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On Statistical Efficiency in Learning
Jie Ding, Enmao Diao, Jiawei Zhou, and Vahid Tarokh

Abstract—A central issue of many statistical learning problems
is to select an appropriate model from a set of candidate models.
Large models tend to inflate the variance (e.g. overfitting) while
small models tend to cause biases (e.g. underfitting) for a given
fixed dataset. In this work, we address the critical challenge of
model selection in order to strike a balance between the goodness
of fit and model complexity, and thus to gain reliable predictive
power. We consider the task of approaching the theoretical limit
of statistical learning, meaning that the selected model has the
predictive performance that is as good as the best possible
model given a class of potentially mis-specified candidate models.
We propose a generalized notion of Takeuchi’s information
criterion, and prove that the proposed method can asymptotically
achieve the optimal out-sample prediction loss under reasonable
assumptions. To our best knowledge, this is the first proof of
the asymptotic property of Takeuchi’s information criterion.
Our proof applies for a wide variety of nonlinear models, loss
functions, and high dimensionality (in the sense that the models’
complexity can grow with sample size). The proposed method can
be used as a computationally efficient surrogate for leave-one-
out cross-validation. Moreover, for modeling streaming data, we
propose an online algorithm that sequentially expands the model
complexity in order to enhance selection stability and reduce
computation cost. Experimental studies show that the proposed
metthod has desirable predictive power and less computational
cost compared to some existing methods. We also released a
python package for applying the method to logistic regression
and neural networks.

Index Terms—Cross validation; Expert learning; Feature se-
lection; Limit of learning; Model expansion.

I. INTRODUCTION

How much knowledge can we learn from a given set of
data? Statistical modeling provides a simplification of real
world complexity. It can be used to learn the key represen-
tations from available data and to predict the future data.
In order to model the data, typically the first step in data
analysts is to narrow the scope by specifying a set of candidate
parametric models (referred to as model class). The model
class can be determined by exploratory studies or scientific
reasoning. For data with specific types and sizes, each postu-
lated model may have its own advantages. In the second step,
data analysts estimate the parameters and “goodness of fit”
of each candidate model. An illustration of a typical learning
procedure is plotted in Fig. 1, where the true data generating
model may or may not be included in the model class. Simply
selecting the model with the best fitting performance usually
leads to suboptimal results. For example, the largest model
always fits the best in a nested model class. But an overly large
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model can lead to inflated variance in parameter estimation and
thus overfitting. Therefore, the third step is to apply a model
selection procedure. State-of-art selection procedure can be
roughly categorized into two classes, the penalized selection
and cross-validation. We shall elaborate on those in the next
section.

Example 1 (Generalized linear models): In a generalized
linear model (GLM), each response variable Y is assumed
to be generated from a particular distribution (e.g. Gaussian,
Binomial, Poisson, Gamma), with its mean µ linked with
potential covariates X1, X2, . . . through E∗(Y ) = µ =
g(β1X1 + β2X2 + · · · ) where g(·) is a link function. In this
example, data Z = [Y,X1, X2, . . .]

T, unknown parameters are
θ = [β1, β2, . . .]

T, and models are subsets of {β1, β2, . . .}. We
may be interested in the most appropriate distribution family
as well as the most significant variables Xj’s (relationships).

Example 2 (Neural networks): In establishing a neural net-
work (NN) model, we need to choose the number of neurons
and hidden layers, activation function, and the configuration of
their connectivity. In this example, data are similar to that of
the above example, and unknown parameters are the weights
on connected edges. Clearly, with larger number of neurons
and connections, more complex functional relationships can be
modeled. But selecting models with too large of dimensions
may result in overfitting and more computational complexity.

How can we quantify the theoretical limits of learning
procedures? We first introduce the following definition that
quantifies the predictive power of each candidate model.

Definition 1 (Out-sample prediction loss): The loss func-
tion for each sample size n and α ∈ An (model class) is a map
ln(·, ·;α) : Z × Hn[α] → R, usually written as ln(z,θ;α),
where Z is the data domain, Hn[α] is the parameter space
associated with model α, and α is included to emphasize
the model under consideration. As Fig. 1 shows, for a loss
function and a given dataset z1, . . . ,zn which are independent
and identically distributed (i.i.d.), each candidate model α
produces an estimator θ̂n[α] (referred to as the minimum loss
estimator) defined by

θ̂n[α]
∆
= arg min

θ∈Hn[α]

1

n

n∑
i=1

ln(zi,θ;α). (1)

Moreover, given by candidate model α, denoted by Ln(α),
the out-sample prediction loss, also referred to as the gener-
alization error in machine learning, is defined by

Ln(α)
∆
= E∗ln

(
·, θ̂n[α];α

)
=

∫
Z
p(z)ln

(
z, θ̂n[α];α

)
dz. (2)

Here, E∗ denotes the expectation with respect to the distribu-
tion of a future unseen random variable z (conditional on the
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Fig. 1: Illustration of a typical learning procedure, where each candidate model αj is trained in terms of θ̂n[αj ] in its parameter
space Hn[αj ], and then used to evaluate future data under some loss function `(·).

observed data). We also define the risk by

Rn[α] = E∗,oLn[α],

where the expectation in Rn[α] is taken with respect to the
observed data.

Typically z consists of response y and covariates x, and
only the entries of x associated with α are involved in the
evaluation of ln. Throughout the paper, we consider loss
functions ln(·) such that Ln[α] is always nonnegative. A
common choice is to use negative log-likelihood of model
α minus that of the true data generating model. Table I lists
some other loss functions widely used in machine learning.
Based on Definition 1, a natural way to define the limit of
statistical learning is by using the optimal prediction loss.

Definition 2 (Limit of learning): For a given data (of size
n) and model class An, the limit of learning (LoL) is defined
as minα∈An Ln(α), the optimal out-sample prediction loss
offered by candidate models.

We note that the LoL is associated with three key elements:
data, loss function, and model class. Motivated by the original
derivation of Akaike information criterion (AIC) [1], [2] and
Takeuchi’s information criterion (TIC) [3], we propose a pe-
nalized selection procedure and prove that it can approach the
LoL under reasonable assumptions. Those assumptions allow a
wide variety of loss functions, model classes (i.e. nested, non-
overlapping or partially-overlapping), and high dimensions
(i.e. the models’ complexity can grow with sample size). It
is worth noting that asymptotic analysis for a fixed number
of candidate models with fixed dimensions are generally
straightforward. Under some classical regularity conditions
(e.g. [4, Theorem 19.28]), likelihood based principle usually
selects the model that attains the smallest Kullback-Leibler
divergence from the data generating model. However, our
high dimensional setting considers models whose dimensions
and parameter spaces may depend on sample size, and thus
we cannot directly use those technical tools that have been
used in classical asymptotic analysis for mis-specified modes.
We will develop some new technical tools in our proof. Our
theoretical results extend the classical statistical theory on AIC
for linear (fixed-design) regression models to a broader range
of generalized linear or nonlinear models. Moreover, we also

review the conceptual and technical connections between cross
validation and information theoretical criteria. In particular,
we show that the proposed procedure can be much more
computationally efficient than cross validation (with the same
level of predictive power).

Why is it necessary to consider a high dimensional model
class, in the sense that the number of candidate models or each
model’s complexity is allowed to grow with sample size? In
the context of regression analysis, technical discussions that
address the question have been elaborated in [5], [6]. Here,
we give an intuitive explanation for a general setting. We let
θ∗n[α] denote the minimum loss parameter defined by

θ∗n[α]
∆
= arg min

θ∈Hn[α]

E∗ln(·,θ;α). (3)

We shall show in the Appendix (Equality 44) that Ln[α] may
be expressed as

Ln[α] =E∗ln(z,θ∗n[α];α) +
1

2

(
θ̂n[α]− θ∗n[α]

)T
Vn(θ∗n;α)·(

θ̂n[α]− θ∗n[α]
)
× {1 + op(1)} (4)

under some regularity conditions, where Vn(θ;α)
∆
=

E∗∇2
θln(·,θ;α), and op(1) is a sequence of random variables

that converges to zero in probability. The out-sample predic-
tion loss consists of two additive terms: the first being the bias
term, and the second being the variance term. Large models
tend to reduce the bias but inflate the variance (overfitting),
while small models tend to reduce the variance but increase the
bias (underfitting) for a given fixed dataset. Suppose that “all
models are wrong”, meaning that the data generating model
is not included in the model class. Usually, the bias is non-
vanishing (with n) for a fixed model complexity (say d), and
it is approximately a decreasing function of d; while on the
other hand, the variance vanishes at rate n−1 for a fixed d,
and it is an increasing function of d. Suppose for example
that the bias and variance terms are approximately c1γ−d and
c2d/n, respectively, for some positive constants c1, c2, γ. Then
the optimal d is at the order of log(n).

In view of the above arguments, as more data become
available, the model complexity need to be enlarged in order
to strike a balance between bias and variance (or approach
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TABLE I: Some common loss functions in addition to negative log-likelihood

Name quadratic exponential hinge perceptron logistic

Formula (y − θTx)2 e−yθTx max{0, 1− yθTx} max{0,−yθTx} log(1 + e−yθTx)

Domain y ∈ R y ∈ R y ∈ R y ∈ R y ∈ {0, 1}

the LoL). To illustrate, we generated n = 100, 200 data
from a logistic regression model, where coefficients are βi =
10/i and covariates xi’s are independent standard Gaussian
(for i = 1, . . . , 100). We consider the nested model class
An = {{1}, {1, 2}, . . . , {1, 2, . . . , 50}}, and the loss function
is chosen to be the negative log-likelihood. We summarize the
results in Fig. 2. As model complexity increases, the “goodness
of fit” (measured by in-sample loss) improves (Fig. 2a), while
the “predictive power” (measured by the out-sample prediction
loss) first improves and then deteriorates after some “optimal
dimension” (Fig. 2b). Moreover, the optimal dimension be-
comes larger as sample size increases. It means that better
fitting does not mean better predictive power, and large sample
sizes requires the search over a larger model class.

