when applied to different subjects.

The highly variable statistical nature of the neural activity
remains one of the most consequential challenges in neural
engineering that can push BCIs into inefficient designs, where
the algorithms are continuously retrained using only up-to-date
site-specific data. It is of utmost importance to enable BCIs
to leverage data acquired across different recording sites. We
conclude that the non-stationary nature of the neural activity
signals is one of the most consequential aspects of emerging
invasive BCIs. Motivated by this, in this paper we focus on
the intra-subject problem and show how to efficiently leverage
data collected across range of cortical depths in macaque
cortex to train a reliable neural decoder of motor movements
that generalizes well across the entire range of depths.

In our previous work [6]–[9], we dealt with this issue to a
certain extent. For instance, in order to increase the size of the
data set at given cortical depth and driven by the assumption
that similar recording sites (i.e., similar electrode depths in the
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same subject) yield neural activity signals for similar prop-
erties, we leveraged data collected from neighboring regions
and recording sites at different depths. In this way, we were
able to form larger data sets at a given cortical depth and
train more reliable neural decoders. However, the approach
remains limited by the non-stationarity of the neural signals
and does not efficiently leverage data collected over wide range
of recording sites and depths.

Recent advances in deep learning and transfer learning,
particularly the area of domain adaptation have had notable
success in learning domain-invariant representations of data
coming from variety of sources [10]. Some of these methods
have been already adapted to BCI setups with varying degrees
of success [5]. A notable example is the work in [11] where the
authors use adversarial censoring to generate subject-invariant
representations of EEG signals.

Motivated by the success of these methods, we propose to
use a Variational Autoencoder (VAE) to obtain an invariant
hidden representation of the neural activity that does not
depend on the specific recording sites. In the proposed method,
the invariance is enforced through an information-theoretic
modification of the evidence lower bound (ELBO) which leads
to an adversarial objective function where a separate adversary
network aims to recover the corresponding descriptor variable
that uniquely characterizes the recording depth, while, at the
same time, the encoder/decoder pair of the VAE minimize a
proxy for the mutual information between the depth descriptor
and the latent code, making it increasingly difficult for the
adversary to deduce any depth information from the latent
code; we refer to the architecture as Adversarial VAE (A-
VAE). Moreover, motivated by the robustness of the non-
parametric methods for feature extraction from LFPs, we seek
site-invariant latent codes over Pinsker’s feature space [6];
this helps alleviate the data scarcity and allows the deep A-
VAE model to be trained reliably. We apply the approach for
decoding intended eye movement directions from LFP data
collected from the prefrontal cortex (PFC) of two macaque
monkeys performing memory-guided visual saccades to one
of eight target locations on a screen. The data is collected
across range of cortical depths, ranging from superficial sites,
near the surface of PFC to deeper cortical sites, approaching
white matter. The results show that the low-dimensional site-
invariant latent representation of Pinsker’s features, produced
by the A-VAE result in improved classification performance
of the neural decoder by a margin of ≈ 50% in one of the
subjects, relative to the baseline approach where the neural
decoder is trained on site-specific features.

II. METHODS

A neural decoding system consists of three main building
blocks: 1) data acquisition in which the neural signals are con-
ditioned, amplified and digitized, 2) feature extraction, where
the acquired neural signals are further processed and the neural
activity is represented in a (lower-dimensional) feature space,
and 3) neural decoder, where the motor intentions are inferred
from the feature space representation representations using
a suitable classifier. Using this as a guideline, we organize

this section into two parts. In Section II-A we describe the
experiment and the acquired data, whereas in Section II-B we
present the approach we use to obtain site-invariant feature
representations of LFP signals.

A. Experimental Setup

We begin with an overview of the experiment and the
acquired data. All procedures were approved by the NYU
University Animal Welfare Committee (UAWC) and in ac-
cordance with the NIH . For additional details regarding the
experimental setup, we refer the interested reader to [12], in
which the dataset was originally reported.

1) Protocol: We study a classic experimental behavioral
task involving memory-guided saccades to a target location
[12]. Adult macaque monkeys (M. mulatta) are trained to per-
form memory-guided saccades to one of eight target locations
on a screen, see Fig. 1 (top row). Individual trials are initiated
by instructing the subject to fixate a central visually-presented
target (event A). Once the subject maintains ocular fixation
for a baseline period, one of the eight peripheral visual targets
(drawn uniformly at random from the corners and edge mid-
points of a square centered on the central target) is illuminated
for 300 ms (event B); on each trial, the target light is chosen
independently from previous trials. The extinguishing of the
peripheral target (event C) marks the beginning of the memory
period during which the subject must maintain fixation on
the central target until it is extinguished (event D); this event
instructs the subject to saccade to the remembered location
of the peripheral target. The trial is completed successfully if
the subject accurately maintains the gaze on the remembered
target location event (E). Regardless of the outcome, the target
light is reilluminated at the end of the trial (event F). We use
only segments of neural activity recorded during the memory
periods of successful trials; this epoch is especially interesting
in memory-guided behaviors as the epoch presents information
that determines the dynamics of the decision-making process
and the subsequent motor response [6], [12].

2) Data Acquisition: The animals were instrumented with a
head restraint prosthesis that enables head position fixation and
video-based eye movement tracking. The recording chambers
were surgically implanted over the lateral prefrontal cortex
(PFC) and a microelectrode array consisting of N = 32
individually movable electrodes, i.e., channels was semichron-
ically implanted in the chamber. Recent advances have sug-
gested that local field potential (LFP) signals present a viable
alternative to action potentials for designing invasive BCIs
where the neural activity is recorded directly from brain
tissue, via chronically implanted arrays of micro-electrodes
(see [13] and references therein for a comprehensive overview
of main advantages of LFP-based invasive BCI designs). LFPs
refer to the potential of the extracellular currents surrounding
individual neurons and, unlike the spiking activity of indi-
vidual neurons, the LFP modality is more resilient to signal
degradation [13]. In our experiment, LFP activity was sampled
at νS = 1 kHz.

3) Data Description: As the experiment progressed, the
positions of individual electrodes were gradually advanced
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Fig. 1. Top row: experimental protocol and timeline of individual trials. Bottom row: number of trials per Electrode Depth Configuration (EDC). Left: Monkey
A. Right: Monkey S.

deeper into the PFC. A fixed configuration of electrode posi-
tions over which multiple trials are performed is referred to as
electrode depth configuration (EDC), see also [6]. Each EDC
is described by a 32-dimensional real vector; each entry in
the vector contains the depth of each individual electrode with
respect to its initial position. The experiment was performed
over a total of 34 and 55 EDCs for Monkey A and Monkey S,
respectively. The distribution of successful trials across EDCs
is visually depicted in Fig. 1 (bottom row) where the horizontal
axes denote the mean electrode depth, computed as a simple
average of the entries of the EDC vector. The total number of
trials across all EDCs is 3922 for Monkey A and 13064 for
Monkey S. The respective averages are ≈ 90 and ≈ 250 trials
per EDC for Monkey A and Monkey S, respectively; the only
exception is EDC-6 with mean electrode depth ≈ 2.9 mm in
Monkey A for which a total of 827 trials were collected across
10 recording sessions. It should be noted that the experiment
for Monkey S began before action potential were detected, i.e.,
before the electrodes penetrated the surface of the PFC, and
the recordings for the first 14 EDCs (that is, EDCs with mean
electrode depths lower than 3.5 mm) were taken while some
(or all) of the electrodes were still outside the PFC [12]. Given
the size of the data sets for each EDC and considering that the
dimension of the feature space exceeds 100 (see [6], [12]), we
conclude that the number of trials for each individual EDC is
insufficient to train a reliable decoder.