(a) The “goodness of fit” of each
model under sample size n = 100
(solid blue) and n = 200 (dash
red).

(b) The out-sample prediction loss
(numerically computed using in-
dependently generated data) of
each model under sample size
n = 100 (solid blue) and n =
200 (dash red).

Fig. 2: Experiment showing the “bigger models for bigger
data” phenomena that is almost ubiquitous in statistical pre-
diction and machine learning tasks.

As data sequentially arrives, the selected model from our
proposed method (and many other existing method such as
cross validation) suffer from fluctuations (due to randomness).
A conceptually appealing and computationally efficient way
is to move from small model to larger models sequentially.
Motivated by this, based on the proposed method, we further
propose a sequential model expansion strategy that aims to
facilitate interpretability of learning.

The outline of the paper is given as follows. In Section II,
we propose a computationally efficient method that determines
the most appropriate learning model as more data become
available. We prove that the LoL can be asymptotically ap-

proached under some regularity assumptions. In Section III,
we propose a model expansion techniques building upon a new
online learning algorithm which we refer to as “graph-based”
learning. The online learning algorithm may be interested on
its own as it exploits graphical structure when updating the
expert systems and computing the regrets. In Section IV, we
demonstrate the applications of the proposed methodology to
generalized linear models and neural networks, in order to
select the variables/neurons with optimal predictive power and
low computational cost.

II. LIMIT OF LEARNING

A. Notation

Let An, α, dn[α], Hn[α] ⊂ Rdn[α] denote respectively
a set of finitely many candidate models (also called the
model class), a candidate parametric model, its dimension,
its associated parameter space. Let dn

∆
= maxα∈An dn[α]

denote the dimension of the largest candidate model. We
shall frequently use subscript n to emphasize the depen-
dency on the sample size n, and include an α in the argu-
ments of many variables or functions in order to emphasize
their dependency on the model (and parameter space) under
consideration. For a measurable function f(·), we define
Enf(·) = n−1

∑n
i=1 f(zi). For example, Enln(·,θ;α) =

n−1
∑n
i=1 ln(zi,θ;α). We let ψn(z,θ;α)

∆
= ∇θln(z,θ;α),

and ∇θψn(z,θ;α)
∆
= ∇2

θln(z,θ;α), which are respectively
measurable vector-valued and matrix-valued functions of θ.
We define the matrices

Vn(θ;α)
∆
= E∗∇θψn(·,θ;α)

Jn(θ;α)
∆
= E∗

{
ψn(·,θ;α)×ψn(·,θ;α)T

}
Recall the definition of Ln[α]. Its sample analog (also re-
ferred to as the in-sample loss) is defined by L̂n[α]

∆
=

Enln
(
·, θ̂n[α];α

)
. Similarly, we define

V̂n(θ;α)
∆
= En∇θψn(·,θ;α)

Ĵn(θ;α)
∆
= En

{
ψn(·,θ;α)×ψn(·,θ;α)T

}
Throughout the paper, the vectors are arranged in column

and marked in bold. Let ‖·‖ denote Euclidean norm of a vector
or spectral norm of matrix. Let int(S) denote the interior of
a set S. For any vector c ∈ Rd (d ∈ N) and scalar r > 0, let
B(c, r)

∆
= {x ∈ Rd : ‖x−c‖ ≤ r}. For a positive semidefinite

matrix V and a vector x of the same dimension, we shall
abbreviate xTV x as ‖x‖2V . For a given probability measure
P∗ and a measurable function m, let ‖m‖P∗

∆
= (E∗m

2)1/2

denote the L2(P∗)-norm. Unless otherwise stated, E∗ denotes
the expectation with respect the true data generating process.
Let eigmin(V ) (resp. eigmax(V )) denote the smallest (resp.
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maximal) eigenvalue of a symmetric matrix V . For a sequence
of scalar random variables fn, we write fn = op(1) if
limn→∞ fn = 0 in probability, and fn = Op(1), if it is
stochastically bounded. For a fixed measurable vector-valued
function f , we define

Gnf
∆
=
√
n(En − E∗)f ,

the empirical process evaluated at f . For a, b ∈ R, we write
a . b if a ≤ cb for a universal constant c. For a vector a
or a vector-valued function f , we let ai or fi denote the ith
component.

We use → and →p to respectively denote the deterministic
and in probability convergences. Unless stated explicitly, all
the limits throughout the paper are with respect to n → ∞
where n is the sample size.

B. Approaching the LoL – Selection Procedure

To obtain the optimal predictive power, an appropriate
model selection procedure is necessary to strike a balance
between the goodness of fit and model complexity based on
the observed data. The basic idea of penalized selection is
to impose an additive penalty term to the in-sample loss (i.e.
goodness of fit), so that larger models are more penalized.
In this paper, we follow the aphorism that “all models are
wrong”, and assume that the model class under consideration
is mis-specified.

Definition 3 (Efficient learning): Our goal is to select α̂n ∈
An that is asymptotically efficient, in the sense that

Ln[α̂n]

minα∈An Ln[α]
→p 1 (5)

as n→∞.
Note that this requirement is weaker than selecting the ex-
act optimal model arg minα∈An Ln[α]. Also, the concept of
asymptotic efficiency in model selection is reminiscent of its
counterpart in parameter estimation theory. Similar definition
has been adopted in the study of the optimality of AIC in
the context of autoregressive order selection [7] and variable
selection in linear regression models [8].

It is worth noting that the above definition is in the scope of
the available data and a specified class of models. Because we
are in a date-driven setting where it is unrealistic to compete
with the best performance attainable with full knowledge of
the underlying distribution, we chose the above rationale of
efficient learning instead of using

Ln[α̂n]

minα∈An E∗ln
(
·,θ∗n[α];α

) →p 1

whose denominator does not reveal the influence of finite-
sample data. In other words, Definition 3 calls for a model
whose predictive power can practically approach the best
offered by the candidate models (i.e. the LoL in Definition 2).

A related but different school of thoughts is the so-called
structural risk minimization in the literature of statistical learn-
ing theory. In that context, the out-sample prediction loss is
usually bounded using in-sample loss plus a positive term (e.g.
a function of the Vapnik-Chervonenkis (VC) dimension [9] for

a classification model). A definitive treatment of this line of
work can be found in, e.g., [10] and the references therein. The
major difference of our setting compared with that in statistical
learning is our (stronger) requirement that the selected model
should exhibit prediction loss comparable to the best offered
by the candidates. In other words, the positive term plus the
in-sample loss should asymptotically approach the true out-
sample loss (as sample size goes to infinity).

We propose to use the following penalized model selection
procedure, which generalizes TIC from negative log-likelihood
to general loss functions.

Generalized TIC (GTIC) procedure: Given data
z1, . . . ,zn and a specified model class An. We select a model
α̂ ∈ An in the following way: 1) for each α ∈ An, find the
minimal loss estimator θ̂n[α] defined in (1), and record the
minimum as L̂n[α]; 2) select α̂ = arg minα∈An L

c
n[α], where

Lcn[α]
∆
= L̂n[α] + n−1tr

{
V̂n(θ̂n[α];α)−1Ĵn(θ̂n[α];α)

}
. (6)

We note that the two additive terms on the right hand side
of (6) represent the goodness of fit and the model complexity,
respectively.

Remark 1 (TIC and GTIC): The quantity Lcn[α], also re-
ferred to as the corrected prediction loss, can be calculated
from data, and it serves as a surrogate for the out-sample
prediction loss Ln[α] that is usually not analytically com-
putable. The in-sample loss L̂n[α] cannot be directly used
as an approximation for Ln[α], because it uses the sample
approximation twice: once in the estimation of θ∗n, and then
in the approximation of E∗ln(·,θ;α) using Enln(·,θ;α) (the
law of large numbers). For example, in a nested model class,
the largest model always has the least L̂n[α] (i.e. fits data
the best). But as we discussed in the introduction, Ln[α] is
typically decreasing first and then increasing as the dimension
increases.

TIC [3] was heuristically derived as an alternative of
AIC, also from an information theoretical point of view
(using Kullback-Leibler divergence) [11], assuming model
mis-specification. It does not appear to be widely appreciated
nor used [12] compared with other information criteria such
as AIC or Bayesian information criterion (BIC) [13]. In terms
of provable asymptotic performance, only AIC is known to
be asymptotically efficient for variable selection in linear re-
gression models [8] and autoregressive order selection in linear
time series models [7], [14], in mis-specified settings. It can be
shown that TIC reduces to AIC in linear models. Conceptually,
TIC was proposed as a surrogate for AIC in general mis-
specified settings. However, the theoretical optimality of AIC
and TIC in the general context remains unknown.

Why should TIC be preferred over AIC in nonlinear models
in general? Intuitively speaking, TIC has the potential of
exploiting the nonlinearity while AIC does not. Recall our
Example 2 in the introduction, with loss being the negative
log-likelihood. It is well known from machine learning prac-
tice that neural network structures play a key role in effective
prediction. However, information criteria such as AIC impose
the same amount of penalty as long as the number of neurons
remains the same, regardless of how neurons are configured.
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In this paper, we extend the scope of allowable loss func-
tions, and theoretically justify the use of GTIC (and thus
TIC). Under some regularity conditions (elaborated in the
Appendix), we shall prove that the α̂n selected by the GTIC
procedure is asymptotically efficient (in the sense of Defini-
tion 3). This is formally stated as a theorem in Subsection II-D.
Our theoretical results extend some existing statistical theories
on AIC for linear models. We note that the technical analysis
of high dimensional (non) linear model classes is highly
nontrivial. We will develop some new technical tools in the
Appendix, which may be interesting on their own rights.

C. Related Work

A wide variety of model selection techniques have been pro-
posed in the past fifty years, motivated by different viewpoints
and justified under various circumstances. State-of-art methods
can be roughly categorized into two classes, the penalized
selection and cross-validation.

Penalized selection: Examples are final prediction error cri-
terion [15], AIC [1], [2], BIC [13] (and its finite sample coun-
terpart Bayes factor [16]), minimum description length crite-
rion [17], Hannan and Quinn criterion [18], predictive mini-
mum description length criterion [19], [20], Cp method [21],
generalized information criterion (GICλn ) with λn →∞ [5],
[22], [23], generalized cross-validation method (GCV) [24],
and the bridge criterion (BC) [6], [25].

Cross-validation (CV): The basic idea of CV is to split the
data into two parts, one for training and one for testing. The
model with the best testing performance is selected, in the
hope that it will perform well for future data as well. It is a
common practice to apply 10-fold CV, 5-fold CV, 2-fold CV,
or 30%-for-testing. In general, the advantages of CV method
are its stability and easy implementation. However, is cross-
validation really the best choice?

In fact, it has been shown that only the delete-d CV
method with limn→∞ d/n = 1 [26]–[29], or the delete-1 CV
method [30] (or leave-one-out, LOO) can exhibit asymptotic
(large sample) optimality. Specifically, the former CV exhibits
the same asymptotic behavior as BIC, which is typically con-
sistent in a well-specified model class (i.e. it contains the true
data generating model), but is suboptimal in a mis-specified
model class. The latter CV is shown to be asymptotically
equivalent to AIC and GCV if dn[α] = o(n) [30], which
is asymptotically efficient in a mis-specified model class, but
usually overfits in a well-specified model class. We refer to
[5], [6], [25], [31], [32] for more detailed discussions on the
discrepancy and reconciliation of the two types of selection
criteria.

In other words, common folklore that advocates the use of
k-fold or 30%-for-testing CV are all asymptotically suboptimal
(in the sense of Definition 3), even in linear regression
models [5]. Since the only optimal CV is LOO-type (in mis-
specified settings), it is more appealing to apply AIC or TIC
that gives the same asymptotic performance and significantly
reduces the computational complexity by n times. For general
(mis-specified) nonlinear model class, we shall prove that
GTIC procedure asymptotically approaches the LoL. While

the asymptotic performance of LOO is not clear in that case, it
is typically more complex to implement. To demonstrate that,
we shall provide some experimental studies in the Appendix.
As a result, the GTIC procedure can be a promising competitor
of various types of standard CVs adopted in practice.

D. Asymptotic Analysis of the GTIC Procedure
We need the following assumptions for asymptotic analysis.
Assumption 1: Data Zi, i = 1, . . . , n are independent and

identically distributed (i.i.d.).
Assumption 2: For each model α ∈ An, θ∗n[α] (as was

defined in (3)) is in the interior of the compact parameter
space Hn[α], and for all ε > 0 we have

lim inf
n→∞

inf
α∈An

(
inf

θ∈Hn[α]:‖θ−θ∗n[α]‖≥ε
E∗`n

(
·,θ;α

)
− E∗`n

(
·,θ∗n[α];α

))
≥ ηε

for some constant ηε > 0 that depends only on ε. Moreover,
we have

sup
α∈An

sup
θ∈Hn[α]

∣∣∣∣En`n(·,θ;α
)
− E∗`n

(
·,θ;α

)∣∣∣∣→p 0,

as n→∞, and `n(·,θ∗n[α];α) is twice differentiable in int(Z)
for all n, α ∈ An.

Assumption 3: There exist constants τ ∈ (0, 0.5) and δ > 0
such that

sup
α∈An

sup
θ∈Hn[α]∩B(θ∗n[α],δ)

nτ‖Enψn(·,θ;α)− E∗ψn(·,θ;α)‖

= Op(1).

Additionally, the map θ 7→ E∗ψn(·,θ;α) is differentiable at
θ ∈ int(Hn[α]) for all n and α ∈ An.

Assumption 4: There exist constants c1, c2 > 0 such that

lim inf
n→∞

min
α∈An

eigmin(Vn(θ∗n;α)) ≥ c1,

lim sup
n→∞

max
α∈An

eigmax(Vn(θ∗n;α)) ≤ c2.

Assumption 5: There exist fixed constants r > 0, γ > 1,
and measurable functions mn[α] : Z → R+ ∪ {0}, z 7→
mn[α](z) for each α ∈ An, such that for all n and θ1,θ2 ∈
B(θ∗n[α], r),

‖ψn(z,θ1;α)−ψn(z,θ2;α)‖ ≤ mn[α](z)‖θ1 − θ2‖, (7)
E∗mn[α] <∞. (8)

Moreover, we have

max

{
dγn card(An)γ/2, dn

√
log{dncard(An)}

}
× n−τ

∥∥∥∥ sup
α∈An

mn[α]

∥∥∥∥
P∗

→ 0. (9)

Assumption 6: There exists a constant δ > 0 such that

sup
α∈An

sup
θ∈Hn[α]∩B(θ∗n[α],δ)

‖Ĵn(θ;α)− Jn(θ;α)‖ →p 0, (10)

sup
α∈An

sup
θ∈Hn[α]∩B(θ∗n[α],δ)

‖V̂n(θ;α)− Vn(θ;α)‖ →p 0, (11)

lim
ε→0

sup
α∈An

sup
θ∈Hn[α]∩B(θ∗n[α],ε)

‖Vn(θ;α)− Vn(θ∗n;α)‖ = 0.

(12)



IEEE TRANSACTIONS ON INFORMATION THEORY 6

We define

wn[α] =
1√
n

n∑
i=1

ψn(zi,θ
∗
n[α];α).

Clearly, wn[α] has zero mean and variance matrix
Jn(θ∗n[α];α), and thus

E∗‖wn[α]‖2Vn(θ∗n[α];α)−1 = tr
{
Vn(θ∗n[α];α)−1Jn(θ∗n[α];α)

}
.

Assumption 7: Suppose that the following regularity condi-
tions are satisfied.

inf
α∈An

n2τRn[α]→∞, (13)

sup
α∈An

dn[α]

nRn[α]
→ 0. (14)

Moreover, there exists a fixed constant m1 > 0 such that∑
α∈An

(nRn[α])−2m1E∗
{
ln(·,θ∗n[α];α)−

E∗ln(·,θ∗n[α];α)
}2m1 → 0, (15)

there exists a fixed constant m2 > 0 such that∑
α∈An

(nRn[α])−2m2E∗

[
‖wn[α]‖2Vn(θ∗n[α];α)−1

− tr
{
Vn(θ∗n[α];α)−1Jn(θ∗n[α];α)

}]2m2

→ 0, (16)

and there exists a fixed constant m3 > 0 such that

lim sup
n→∞

∑
α∈An

(nRn[α])−m3{E∗‖wn[α]‖m3+

E∗‖wn[α]‖2m3} <∞. (17)

Remark 2 (Intuitive explanation of each assumption):
Assumption 1 is standard for theoretical analysis and for
some practical applications. In the context of regression
analysis, it corresponds to the random design. In our technical
proofs, it is possible to extend the assumption of i.i.d. to
strong mixing which is more commonly assumed for time
series data.

Assumption 2 is the counterpart of the “separated mode”
and “uniform law of large numbers” conditions that have been
commonly required in proving the consistency of maximum
likelihood estimator for classical statistical models [4, Theo-
rem 5.7]. The θ∗n[α] can be interpreted as the oracle optimum
under model α, or the “projection” of true data generating
model onto α.

Assumption 3 is a weaker statement to the central limit
theorem (and its extension to Donsker classes) in a classical
(non-high dimensional) setting. In our high dimensional set-
ting, the assumption ensures that each projected model θ∗n[α]
behaves regularly. It implicitly builds a relation between dn
(the dimension of the largest candidate models) and n.

Assumption 4 assumes that the second derivative of the
out-sample prediction loss has bounded eigenvalues at the
optimum θ∗n[α]. It is useful because our asymptotic analysis
requires “well-behaved” Taylor expansion up to the second
order.

Assumption 5 is a Lipschitz-type condition. Similar but
simpler forms of this have been used in classical analysis
of asymptotic normality [4, Theorem 5.21]. We note that the
condition (9) explicitly requires that the largest dimension dn
and the candidate size card(An) do not grow too fast.

Assumption 6 requires that the sample analogs of matrices
Jn(θ;α) and Vn(θ;α) are asymptotically close to the truth
(in spectral norm) in a neighborhood of θ∗n[α]. In the classical
setting, it is guaranteed by the law of large numbers (applied
to each matrix element). Assumption 6 also requires the
continuity of Vn(θ;α) in a neighborhood of θ∗n[α].

In Assumption 7, the conditions (13), (14) and (17) indicate
that the risks Rn[α] are large so that the model class is
virtually mis-specified. The assumptions in equalities (15) and
(16) are central moment constraints that control the regularity
of loss functions.

Theorem 1: Suppose that Assumptions 1-7 hold. Then the
α̂n selected by GTIC procedure is asymptotically efficient (in
the sense of Definition 3).

Remark 3 (Sketch of Technical Ideas): Classical
asymptotic analysis typically relies on a type of uniform
convergence of empirical process around θ∗n[α]. Because
our functions are vector valued with dimension depending
on sample size, we cannot directly use state-of-art technical
tools such as [4, Theorem 19.28]. The classical proof by
White [33] (in proving asymptotic normality in mis-specified
class) cannot be directly adapted, either, for parameter spaces
that depend on n. Some new technical tools are needed in
our proof. Our ideas of proof are sketched below.