B. Site-invariant Features

The theory of non-parametric regression has proven to be
useful for extracting meaningful features that enable deep
models to be trained reliably on limited data [6], [8]. Due
to the suitability for LFP-based neural decoding, here we
rely on this recently proposed method as an intermediate step

that helps obtain compact, low-dimensional representations of
the raw LFP signals in addition to alleviating issues related
with limited data, and we seek to find the site-invariant
representations of the features provided by Pinsker’s method
described below.

1) Nonparametric Regression Framework: Let x̃t, t =
1, . . . , T to denote the t-th LFP sample collected from some
electrode during a given trial. We assume that the LFP signal
consists of at least two additive components: (1) useful,
information-carrying signal that guides behavior, represented
by an unknown function x, and (2) noise-like component σw
representing the remaining part of the LFP which does not con-
tribute to behavior. Furthermore, we assume that the process
w can be modelled as independent and identically distributed
(i.i.d.) Gaussian noise. Hence, we have the following model:

x̃t = xt + σwt, wt ∼ N (0, 1), t = 0, . . . , T − 1, (1)

where xt = x(tνS) and wt = w(tνS) are the corresponding
discrete versions of x and w respectively, and σ denotes
the standard deviation of the noise-like component of the
signal. We do not assume parametric model for x; we only
assume that the model lives in a space of smooth functions
[14]. Furthermore, each behavior the subject performs yields
different representation in the function space. In addition, the
signal x will be also vary across repeated trials due to various
neurological reasons [6], [12]. Hence, it is accurate to say that
each specific task forms a class of functions in the function
space. In such case the neural decoder reduces to conventional,
multiple-class composite hypothesis testing; namely, we aim
to find a plug-in discriminant function that maps the estimate
of x into one of the behavioral tasks in the action set.

A desirable property of the neural decoder is to be consistent
which can be guaranteed by taking the worst-case miss-
classification probability to zero [14], [15]. This motivates
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the use of minimax-optimal function estimators [14]. The
theory of Gaussian sequence models provides a framework for
designing finite-dimensional representations of the minimax-
optimal function estimators. We first project the LFP model
(1) onto an orthonormal set of functions, such as the Fourier
basis functions to obtain the following sequence space repre-
sentation:

X̃l = Xl +
σ√
T
Wl, Wl ∼ N (0, 1), l = 1, 2, . . . , (2)

where, X̃l, Xl and Wl are the projections of the vectors
(x̃0, . . . , x̃T−1), (x0, . . . , xT−1) and (w0, . . . , wT−1) onto the
l-th Fourier basis function. Now, instead of estimating x in
the function space (1), we alternatively estimate the sequence
of Fourier coefficients {Xl} in the sequence space using
(2). Pinsker’s theorem gives an (asymptotically) minimax-
optimal estimator for the Gaussian sequence model provided
that the Fourier coefficients satisfy some predefined criteria.
Let the Fourier coefficients Xl live in an ellipsoid such that∑
l a

2
lX

2
l ≤ C where a1 = 0, a2m = a2m+1 = (2m)α

with α > 0 denoting the smoothness parameter. The minimax-
optimal estimator of Xl is given by [14]

Xl ≈
(
1− al

µ

)
+

X̃l = clX̃l, µ > 0, l = 1, 2, . . . . (3)

The function (·)+ operates as a rectified linear unit (ReLU),
i.e., (·)+ = max{·, 0}. We see that Pinsker’s estimator
shrinks the observations X̃l by an amount cl = 1 − al/µ if
al < µ; otherwise, it attenuates them to zero. Thus, the optimal
estimator (3) yields only a finite number of L (complex)
Fourier coefficients that correspond to the lowest L frequencies
(including the DC), where L is the largest integer such that
aL < µ and aL+1 ≥ µ.