We first prove that θ̂n[α] is nτ -consistent (instead of the
classical

√
n-consistency). We then prove the first key re-

sult, namely Lemma 6, that states a type of local uniform
convergence. Note that its proof is nontrivial as both the
empirical process and θ̂n depend on the same observed data.
Our technical tools resemble those for proving a Donsker class,
but the major difference is that our model dimensions depend
on n. We then prove the second key lemma (Lemma 7).
It directly leads to the asymptotic normality of maximum
likelihood estimators in the classical setting. It is somewhat
interesting to see that the proof of Lemma 7 does not require
the
√
n-consistency of θ̂n[α] (which usually does not hold in

high dimensional settings).

E. Example
Theorem 1 is applicable to general parametric model

classes, where assumptions can often be simplified. We shall
use regression models as an example of applying Theorem 1.
Suppose that the response variable is written as Y = µ(X)+ε,
where ε has mean zero and variance σ2, and µ(X) is a (possi-
bly nonlinear) function of dn predictors X = [X1, . . . , Xdn ]T.
In linear models, data analysts assume that µ is a linear
function of X in the form of µ = β1X1 + · · · + βdXdn ,
where d may or may not depend on the sample size n. We
sometimes write µ(X) as µ for brevity. For simplicity, we
assume that σ is known, and X is a random vector independent
with ε. Also assume that E(Y ) = 0 and E(Xi) = 0
(i = 1, . . . , dn). The observed data are n independent real-
izations of Z = (Y,X1, . . . , Xdn). The unknown parameters
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are θ = (β1, . . . , βdn). The model class, denoted by An,
consists of candidate models represented by α ⊆ {1, . . . , dn},
i.e. µ(X) =

∑
i∈α βiXi.

In regression, it is common to use the quadratic loss function

ln(z,θ;α) =

(
y −

∑
j∈α

βjxj

)2

− σ2

for θ ∈ Hn[α]. Note that the population loss is

E∗ln(z,θ;α) = E∗

(
µ−

∑
j∈α

βjxj

)2

. (18)

Suppose that θ∗n is defined as in (3). We define Σxx to be
the covariance matrix whose (i, j)-th element is E∗(XiXj),
Σxµ to be the column vector whose i-th element is E∗(Xiµ),
and Σµµ = E∗(µ

2). We similarly define Σxx[α], Σxµ[α],
X[α] which are the covariance matrix/vectors restricted to
model α ∈ An. Simple calculations show that θ∗n[α] =
(Σxx[α])−1Σxµ[α] for Hn(α) = Rdn[α], and (18) may be
rewritten as

E∗ln(z,θ;α) = E∗ln(z,θ∗n[α];α) + ‖θ − θ∗n[α]‖2Σxx[α]

=
(
Σµµ − Σµx[α]Σxx[α]−1Σxµ[α]

)
+

‖θ − θ∗n[α]‖2Σxx[α]. (19)

The decomposition in (19) has a nice interpretation in terms
of bias-variance tradeoff. The first term is the L2(P∗)-norm of
the orthogonal complement of µ projected to the linear span of
covariates, or the minimal possible loss offered by the specified
model α. Clearly, it is zero if α is well-specified, and nonzero
otherwise. The second term represents the variance of estima-
tion. Using the law of large numbers and Slutsky’s theorem,
θ̂n[α] = (X[α]TX[α])−1X[α]Ty, is a consistent estimator of
θ∗n[α], where X is the n×dn[α] design matrix whose rows are
realizations of Xj (j ∈ α), and y ∆

= [y1, . . . , yn]T. It is con-
sistent because of θ̂n[α] = (n−1X[α]TX[α])−1(n−1X[α]Ty),
Theorem 1 implies the following corollary. It is possible
to relax the conditions by more sophisticated verification of
assumptions.

Corollary 1: Assume that |µ| and |Xi| (i = 1, . . . , dn) are
bounded by a constant c that does not depend on n. Suppose
the following conditions hold, then the α̂n selected by GTIC
procedure is asymptotically efficient.
1) X1, . . . , Xdn are independent for all n;
2) dn = o(nw), where w < 1/6;
3) infα∈An Rn[α] > n−ζ , where ζ < 1− 2w;
4) card(An) = o(n2(1−ζ−w)).

III. SEQUENTIAL MODEL EXPANSION

As explained in the introduction, in terms of predictive
power, a model in a mis-specified model class could be
determined to be unnecessarily large, suitable, or inadequately
small, depending on specific sample size (see Fig. 2). A
realistic learning procedure thus requires models of different
complexity levels as more data become available.

Throughout this section, we shall use T (instead of the
previously used n) to denote sample size, and subscript t as
the data index, in order to emphasize the sequential setting.

A. Discussion

We have addressed the selection of an efficient model for
a given number of observations. In many practical situations,
data are sequentially observed. A straightforward model se-
lection is to repeatedly apply GTIC procedure upon arrival
of data. However, in a sequential setting, the following issue
naturally arises:

Suppose that we successively select a model and use it to
predict at each time step. The path of the historically selected
models may fluctuate a lot (which will be illustrated in our
numerical experiments). Instead, it is more appealing (either
philosophically or computationally) to force the selected mod-
els to evolve gradually.

To address the above challenge, we first propose a concept
referred to as the graph-based expert tracking, which extends
some classical online learning techniques (Algorithm 1). Mo-
tivated by the particular path graph 1 → 2 → · · ·N , where
1, 2, . . . , N index the model class, we further propose a model
expansion strategy (Algorithm 2), where each candidate model
and its corrected prediction loss can be regarded respectively
as an expert and loss at each time.

The proposed algorithm can be used for online prediction,
which ensures not only statistically reliable results but also
simple computation. Specifically, we propose a predictor that
has cumulative out-sample prediction loss (over time) close to
the following optimum benchmark:

min
size(i1,...,iT )≤k, i1,...,iT∈{1,...,N}

T∑
t=1

Ln[αit ]. (20)

where the size of a sequence size(i1, . . . , iT ) is defined as
the number of t’s such that it 6= it+1. In other words, the
minimization is taken over all tuples (i1, . . . , iT ) that have at
most k switches and that are restricted to the chain 1→ 2→
· · · . For example, (i1, . . . , i5) = (1, 2, 2, 3, 3). In the above
formulation, it and k respectively means the index of model
chosen to predict at time step t, and the number of switches
within T time steps.

B. Tracking the Best Expert with Graphical Constraints

In this subsection, we propose a novel graph-based expert
tracking technique that motivates our algorithm in the follow-
ing subsection. The discussion may be interesting on its own
right, as it includes the state-of-art expert tracking framework
as a special case (when the underlying graph is complete).

Suppose there are N experts. At each discrete time step
t = 1, 2, . . . , T , each expert gives its prediction, after which
the environment reveals the truth zt ∈ Y . In this subsection,
with a slight abuse of notation, we shall also use l to
denote loss functions in the context of online learning. The
performance of each prediction is measured by a loss function
l : {1, 2, . . . , N} ×Y → R. The smaller the loss is, the better
the prediction is. In light of the model expansion we shall
introduce in the next subsection, each i = 1, . . . , N represents
a model, and l(i, zt) is the prediction loss of model i which
is successively re-estimated using z1, . . . ,zt at time step t.

In order to aggregate all the predictions that the experts
make, we maintain a weight for each expert, and update
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Algorithm 1 Tracking the best expert with graphical transi-
tional constraints
input Learning rate η > 0, sharing rate 0 < κ < 1/D
output pt = [pt,1, . . . , pt,N ]T (predictive distribution over the

active models) for each t = 1, . . . , T
1: Initialize w1,0 = 1 wi,0 = 0 for all i ∈ {2, . . . , N}
2: for t = 1→ T do
3: Calculate the predictive distribution pi,t =

wi,t−1/
∑N
j=1 wj,t−1, for each i ∈ {1, . . . , N}

4: Read zt, and compute vi,t = wi,t−1 exp(−η · l(i, zt)),
for each i ∈ {1, . . . , N}

5: Let wi,t = κ
∑N
j=1 βjivj,t + (1− κβi)vi,t for each i ∈

{1, . . . , N}, where βji, βi are defined in (22), (22)
6: end for

them upon the arrival of each new data point based on the
qualities of the predictions. We denote the weight for expert
i ∈ {1, . . . , N} at time t as wi,t, and the normalized version
as Wi,t. The goal is to optimally update the weights for better
prediction, which is measured by the cumulative loss minus
the best achievable (benchmark) loss. This measure is often
called “regret” in the online learning literature.

If the benchmark in the regret is defined as the minimum
cumulative loss achieved by a single expert, then the expo-
nential re-weighting algorithm can be applied easily. In many
cases the best performing expert can be different from one time
segment to another, for which the fixed share algorithm [34,
Chapter 5] can be a good solution with guaranteed regret
bound. We consider the following problem setting that aims
to reduce computational cost. The best performing expert is
restricted to switch according to a directed graph, G = (V,E)
(without self-loops), with V = {1, . . . , N} denoting the set of
nodes (representing experts) and E denoting the set of directed
edges. At each time point, the best performing expert can
either stay the same or jump to another node which is directly
connected from the current node. Let

βij = 1∃(i,j)∈E , (21)

which is 1 if there is a directed edge (i, j) on the graph, and
0 otherwise. Let

βi =

N∑
j=1

βij , (22)

which is the out-degree of the node i. In addition, we assume
that maxi∈1,...,N βi ≤ D, where 0 < D < N .

We propose Algorithm 1 to follow the best expert with
the graphical transitional constraints. We use a special prior
wi,0 here to motivate content in the next subsection. It is not
difficult to extend our discussion to more general priors here.
The classical fixed-share algorithm can be seen as a special
case when the graph is complete. The advantage of using the
graph-based expert learning is to reduce the computational cost
and to obtain a tighter error bound, as shown in the following
Theorem 2.

Theorem 2: Suppose the loss function takes values from
[0, 1]. For all T ≥ 1, the output of the algorithm in Algorithm 1

satisfies
T∑
t=1

( N∑
i=1

l(i, zt)pi,t − l(it, zt)
)

≤ 1

η
(T − k − 1) log

1

1− κD
+

1

η
k log

1

κ
+ η

T

8

for all expert sequence (i1, i2, . . . , iT ) and all observa-
tion sequence (z1, z2, . . . ,zt), given that (i1, i2, . . . , iT ) has
only transitions following directed paths in graph G and
size(i1, i2, . . . , iT ) ≤ k. Here, the left hand side of the above
inequality is referred to as regret.

In particular, the above regret bound has minimum
√
TS/2

which is achieved with the learning rate η =
√

8S/T and
sharing rate κ = k/{(T − 1)D}, where

S = (T − 1)H(k/(T − 1)) + k logD,

and H(·) is the binary entropy function defined by H(x)
∆
=

−x log x−(1−x) log(1−x) for x ∈ (0, 1), H(0) = H(1) = 0.
It is interesting to see that with graphical constraint, the

regret bound does not depend on N , but on the maximum
out-degree D instead. Thus, the bound can be tight even when
N grows exponentially in T , as long as D � N (i.e. sparse
graph).

C. Algorithm for Sequential Model Expansion

The new online learning theory proposed in the last subsec-
tion is motivated by graph-based expert tracking. Intuitively
speaking, instead of using the exponentially updated weights
directly, each expert borrows some weights from others, al-
lowing poorly performing experts to quickly stand out when
they start doing better. In that way, the experts are encouraged
to rejuvenate their past performance and “start a new life”,
so that we can track the best expert in different time epochs.
The classical fixed-share algorithm [34, Chapter 5] is a special
case when βij = 1 for all i 6= j and κ becomes κ/(N − 1),
illustrated in Fig. 3(a). Our algorithm in this subsection is
motivated by the particular path graph 1→ 2→ · · ·N , where
1, 2, . . . , N index the model class. In other words, we share
the weights in a directional way, thus encouraging the experts
to switch in a chain. The update rule is illustrated by Fig. 3(b).

Our algorithm for sequential model expansion is summa-
rized in Algorithm 2, where each candidate model and its
corrected prediction loss can be regarded respectively as an
expert and loss at each time. The labeling of models α1, α2, . . .
is generally in the ascending order of their dimensions. To
further reduce the computational cost, we maintain only an
active subset (of size K) instead of all the candidate models
at each time. The active subset starts from {α1, . . . , αK}; it
switches to {α2, . . . , αK+1} when the weight of the smallest
model α1 becomes small and that of the largest model αK
becomes large; it continues to switch upon the aggregation of
data.

The output of Algorithm 1 is a predictive distribution over
the active models. It can be used in the following two ways
in practice: 1) we randomly draw a model according to the
predictive distribution and use the predictor of that model, or
2) we use the weighted average of predictors of each model
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Fig. 3: Illustration of the state-of-art and our new way of
redistributing the share of weights in online learning.

Algorithm 2 Sequential model expansion using GTIC-
corrected loss (GTIC-sequential)

input {zt : t = 1, . . . , T}, η > 0, κ ∈ [0, 1], w0,1 =
1, w0,2 = · · · = w0,K = 0, candidate models AT =
{α1, α2, . . . , αcard(AT )}, s = 0 (αs+1, . . . , αs+K are the main-
tained active subsets of models), K ∈ N, threshold ρ ∈ [0, 1]

output pt = [pt,1, . . . , pt,K ]T (predictive distribution over the active
models) for each t = 1, . . . , T

1: for t = 1→ n do
2: Obtain zt and compute vt,k = wt−1,k exp{−η Lc

t [αs+k]} for
each k = 1, . . . ,K, where Lc

t [α] is calculated from (6) and
fitting the data z1, . . .zt to model α.

3: Let

wt,k =


(1− κ) vt,k if k = 1

(1− κ) vt,k + κ vt,k−1 if 1 < k < K

vt,k + κ vt,k−1 if k = K

4: Let pt,k = (
∑K

k=1 wt,k)
−1wt,k, k = 1, . . . ,K

5: if pt,1 ≤ ρ and pt,K ≥ 1− ρ and s+K ≤ card(AT ) then
6: Let s = s+ 1
7: Let wt,k = wt,k′ , where k = 1, . . . ,K and k′ = (k +

1 mod K) (relabeling the active models)
8: end if
9: end for

according to the predictive distribution. This can be regarded
as a specific ensemble learning (or model averaging) method.
The following Proposition 1 shows that with appropriate
learning parameters, the average predictive performance of our
algorithm is asymptotically close to the average of a series of
truly optimal models (i.e. optimal model expansion) allowing
moderately many switches.

Proposition 1: Suppose that Assumptions 1-7 hold, and that
sup1≤t≤T supα∈An L

c
t [α] < c almost surely for some fixed

constant c > 0. Suppose that the lines 5-8 are removed from
Algorithm 2, and that K = card(An), then its output satisfies

1

T

( T∑
t=1

card(AT )∑
i=1

pi,t Lct [αi]− min
size(i1,i2,...,iT )≤k

T∑
t=1

Lct [αit ]
)

≤ c√
2

√
H

(
k

T − 1

)
(23)

for all T ≥ 1, given that

κ =
k

T − 1
, η =

1

c

√
8
T − 1

T
H

(
k

T − 1

)
.

In particular, if k = o(T ), we have

lim sup
T→∞

1

T

( T∑
t=1

card(AT )∑
i=1

pi,t Lct [αi]

− min
size(i1,i2,...,iT )≤k

T∑
t=1

Ln[αit ]

)
≤ 0 (24)

almost surely.
Remark 4 (Explanation of Algorithm 2 and Proposition 1):

In addition to the (sequential) data and model class, other
inputs to Algorithm 2 are two learning parameters η, κ,
the number of active models K, and the threshold ρ. The
parameters η and κ control the rate of learning and the rate of
model expansion, respectively. The number of active models
K is set to reduce the computation cost when sample size is
small compared with model dimensions, and the threshold ρ
is used to update our active models under consideration.

In particular, upon the arrival of a new data point or a set
of data points, denoted by zt, at each time step t (line 1), we
update the weight of each candidate model by a Bayes-type
procedure (line 2). The loss employed in the update is the
corrected prediction loss, which is directly computable from
the data and which serves as an approximation of the out-
sample prediction loss (as was discussed in Subsection II-B).
The weights of each model are then updated following the
path graph (line 3). When the weight of the smallest model
becomes small and that of the largest model becomes large, it
means the current active models are inadequately small. So we
drop the smallest model and include the next large model into
the active set, and adjust their weights accordingly (lines 5-8).
In line 7, the weight of the removed model is assigned to the
newly included one, so that the sum of the weights remains
the same.

Proposition 1 states that the average predictive performance
of our algorithm is asymptotically close to that of the op-
timal model expansion allowing k = o(T ) switches. For
example, if only one point arrives at each time step, and
the dimension of the optimal model is at the order of T δ

for δ ∈ (0, 1), then the condition is trivially satisfied. The
proof of Proposition 1 follows directly from Theorem 1 and
Theorem 2, by using simple manipulations. For technical
convenience, Proposition 1 is only proved by removing the
part of maintaining an active subset (lines 5-8). We maintain
an active subset only for computational purpose, and we notice
that it does not deteriorate the performance from various
numerical experiments. This is because the weights of the
removed models are negligible.

IV. NUMERICAL EXPERIMENTS

The model classes under consideration are logistic
regression and feed-forward neural networks. We also
released an open source python package ‘gtic’ at
https://pypi.python.org/pypi/gtic, in which we build a
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tensor graph of GTIC upon the ‘theano’ platform. Users can
simply provide their tensor variables of loss and parameters,
and obtain the GTIC instantly.

A. Logistic Regression Models

We consider the model class to be logistic regression. We
generate data from a logistic regression model, where the
coefficient vector is β = 10 × [1−1.5, . . . , 100−1.5]T, and
covariates x1, . . . , x100 are independent standard Gaussian.
Suppose that we sequentially obtain and learn the data, starting
from t = 10, and then t = 11, . . . , 100. We restrict the
maximum dimension of candidate models to be b

√
tc at time t

(see our theoretical assumptions). Here, a model of dimension
d means that the first d covariates are nonzero. The model
class is nested because a small model is a special case of a
large model. We summarize the results in Fig. 4 and 5.

To illustrate the efficiency of GTIC, we first simulate model
selection results with batch data. We numerically compute the
true prediction loss of each trained model (obtained by testing
on a large dataset), and then identify the optimal model (with
the least loss). In Fig. 5a, we compare the performance of
GTIC to different types of CV. Holdout takes 70% data for
training and tests on 30% data. It fluctuates throughout the
experiment, and most of time it yields the worst performance.
GTIC, 10-fold CV and LOO perform well in this experiment.
However, both GTIC and 10-fold CV fluctuate a little bit.
Our proposed sequential model expansion algorithm smoothly
expands the model and yields the best performance compared
to all the other approaches. As shown in Fig. 4a and 4b,
although the optimal model of each sample size is not always
identical to the selected model from our model expansion
algorithm, the loss of our selected model is almost the same as
the optimal model. This result is consistent with our definition
of efficient learning.

The computation cost of all approaches is provided in
Fig. 5b. As shown in the figures, under logistic regression,
GTIC is slightly better than 10-fold CV but worse than
Holdout. Indeed, we need to compute the penalty term in
GTIC. However, depending on the problem and data, we may
need different number of folds for CV in order to have a
satisfactory result. Since GTIC performs almost as well as
LOO and 10-fold CV, we suggest using GTIC instead of
guessing the optimal number of fold for CV. With GTIC, we
do not need to sacrifice much on computation cost, but can
still achieve theoretically justifiable result which is as good as
LOO.