An important special case of Pinsker’s estimator (3) is the
truncation estimator where with cl = 1 for l ≤ L and cl = 0
for l > L, corresponding to a Sobolev class of infinitely-
differentiable functions, where cl is given in eq. (3); in other
words, the finite-dimensional representation of the estimate
of x is obtained by simply retaining the first L Fourier coeffi-
cients, corresponding to the L dominant frequency components
of the complex spectrum of the LFP signal (including the
DC component). The main difference between the general
Pinsker’s estimator (3) and the truncation estimator is the rate
of convergence: Pinsker’s estimator converges fastest to the
true LFP waveform as T → ∞ among all minimax-optimal
estimators [14]. In practice, when the number of LFP samples
T is limited, as in the current experiment, this is a rather subtle
difference and one should not expect significant deviation
in the decoding performance between (3) and its simplified
truncation based variant, consistent with our previous work
[6]. The truncation estimator is also simpler to implement
than Pinsker’s estimator since it introduces only a single free
parameter, namely the number of retained complex Fourier
coefficients L.

Finally, one last comment regarding Pinsker’s estimator
is in order. Through closer inspection of equation (3), we
see that Pinsker’s estimator essentially acts as a single non-
linear (ReLU) layer of neural network, with weights that are

fixed. Thus, Pinsker’s method can be seen as an efficient
and simple alternative of common adaptive feature extractors
based on convolutional layers such as the EEGNet [16], that
significantly reduces the implementation complexity and is
suitable for limited data setups [9].

2) Adversarial Variational Autoencoder: Pinsker’s feature
extraction produces low-dimensional representations of the
LFP signals that incorporate the relevant information stored
in the amplitude and the phase of the signal, which in turn,
allows for reliable training of deep models (such as deep
neural network for classification [17]). This makes Pinsker’s
feature space attractive for further processing. The procedure
is, however, applied on a per trial, per channel basis; as a
result, Pinsker’s features are not independent from the cortical
sites of each electrode. To address this issue and find site-
invariant representations of Pinsker’s features, we adopt a
common approach from transfer learning, based on directed
graphical modelling with adversarial censoring of the latent
variables, also known as Adversarial Variational Autoencoder
(A-VAE) [11], see Fig. 2.

Let X ∈ RD denote the vector comprising Pinsker’s
features from all channels, obtained via (3) (or its truncation
variant) with D = N · (2L − 1) where N and L denote
the number of channels and the number of retained complex
Fourier coefficients, respectively. We introduce two additional
variables. Let Z ∈ RM ,M < D denote the latent variable,
and let S be a nuisance variable that incorporates information
about the cortical site the signal X was collected from. A
straightforward way to model S is via categorical random
variable that indicates the EDCs at which the recording of the
trials occurred. For instance, S ∈ {1, 2, . . . , 34} for Monkey
A and S ∈ {1, 2, . . . , 55} for Monkey S. Note that both X
and S are observable, whereas Z is hidden. The objective is
to find hidden codes Z of X that are independent of S.

The joint pdf of X , Z and S can be factorized as
pθ(X,Z, S) = p(S)p(Z)pθ(X|Z, S) where we have assumed
that p(Z|S) = p(Z) to make Z and S independent explicitly.
Evidently, learning this model amounts to maximizing the
log-likelihood of the training data computed with respect to
the conditional distribution pθ(X|S) = EZ∼p(Z)[pθ(X|Z, S)].
Note that p(S), even though easily estimated empirically
from the training data, is not needed directly during training.
Learning pθ(X|S) is difficult due to the intractable posterior
pθ(Z|X,S). However, using a tractable variational posterior
qφ(Z|X,S) as an approximation of pθ(Z|X,S), we can
use the evidence lower bound (ELBO) as a surrogate for
ln pθ(X|S) which can be written as:

ln pθ(X|S) ≥ Lθ,φ(X,S) =
− KL(qφ(Z|X,S)||p(Z))
+ EZ∼qφ(Z|X,S)[pθ(X|Z, S)]. (4)

The encoder and decoder of the VAE, qφ(Z|X,S) and
pθ(X|Z, S) are also known as recognizer and generator, re-
spectively, terminology we shall use in the following. Note that
independence is a particularly strong assumption and simply
fixing the latent prior to be independent from the nuisance
variable is usually insufficient to yield latent codes Z that are
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Fig. 2. Block diagram of a site-invariant neural decoding system with Adversarial Variational Autoencoder. In our earlier work [6], [8], [9], the Pinsker’s
features were directly fed to the neural decoder.

entirely independent from S in practice; this is again in part
due to the inherently limited training data. Further invariance
can be enforced by minimizing the mutual information I(S;Z)
where Z ∼ qφ(Z|X,S) is the latent code generated by
the encoder; this criterion can be easily incorporated in the
inequality from equation (4) as follows:

ln pθ(X|S) ≥ Lθ,φ(X,S)− λI(S;Z), (5)

where the number λ > 0 is a free hyperparameter. The equality
holds when qφ(Z|X,S) = pθ(Z|X,S) and λI(S;Z) = 0.
By keeping λ strictly positive, the second term on the right-
hand side of (5) can be zero only if the mutual information
I(S;Z) is zero which is achieved when the variables Z and
S are independent. The regularization of the ELBO through
the subtraction of the mutual information does not change the
inequality and (at least in principle), both the right-hand and
the left-hand side of (5) will have their optimums in the same
θ. Since the mutual information is hard to compute empirically,
we incorporate the variational lower bound into (5) which
finally leads to the objective function lθ,φ,ψ(X,S) given as
follows:

ln pθ(X|S) ≥ lθ,φ,ψ(X,S)
= Lθ,φ(X,S)− λEZ∼qφ(Z|X,S)[qψ(S|Z)], (6)

where qψ(S|Z) is the variational posterior approximating
the intractable true posterior p(S|Z). The objective in (6)
is adversarial in nature, as shown in Fig. 2. This can be

most easily seen for categorical nuisance variable S. In this
case, the variational posterior qφ(Z|X,S) can be realized
as a neural network for classification which is referred to
as adversary and is trained to minimize the cross-entropy
loss −EZ∼qφ(Z|X,S)[qψ(S|Z)]. Concurrently, the VAE max-
imizes lθ,φ,ψ(X,S) which maximizes the cross-entropy loss
−EZ∼qφ(Z|X,S)[qψ(S|Z)] producing latent codes Z that chal-
lenge the adversary’s ability to infer S. Formally, this is
equivalent to the following optimization problem:

max
θ,φ

min
ψ
lθ,φ,ψ(X,S). (7)

In other words, while the adversary is becoming better in
inferring S from Z, the recognizer and the generator of the
VAE try their best to fool the adversary.

III. RESULTS

In this section we evaluate the performance of neural de-
coders of motor intentions from dept-invariant representations
of LFPs, obtained using the A-VAE described in Section II-B2.
First, in Section III-A we discuss the formation of the training
and the test data sets from the experimental data, the technical
elements of the implemented architecture of the A-VAE and
the neural decoders and summarize the values of the hyper-
parameters used in the evaluations. Section III-B presents the
results along the main conclusions.
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Fig. 3. Block diagram of a site-invariant neural decoding system.

A. Preliminaries

1) Training/Testing Data Sets: To understand the perfor-
mance of the site-invariant codes for neural decoding, we need
to devote special attention to the allocation of the training and
testing sets. The raw data sets are discussed in Section II-A3,
see also Fig. 1. The training and testing data sets are selected
randomly for each subject separately: for Monkey A, we retain
400 trials for testing, and for Monkey S we allocate 2000 trials
for testing, whereas the remaining trials in each case are used
for training. Recall that in the case of Subject S, the EDCs
with mean electrode depth smaller than 3.5 mm were collected
while the electrodes were partially (or completely) outside the
PFC; in addition, it has been shown that this data is particularly
unreliable for training neural decoder and for the most part the
classification performance here is close to random choice [6],
[9]. Therefore, for Subject S we exclude the first 14 EDCs
from the analysis and focus on the remaining 41 EDCs, with
mean electrode depth larger than 3.5 millimeters. Finally, To
avoid over-fitting and obtain reliable conclusions, we apply
statistical averaging where the performance metric, namely
the average decoding accuracy, is computed as an empirical

average over 100 randomly selected testing data sets for each
subject.