In another experiment, we considered two underlying data
generating models. One model (called M1) is generated
using a logistic regression model with coefficients β =
[1, 20.1, . . . , p0.1] and standard Gaussian covariates. The other
model (called M2) is generated using a logistic regression
model with coefficients β = [0.999, 0.9992, . . . , 0.999p] and
standard Gaussian covariates. We numerically compare the
performance of AIC, BIC, and TIC under various choices of
sample size n and number of covariates p. The performance
is evaluated using out-sample prediction loss, prediction accu-
racy, and prediction efficiency, summarized in Tables II, III,

IV, respectively. The best performing method is highlighted
with bold. The results show that TIC performs the best in all
cases, and BIC is always the worst for the mis-specified model
class.

B. Neural Networks

We consider the model class to be single-layer feed-forward
neural networks (see Fig. 6a). Neural networks are inherently
miss-specified models.

Data are generated from the following way. A set of two-
dimensional data are uniformly sampled from two circles (with
radius ratio 0.6), corrupted by independent Gaussian noise
with mean 0 and variance 0.1 (generated from python package
‘sklearn’ dataset “make circle”). The goal is to correctly
classify the data into two groups, the larger and smaller rings.
Since we have two-dimensional data, our input dimension for
the model is two. And because we want to classify into two
groups, the output dimension is two. In this experiment, the
model complexity of our model is the number of hidden nodes
in the single hidden layer.

We sequentially obtain and learn the data, starting from
t = 100, then t = 101, . . . , 300. We start from 100 samples
because Neural Network is likely to converge to a local
optimal for small sample size. The path of expansion in this
case is the number of hidden nodes in the single hidden layer.
Since data are not linearly-separable, we do need at least one
hidden layer to accurately classify the data. We restrict the
maximum number of hidden nodes to be

√
t/(input dimension)

due to our assumption. The path of expansion is in increasing
order of the number of hidden nodes, since having a small
number of hidden nodes is a special case of having more
number of hidden nodes.

Similarly, the optimal model (oracle) is obtained by testing
the trained model on a large dataset. The oracle loss of
different models at different sample size is shown in Fig. 7a.
With a small sample size, the cost of overfitting is considerably
high. When we have enough samples for training, the cost
of overfitting decreases. This effect may also depend on the
dimension of input data. In Fig. 8a, the loss ratio varies quite
a lot when the sample size is small, but gradually converges.
This is partially because the influence of overfitting on the
predictive power decreases as sample size increases. In other
words, even if we choose a model that is slightly overfitting,
the loss ratio is still close to one. Our proposed sequential
algorithm is superior to other approaches as shown in Fig. 7b,
because the weight of smaller models in the active set is
large enough to prevent the model to expand. As a result, we
alleviate the tendency to choose the overfitting models even
when their loss is relatively small.

The computational cost is shown in Fig. 8b. As expected, the
computation of 10-fold CV and LOO increases significantly.
However, since we can analytically compute the gradient and
hessian involved in the GTIC penalty term, using symbolic
expression computation software and saving them on the disk
in advance, our computation cost is almost constant at each
time step. Therefore, our overall computational cost is almost
identical to Holdout. Furthermore, we can utilize warm-start in
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(a) Heat-map showing the true prediction loss of estimated candidate models of each dimension
(y-axis) at each sample size (x-axis), where the black dots indicate the model of optimal loss at
each sample size. The true loss is numerically computed from independently generated test data.

(b) Heat-map showing our predictive weights over the candidate models (y-axis) at each sample size (x-axis),
using sequential model expansion.

Fig. 4: Experiment 1: logistic regression models

our implementation, which is a benefit that CV cannot enjoy
in naive sequential model selection framework. Therefore, we
encourage the use of GTIC in sequential model expansion
scheme.

V. CONCLUSIONS

We addressed the challenges of high dimensions and/or
small samples by developing a framework for model expan-
sion. This framework aims to approach the best predictive
power in sequential settings. In the first part of this paper,
we explained that requiring larger model to fit more data is
not only theoretically appealing but also practically useful.
We then studied a method (GTIC) to approach the limit of
statistical learning, in the sense that the predictive power of
the selected model is asymptotically close to the best offered
from a model class (which can depend on sample size). The
theoretical analysis of GTIC justifies the use of TIC for gen-
eral mis-specified model classes, and extends some technical
tools for classical analysis on AIC in linear models. In the

second part of the paper, we proposed a sequential model
expansion strategy for reliable online prediction with low
computation cost. It is motivated by our graph-based expert
tracking techniques. In summary, the proposed methodology
is asymptotically optimal and practically useful, and may be
a promising competitor of various types of cross-validations.
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APPENDIX A
PROOF OF THEOREM 1

We start with the following technical lemmas and additional
definitions.
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(a) Plot showing the loss of our predictor (GTIC) and cross validations at each sample size

(b) Plot showing the computational costs.

Fig. 5: Experiment 1: logistic regression models

(a) An illustration of the single-layer feed-forward neural network (b) A set of 300 data uniformly sampled from two circles
corrupted by Gaussian noise (µ = 0, σ2 = 0.1, radius ratio
= 0.6)

Fig. 6: Experiment 2: neural networks

Lemma 1: Suppose that Assumptions 1, 2, 3, 4, 6 hold.
Then θ̂n is nτ -consistent uniformly over An, namely
supα∈An n

τ‖θ̂n[α]− θ∗n[α]‖ = Op(1).
Proof: Using Assumption 2 and a direct adaptation of

the techniques in [4, Theorem 5.7], we can prove that θ̂n[α]
is consistent in the sense that

sup
α∈An

‖θ̂n[α]− θ∗n[α]‖ = op(1) (25)

as n→∞.
From the definitions of θ̂n and θ∗n, we have for each α ∈ An

nτE∗{ψn(·,θ∗n[α];α)−ψn(·, θ̂n[α];α)}
= nτ{0− E∗ψn(·, θ̂n[α];α)}
= nτ{Enψn(·, θ̂n[α];α)− E∗ψn(·, θ̂n[α];α)} (26)

From the differentiability of the map θ 7→ E∗ψn(·,θ;α),
there exists θ̃[α] such that ‖θ̃[α]−θ∗n[α]‖ ≤ ‖θ̂n[α]−θ∗n[α]‖,

and

E∗{ψn(·,θ∗n[α];α)−ψn(·, θ̂n[α];α)}
= ∇θE∗{ψn(·, θ̃[α];α)}(θ∗n[α]− θ̂n[α])

= Vn(θ̃[α];α)(θ∗n[α]− θ̂n[α]), (27)

where the exchangeability of integral and differentiation (in the
second identity) is guaranteed by (7) and (8) in Assumption 5.

Therefore, with probability tending to one, we have

sup
α∈An

nτ‖Vn(θ̃[α];α)(θ∗n[α]− θ̂n[α])‖

= sup
α∈An

nτ‖E∗{ψn(·,θ;α)−ψn(·, θ̂n;α)}‖

= sup
α∈An

nτ‖Enψn(·, θ̂n[α];α)− E∗ψn(·, θ̂n[α];α)‖

= Op(1)

where the first equality is due to (27), the second equality is
due to (26), and the third equality comes from Assumption 3.
By the (12) in Assumption 6 and Assumption 4, Vn(θ̃[α];α)
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(a) Heat-map showing the prediction loss of estimated candidate models of each dimension (y-axis) at each sample size (x-axis), where the black dots indicate
the model of optimal loss at each sample size.

(b) Heat-map showing our predictive weights over the candidate models (y-axis) at each sample size (x-axis).

Fig. 7: Experiment 2: neural networks

(a) Plot showing the loss of our predictor (GTIC) and cross validations at each sample size.

(b) Plot showing the computational costs.

Fig. 8: Experiment 2: neural networks

is invertible for each α ∈ An, and

sup
α∈An

‖Vn(θ̃[α];α)−1‖ < 1/(2c1)

with probability tending to one. It follows that

sup
α∈An

nτ‖θ∗n[α]− θ̂n[α]‖

≤ sup
α∈An

{
‖Vn(θ̃[α];α)−1‖×

‖nτVn(θ̃[α];α)(θ∗n[α]− θ̂n[α])‖
}

= Op(1), (28)

which concludes the proof.
Before we proceed, we need the following definition.
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TABLE II: Out-sample prediction loss of each method (means and standard errors)

M1 M2

AIC BIC TIC AIC BIC TIC

n = 100, p = 20 0.42 (0.01) 0.53 (0.03) 0.42 (0.01) 0.39 (0.01) 0.52 (0.04) 0.38 (0.01)

n = 100, p = 50 0.65 (0.02) 0.69 (0.01) 0.50 (0.02) 0.68 (0.03) 0.71 (0.01) 0.47 (0.02)

n = 300, p = 60 0.34 (0.01) 0.64 (0.02) 0.34 (0.01) 0.30 (0.01) 0.44 (0.05) 0.30 (0.01)

n = 300, p = 150 0.81 (0.05) 0.69 (0.00) 0.53 (0.02) 0.81 (0.03) 0.70 (0.00) 0.50 (0.01)

n = 500, p = 100 0.34 (0.01) 0.68 (0.01) 0.34 (0.01) 0.30 (0.01) 0.44 (0.05) 0.29 (0.01)

n = 500, p = 250 0.95 (0.04) 0.69 (0.00) 0.54 (0.02) 0.96 (0.03) 0.69 (0.00) 0.51 (0.01)

TABLE III: Out-sample prediction accuracy of each method (means and standard errors)