2) Architecture and Hyperparameters: We adopt disen-
tangled Gaussian distributions for the prior, the encoder
and the decoder, i.e., p(Z) =

∏M
m=1N (0, 1), qφ(Z|X) =

N (µr, diag(σ2
r)) and pθ(X|Z, S) = N (µg, diag(σ2

g)), respec-
tively. Note that we made the encoder to be independent from
S explicitly, i.e., qφ(Z|X,S) = qφ(Z|X), so that the system
would not require knowledge of S during testing. Using these
models, the ELBO, which is the first term on the right-hand
side in (6), can be written in the following form:

Lθ,φ(X,S) ≈
M∑
m=1

(
1 + lnσ2

r,m − σ2
r,m + µ2

r,m

)
−

D∑
d=1

(
lnσ2

g,d +
(Xd − µg,d)2

σ2
g,d

)
. (8)

In the notation above, we used a single sample Z ∼ qφ(Z|X)
to approximate the expectation appearing in the second term
in (4) as this has shown to be sufficient in our evaluations. We
use Multilayer Perceptron (MLP) networks to parametrize the
encoder and the decoder, see also Fig. 3. Hence, µg and σg are



7

TABLE I
THE HYPER-PARAMETERS OF THE MODEL AND ITS NETWORKS.

Hyper-parameter Value

Pinsker’s Feature Extractor (with truncation)

Number of LFP samples T = 650 (first 0.65 seconds of memory period) [6]

Number of retained (complex) Fourier coefficients L = 9

Optimization parameters valid for all networks (learning rates indicated separately)

Optimization method Adadelta

Minibatch size 75

Number of training epochs 300

Recognizer (VAE Encoder) and Generator (VAE Decoder)

Topology fully-connected

Number of hidden layers 1

Number of neurons in layers in recog./gen. 288/60 (input) - 250/250 (hidden), 120/576 (output)

Hidden neuron activation functions ReLU

Learning rates 0.1

Adversary and Classifier (Neural Decoder)

Topology fully-connected

Number of hidden layers 1

Number of neurons in layers in adv./clf. 60/288 (input) - 40/40 (hidden) - 34(M.A), 55(M.S)/8 (output)

Hidden neuron activation functions ReLU

Learning rates 0.1(clf.)/0.05(adv.)

λ 1

the outputs of the decoder MLP excited by Z = µr + σr � ε,
in addition to S, with ε ∼ p(Z) generated by the standard
multivariate Gaussian prior and µr and σr represented by the
outputs of the encoder MLP excited by X . As the output
features in the above model are assumed to be independent, the
training examples are first decorrelated before training the A-
VAE. In similar fashion as the encoding/decoding networks,
the adversary is parametrized by an MLP classification net-
work that for each X takes the latent code Z generated by
the encoder and uses the softmax activation function at the
output layer to compute the probabilities across the support
of S (i.e., the set of unique EDCs) and infer S. Beside the
adversary, we also connect an additional MLP classifier over
the latent space; this network is the neural decoder, trained to
infer the motor intention of the subject using the site-invariant
representations, as shown in Fig. 3. It should be noted that the
neural decoder was trained using the same training data used
in training the A-VAE.