M1 M2

AIC BIC TIC AIC BIC TIC

n = 100, p = 20 0.79 (0.01) 0.74 (0.02) 0.79 (0.01) 0.83 (0.02) 0.75 (0.05) 0.83 (0.02)

n = 100, p = 50 0.69 (0.03) 0.54 (0.07) 0.78 (0.02) 0.73 (0.03) 0.63 (0.06) 0.80 (0.02)

n = 300, p = 60 0.83 (0.01) 0.60 (0.03) 0.83 (0.01) 0.87 (0.01) 0.80 (0.03) 0.87 (0.01)

n = 300, p = 150 0.72 (0.02) 0.55 (0.09) 0.77 (0.01) 0.76 (0.02) 0.67 (0.08) 0.81 (0.02)

n = 500, p = 100 0.83 (0.01) 0.58 (0.04) 0.83 (0.01) 0.87 (0.01) 0.77 (0.06) 0.87 (0.01)

n = 500, p = 250 0.74 (0.01) 0.50 (0.08) 0.79 (0.01) 0.73 (0.01) 0.40 (0.05) 0.79 (0.01)

TABLE IV: Out-sample prediction efficiency of each method (means and standard errors)

M1 M2

AIC BIC TIC AIC BIC TIC

n = 100, p = 20 0.95 (0.02) 0.55 (0.09) 0.97 (0.01) 0.96 (0.02) 0.56 (0.09) 0.97 (0.02)

n = 100, p = 50 0.64 (0.04) 0.57 (0.04) 0.97 (0.02) 0.59 (0.04) 0.53 (0.03) 0.98 (0.01)

n = 300, p = 60 0.98 (0.01) 0.32 (0.06) 0.98 (0.01) 0.96 (0.02) 0.64 (0.10) 0.98 (0.01)

n = 300, p = 150 0.58 (0.03) 0.70 (0.04) 0.99 (0.01) 0.56 (0.02) 0.66 (0.03) 1.00 (0.00)

n = 500, p = 100 0.98 (0.01) 0.32 (0.02) 0.98 (0.01) 0.96 (0.01) 0.62 (0.08) 1.00 (0.00)

n = 500, p = 250 0.50 (0.02) 0.73 (0.04) 0.99 (0.01) 0.48 (0.02) 0.68 (0.02) 0.99 (0.01)

Definition 4 (Bracketing number): Given two scalar func-
tions f1 and f2, the bracket [f1, f2] is the set of all functions
f such that f1 ≤ f ≤ f2. An ε-bracket in L2(P∗) is a
bracket [f1, f2] with E∗(f2 − f1)2 < ε2. The bracketing
number N[ ](ε,F , L2(P∗)) is the minimum number of ε-
brackets needed to cover a set F . Moreover, the bracketing
integral is defined by

I[ ](δ,F , L2(P∗)) =

∫ δ

0

√
logN[ ](ε,F , L2(P∗))dε (29)

for δ > 0.
Remark 5: The logarithm of the above bracketing number

is also referred to as bracketing entropy relative to the L2(P∗)-
norm. It is commonly used to describe the size of a class of
functions. We will use the above definition in order to prove
uniform convergence results. We refer to [35] for a different
bracketing idea which was used to study the nonasymptotic
estimation theory.

We have the following lemma whose proof follows directly
from Definition 4 and Assumption 5.

Lemma 2: Suppose that Assumption 5 holds, and rn ≤ r
for all n (where r has been defined in Assumption 5). Let

Fn[α] =
{
ψn(·,θ;α) : θ ∈ B(θ∗n[α], rn) ⊂ Rdn[α]

}
be a

collection of (vector-valued) measurable functions. Then

N[ ](ε,Fn[α], L2(P∗)) ≤
(
ε−1rn‖mn‖P∗

)dn[α]

for all 0 < ε < rn.
We prove the following technical lemmas.
Lemma 3: For any sets of functions Fj , j = 1, . . . , k, we

have

I[ ](δ,∪1≤j≤kFj , L2(P∗))

≤
√

2 log k δ +
√
k sup

1≤j≤k
I[ ](δ,Fj , L2(P∗))

Proof: The case k = 1 is straightforward. We only need
to prove for k ≥ 2. By Definition 4, we have

N[ ](ε,∪1≤j≤kFj , L2(P∗)) ≤
∑

1≤j≤k

N[ ](ε,Fj , L2(P∗).

From (29), it suffices to prove the following result, and then
let vj’s be N[ ](ε,Fj , L2(P∗))’s. For any numbers v1 ≥ · · · ≥
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vk ≥ 1 (k ≥ 2), we have√√√√log

k∑
j=1

vj ≤ max{
√

2 log k,
√
k log v1}

≤
√

2 log k +
√
k log v1.

Furthermore, it suffices to prove that

log(kv1) ≤ max{2 log k, k log v1}. (30)

In fact, if v1 ≤ k1/(k−1), then

log(kv1) ≤ log(k · k1/(k−1)) =
k

k − 1
log k ≤ 2 log k.

Otherwise, log(kv1) ≤ k log v1, because g : v 7→ k log v −
log(kv) is increasing on v ≥ 1 and it equals zero when v =
k1/(k−1).

Definition 5: For any class F of functions f : Z → R, a
function F : Z → R is called an envelope function of F , if
supf∈F |f(z)| ≤ F (z) <∞ for every z ∈ Z .

Lemma 4: ( [4, Lemma 19.34]) For any class F of mea-
surable functions f : Z → R such that E∗f2 < δ2 for all f ,
with

a(δ) = δ/
√

max{1, logN[ ](δ,F , L2(P∗))}

and F an envelope function, that

E∗ sup
f∈F
|Gnf | . I[ ](δ,F , L2(P∗)) +

√
nE∗

{
F · 1F>√na(δ)

}
.

Here, 1A is the indicator function of event A.
Lemma 5: Let Fn = ∪α∈AnFn[α] where Fn[α] = {fn,u :

u ∈ U [α]} be a class of measurable vector-valued functions.
In other words, for each α ∈ An and u ∈ U [α], fn,u =
[fn,u,1, . . . , fn,u,dn[α]]

T with fn,u,i : Z → R being a scalar-
valued function. The dimension dn[α] can be different for
α ∈ An, and we let dn = maxα∈An dn[α]. Assume that the
following conditions hold.

(i) There is an envelope function Fn that satisfies

sup
α∈An,u∈U [α]⊂Rdn[α],1≤i≤dn[α]

|fn,u,i(z)| ≤ Fn(z) <∞

for every z ∈ Z;
(ii) There exists a deterministic sequence {δn} such that

dn
√

log{dncard(An)}δn → 0, (31)

and
(iii) The bounded moment condition:

δ−2
n E∗F

2
n → 0;

(iv) The bounded class condition:√
d

3/2
n card(An)× sup

α∈An,1≤i≤dn[α]

I[ ](δn,Fn,i[α], L2(P∗))→ 0,

where we let Fn,i[α] = {fn,u,i : u ∈ U [α]}.
Then we have supf∈Fn‖Gnf‖ →p 0 as n→∞.

Proof: By Markov’s inequality, it suffices to prove that
E∗ supα∈An,u∈U [α]‖Gnfn,u‖ → 0 as n→ 0.

Condition (iii) implies that for all sufficiently large n,

sup
α∈An,u∈U [α],i=1,...,dn

E∗f
2
n,u,i ≤ E∗ sup

α∈An,u∈U [α],i=1,...,dn

f2
n,u,i

< δ2
n. (32)

Let δn, an(δn) be the constants given in Lemma 4 correspond-
ing to δ = δn and

F̃n =
⋃

α∈An,1≤i≤dn[α]

Fn,i[α].

From inequality (32) and Lemma 4, we have

E∗ sup
α∈An,u∈U [α],1≤i≤dn[α]

|Gnfn,u,i|

. I[ ](δn, F̃n, L2(P∗)) +
√
nE∗

{
Fn · 1Fn>√nan(δn)

}
≤ I[ ](δn, F̃n, L2(P∗)) +

1

an(δn)
E∗F

2
n , (33)

where the second inequality comes from the fact that

1Fn>
√
nan(δn) ≤

Fn√
nan(δn)

1Fn>
√
nan(δn) ≤

Fn√
nan(δn)

.

By the definition of an(·), I[ ](δ, F̃n, L2(P∗)), and the fact
that N[ ](δ, F̃n, L2(P∗)) is non-increasing in δ, we have

1

an(δn)
=

1

δn

√
max{1, logN[ ](δn, F̃n, L2(P∗))}

≤ 1

δ2
n

I[ ](δn, F̃n, L2(P∗)).

It follows that the right hand side of (33) is upper bounded by

I[ ](δn, F̃n, L2(P∗))
(
1 + δ−2

n E∗F
2
n

)
.

Therefore, by Lemma 3 and simple manipulations, we have

E∗ sup
α∈An,u∈U [α]

‖Gnfn,u‖

≤ E∗ sup
α∈An,u∈U [α]

dn∑
i=1

|Gnfn,u,i|

≤ dnE∗ sup
α∈An,u∈U [α],1≤i≤dn[α]

|Gnfn,u,i|

≤ (A1 +A2)
(
1 + δ−2

n E∗F
2
n

)
, (34)

where

A1 = dn
√

2 log{dncard(An)}δn,
A2 = d3/2

n

√
card(An) sup

α∈An,1≤i≤dn[α]

I[ ](δn,Fn,i[α], L2(P∗)),

Assumptions (ii), (iii), and (iv) guarantee that the right hand
side of (34) goes to zero as n → ∞, which concludes the
proof.

Using the above results, we can prove the following key
technical lemma.

Lemma 6: Suppose that Assumptions 1-6 hold. Then

sup
α∈An

‖Gnψn(·, θ̂n[α];α)−Gnψn(·,θ∗n[α];α)‖ = op(1).

(35)
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Proof: For a constant c, consider the class Fn =

∪α∈AnFn[α], with Fn[α]
∆
= {fn,u : u ∈ U [α]}, U [α] =

{[u1, . . . , udn[α]]
T :
∑dn[α]
i=1 u2

i = c}, and

fn,u(·) = ψn(·,θ∗n[α] + n−τu;α)−ψn(·,θ∗n[α];α).