The specific values of the hyperparameters of the system
are summarized, in part in Fig. 3 (hidden layers, hidden units)
and, in part in Table I. In this work, we primarily focus on
optimizing the hyperparameters pertaining to the architecture
of the A-VAE and its corresponding networks, including the
neural decoder. In other words, we did not fine tune the per-
formance over the parameters of Pinsker’s feature extraction
method; rather, we fixed these parameters to values which have
been shown previously to yield reliable performance [6]. For
instance, we fixed T to 650 samples, corresponding roughly

to the first half of the memory period, as suggested in [6].
Furthermore, we retain only L = 5 complex Fourier coefficient
per channel, corresponding to the 5 lowest frequencies (that
includes the DC component). Regarding the selection of the
architecture of the A-VAE networks and the neural decoder
as well as the values of related hyperparameters (such as
optimization method, learning rate, minibatch size and so on),
our aim was to find a configuration that generalizes well for
both representative subjects. We therefore used exploratory
cross-validations on randomly selected training data sets and
recorded the performance. We selected the configuration that
led to most reasonable performance in both subjects; it should
be noted however that further, subject-specific fine tuning
might produce even more reliable results, but this is outside
the scope of the present work.

B. Evaluations

In all evaluations in this section, we use the average classi-
fication accuracy, averaged over all targets, as a performance
measure. Our investigations as well some of our earlier works
[6], where we investigated the performance with respect to
the confusion matrices, suggest that the average accuracy is
an adequate performance measure since the data sets are well-
balanced across target classes and the confusion matrices are
diagonally dominated. As a result, we find that additional
performance metrics such as recall and score, do not contribute
with new insights.
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Fig. 4. Average site-specific decoding accuracy (solid line) ± one standard deviation (dotted lines). 15% of trials per depth were retained for testing.

Before discussing the performance of the the site-invariant
neural decoder, it is insightful to see the performance of the
site-specific decoder; that is a decoder trained on the data of
individual depth. To be consistent in our analysis and to keep
the complexity comparable, we fix the configuration of the
depth-specific neural decoder to be the same configuration of
the neural decoder used in the depth-invariant architecture with
the only difference being in the size of the input which in the
depth-specific case is N · (2L − 1) = 288; the remaining
parameters, including the optimizer are given in Table I.

The average decoding accuracy of the depth-specific neural
decoder is shown in Fig. 4 for both Monkey A and Monkey S
across all recording depths. The relatively poor performance of
the depth-specific neural decoder can be attributed to the size
of the data sets at each depth; recall from Fig. 1 that the num-
ber of collected trials per EDC is rather limited. Conversely,
we observe that for EDCs with relatively large number of trials
as EDC-6 in Monkey A, the performance tends to improve.
One way to mitigate the impact of limited data sets is to use
data bundling as in [6], i.e., create larger depth-specific data
sets by bundling several data smaller data sets from similar
cortical depths (e.g., data sets whose EDC vectors are close
to each other in Euclidean distance sense); nevertheless, this
approach is susceptible to the non-stationarity of the data
across depths which ultimately limits its application.

Next, we turn our attention to the depth-invariant neural
decoding approach described in Section II-B2. We consider
two baseline methods that we use as benchmark against which
we evaluate the performance of the depth-invariant neural
decoder. The first baseline method relies on straightforward
application of the neural decoder over the depth-dependent
Pinsker’s features. We do so by using a separate MLP classifier
network with similar topology as the neural decoder from
Table I, with the only difference in the input layer which
in this case has N · (2L − 1) = 288 neurons; in addition,
we use the same optimization parameters as in Table I to
keep the complexity comparable and the performance analysis
streamlined. The other baseline relies on the vanilla VAE
method without the adversary network. Recall that the prior

TABLE II
AVERAGE CLASSIFICATION ACCURACY OF THE NEURAL DECODER ± ONE

STANDARD DEVIATION (IN %) COMPUTED FOR 100 TRAINING/TESTING
DATA SPLITS: 400 AND 2000 TESTING TRIALS USED FOR MONKEY A AND

MONKEY S, RESPECTIVELY..

Subjects

Monkey A Monkey S

Direct decoding over Pinsker’s features 56.38±1.60 36.33±0.85

Vanilla Variational Autoencoder 52.91±1.59 34.56±0.70

Adversarial Variational Autoencoder 71.63±1.41 52.12±0.81

Relative Gain w.r.t. direct decoding 27.2±4.70 50.84±4.12

distribution of the latent code was made explicitly independent
from the nuisance variable representing the depth; therefore
the purpose of this analysis is to check to what extent this
design assumption alone is sufficient to yield depth-invariant
latent representations of Pinsker’s features. We implement the
VAE model by using the same configuration of the recognizer
and generator from Table I while removing the adversary;
keeping the same configuration again helps with keeping the
complexity comparable with the corresponding constituent
blocks of the A-VAE architecture.

The results are given in Table II. In both subjects, the neural
decoder trained over the latent codes generated via adversarial
censoring yields improved performance with respect to both
baseline methods. While the relative improvement is larger for
Monkey S, the performance peaks for Monkey A. This is a
common pattern with this data set, originally observed [12] and
through subsequent investigations [6]; namely, the Monkey A
data set consistently yields more reliable neural decoders.

Interestingly, the neural decoder trained over latent codes
generated by vanilla VAE does not show any noticeable
improvement over the other baseline, namely the direct ap-
plication of neural decoder over the Pinsker’s features. This
suggest that the assumption does little in terms of enforcing
invariance with respect to the nuisance variable and making
the prior independent from the depths is not enough to yield
depth-invariant latent code. In other words, the vanilla VAE
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TABLE III
AVERAGE CLASSIFICATION ACCURACY OF THE ADVERSARY ± ONE

STANDARD DEVIATION (IN %) COMPUTED FOR 100 TRAINING/TESTING
DATA SPLITS. 400 AND 2000 TESTING TRIALS USED FOR MONKEY A AND

MONKEY S, RESPECTIVELY.

Subjects

Monkey A Monkey S

Depth inference from Pinsker’s features 75.12±2.10 58.00±1.80

Vanilla Variational Autoencoder 51.93±2.26 37.53±1.2

Adversarial Variational Autoencoder 12.63±2.18 6.89±0.88

merely produces low-dimensional latent codes which are still
depth-dependent. This can be further seen in Table III where
we show the classification accuracy of the adversary. Note
that in the case of the vanilla VAE, the second term in (6) is
removed, causing the optimization problem in (7) to decouple.
We notice that in this case the adversary can still recover the
depth indicator from the latent representation relatively well,
especially when compared with the random choice baseline
(≈ 3% for Monkey A and ≈ 2.3% for Monkey S). Comparing
these results with the classification accuracy when inferring
the depth indicator directly from Pinsker’s features, we see
that some invariance has still been enforced in the vanilla
VAE case, which can be attributed to the independent prior.
However, the invariance is much stronger in the case of the
A-VAE and in this case the adversary is able to recover
significantly less site information from the latent codes.

IV. DISCUSSION

In this paper we addressed the issues of the non-stationarity
of neural activity across cortical depths by finding depth-
invariant feature representations of the neural activity. To this
end, we proposed a solution based on directed graphical model
with adversarial, i.e., Adversarial Variational Autoencoder (A-
VAE). We verified the viability of the method in the context
of neural decoding of motor intentions from LFPs using an
experiment in which two macaque monkeys perform memory-
guided visual saccades to one of eight target locations on
a screen, and where the data was collected across range of
cortical depths in both subjects. The results demonstrate that
a neural decoder trained over depth-invariant low-dimensional
representations of the neural activity outperforms a neural
decoder trained directly over depth-dependent features, by a
relative margin of up to 50%.

The findings we report have potentially far-reaching practi-
cal implications for the development of invasive BCIs in the
domains of healthcare and public safety. Apart from civilian
applications, BCIs are also foreseen as powerful emerging
technological tool in the tactical domain. Even though our
approach is application-agnostic, we note that the technolog-
ical components of the proposed system are also applicable
in scenarios of potential importance to national security. We
note that further investigations are required to generalize our
results across different subjects and across a range of motor
tasks. Additional preclinical studies in animal models as well

as clinical studies in patients are needed; this is a non-trivial,
time-consuming and expensive endeavour.
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