Suppose that ε, δ > 0 are fixed constants. It suffices
to prove that the left hand side of (35) is less than δ
with probability at least 1 − ε for all sufficiently large n.
By Lemma 1, there exists a constant c > 0 such that
Gnψn(·, θ̂n[α];α)−Gnψn(·,θ∗n[α];α) falls into the class Fn
with probability at least 1 − ε/2 for all sufficiently large n.
Therefore, we only need to prove that for any given constant
c > 0, supf∈Fn‖Gnf‖ →p 0. It remains to prove that there
are δn’s that satisfy Conditions (i)-(iv) of Lemma 5.

We define Fn,i[α] as was in Lemma 5, and define mn(·) =

supα∈An mn[α](·). By Assumption 5, we can use Fn(·) ∆
=

cn−τ supα∈An mn[α](·) as the envelop function for each
fn,u,i(·), and we have

E∗F
2
n ≤ C1

∆
= c2n−2τE∗m

2
n

Let

C2 = dn
√

log{dncard(An)}.

Because of (9) in Assumption 5, we have

C2
2C1 = c2n−2τd2

n log{dncard(An)} E∗m2
n → 0 (36)

This implies the existence of a sequence δn (e.g. δn =

C
1/4
1 C

−1/2
2 ) such that

δnC2 → 0, δ−2
n C1 → 0,

which further implies Conditions (ii) and (iii) in Lemma 5.
To conclude the proof, we prove that Condition (iv) in

Lemma 5 holds for any δn → 0. From Lemma 2, we have
for each α ∈ An, 1 ≤ i ≤ dn[α] that

I[ ](δn,Fn,i[α], L2(P∗))

≤
∫ δn

0

[
max

{
0, dn log

(
ε−1cn−τ‖mn‖P∗

)}]1/2

dε

=

∫ min{δn,cn−τ‖mn‖P∗}

0

[
dn log

(
ε−1cn−τ‖mn‖P∗

)]1/2

dε

(37)

Because condition (9) implies that n−τ‖mn‖P∗ → 0, the value
of ε in the integral is close to one. This implies that for all
sufficiently large n, the integrand in (37) is upper bounded by
d

1/2
n ε−ρ, where 1/(1−ρ) = γ and γ is given in Assumption 5.

Therefore, for all sufficiently large n, the right hand side of
(37) is upper bounded by∫ cn−τ‖mn‖P∗

0

d1/2
n ερdε = (1− ρ)−1d1/2

n (cn−τ‖mn‖P∗)1−ρ,

which does not depend on α, i. This further implies√
d

3/2
n card(An)× sup

α∈An,1≤i≤dn[α]

I[ ](δn,Fn,i[α], L2(P∗))

≤ (1− ρ)−1c1−ρdn
√

card(An)(n−τ‖mn‖P∗)1−ρ

= (1− ρ)−1c1−ρ
(
dγn card(An)γ/2 n−τ‖mn‖P∗

)1−ρ

→ 0 (38)

where the last limit is due to (9) in Assumption 5.

We next prove the second key technical lemma.
Lemma 7: Suppose that Assumptions 1-6 hold. Assume

that the map θ 7→ E∗ψn(·,θ;α) is differentiable at a θ∗n for
all n. Then we have
√
n(θ̂n[α]− θ∗n[α]) =− {Vn(θ∗n[α];α)−1 + ν1,n[α]}·

1√
n

n∑
i=1

ψn(zi,θ
∗
n[α];α) + ν2,n[α]

where ν1,n[α] is a positive semidefinite matrix and ν2,n[α]
is a vector such that supα∈An‖ν1,n[α]‖ →p 0 and
supα∈An‖ν2,n[α]‖ →p 0.

Proof: By the definitions of θ∗n and θ̂n, we have
√
nE∗{ψn(·, θ̂n[α];α)−ψn(·,θ∗n[α];α)}

=
√
n{E∗ψn(·, θ̂n[α];α)− 0}

=
√
n{E∗ψn(·, θ̂n[α];α)− Enψn(·, θ̂n[α];α)}

= −Gnψn(·, θ̂n[α];α)

= −Gnψn(·,θ∗n[α];α) + νn (39)

where the last equality is due to Lemma 6, and ‖νn‖ = op(1),
From the differentiability of the map θ 7→ E∗ψn(·,θ;α),

there exists θ̃[α] such that ‖θ̃[α]−θ∗n[α]‖ ≤ ‖θ̂n[α]−θ∗n[α]‖,
and

E∗{ψn(·,θ∗n[α];α)−ψn(·, θ̂n[α];α)}
= ∇θE∗{ψn(·, θ̃[α];α)}(θ∗n[α]− θ̂n[α])

= Vn(θ̃[α];α)(θ∗n[α]− θ̂n[α]), (40)

where the exchangeability of integral and differentiation (in the
second identity) is guaranteed by (7) and (8) in Assumption 5.
Multiplying the matrix

√
nVn(θ̃[α];α)−1 to both sides of (40)

and using equality (39), we have
√
n(θ̂n[α]− θ∗n[α]) =− Vn(θ̃[α];α)−1Gnψn(·,θ∗n[α];α)+

Vn(θ̃[α];α)−1νn. (41)

We conclude the proof by applying Assumption 4 (with the
constant c2) and (11) in Assumption 6 to equality (41).

Proof of Theorem 1
In order to prove that the minimum of Lcn[α] asymptotically

approaches the minimum of Ln[α] (in the sense of Defini-
tion 3), we only need to prove that Lcn[α]/Ln[α] = 1 + op(1)
where op(1) is uniform in α ∈ An. In other words,

sup
α∈An

∣∣∣∣Lcn[α]− Ln[α]

Ln[α]

∣∣∣∣→p 0.
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Recall the definition of Rn[α]. It further suffices to prove that

sup
α∈An

∣∣∣∣Lcn[α]− Ln[α]

Rn[α]

∣∣∣∣→p 0, (42)

and

sup
α∈An

Ln[α]

Rn[α]
→p 1. (43)

By the definition of loss Ln[α] and Taylor expansion, we
have for each α ∈ An
Ln[α] = E∗ln(z, θ̂n[α];α)

= E∗ln(z,θ∗n[α];α) + (θ̂n[α]− θ∗n[α])T·
∂

∂θ
E∗ln(z,θ∗n[α];α)+

1

2
‖θ̂n[α]− θ∗n[α]‖2∇2

θE∗ln(z,θ̃[α];α)

= E∗ln(z,θ∗n[α];α) +
1

2
‖θ̂n[α]− θ∗n[α]‖2

Vn(θ̃[α];α)

(44)

where θ̃[α] in the second equality is a vector satisfying
‖θ̃[α] − θ∗n[α]‖ ≤ ‖θ̂n[α] − θ∗n[α]‖, and the exchangeability
of expectation and differentiation in the third equality is
guaranteed by (8) in Assumption 5, and the consistency of
θ̂n[α]. We note that by Assumption 4, the equality (44) further
implies (4) presented in our introduction.

Similarly, we have

L̂n[α] =
1

n

n∑
i=1

ln(zi, θ̂n[α];α)

=
1

n

n∑
i=1

ln(zi,θ
∗
n[α];α)+

(θ̂n[α]− θ∗n[α])T
1

n

n∑
i=1

ψn(zi,θ
∗
n[α];α)+

1

2

∥∥∥∥θ̂n[α]− θ∗n[α]

∥∥∥∥2

V̂n(˜̃θ[α])

. (45)

From identities (44) and (45), we may write

Ln[α]− L̂n[α]− 1

n
tr
{
V̂n(θ̂n[α];α)−1Ĵn(θ̂n[α];α)

}
= A3[α] +A4[α] +A5[α] +A6[α]

where we define

A3[α] =
1

2
‖θ̂n[α]− θ∗n[α]‖2

Vn(θ̃[α];α)−V̂n(˜̃θ[α])

A4[α] = − 1

n

n∑
i=1

{ln(zi,θ
∗
n;α)− E∗ln(z,θ∗n[α];α)}

A5[α] =
1

n

{
tr
{
Vn(θ∗n[α];α)−1Jn(θ∗n[α];α)

}
− tr

{
V̂n(θ̂n[α];α)−1Ĵn(θ̂n[α];α)

}}
A6[α] = −(θ̂n[α]− θ∗n[α])T

1

n

n∑
i=1

ψn(zi,θ
∗
n[α];α)

− 1

n
tr
{
Vn(θ∗n[α];α)−1Jn(θ∗n[α];α)

}
.

In view of (42), it suffices to prove that

sup
α∈An

|Ak[α]|
Rn[α]

→p 0 (46)

as n→∞ for k = 3, 4, 5, 6, and the limit (43).
By the nτ -consistency of θ̂n[α] uniformly over An

(Lemma 1) and Assumption 6,

sup
α∈An

|A3[α]|
Rn[α]

= sup
α∈An

1

2

n−2τ

Rn[α]
‖νn‖2

Vn(θ̃[α];α)−V̂n(˜̃θ[α])

where supα∈An‖νn‖ = Op(1). Thus, given assumption (13),
(46) with k = 3 can be proved.

By Chebyshev’s inequality, for any positive constant δ > 0,
we have

P∗

(
sup
α∈An

|A4[α]|
Rn[α]

> δ

)
≤
∑
α∈An

P∗

(
|A4[α]|
Rn[α]

> δ

)
≤
∑
α∈An

E∗{ln(z1,θ
∗
n;α)− E∗ln(z,θ∗n[α];α)}2m1

δ2m1n2m1Rn[α]2m1
. (47)

Thus, given assumption (15), (46) with k = 4 can be proved.
For brevity, we temporarily denote

Vn(θ∗n[α];α), V̂n(θ̂n[α];α), Jn(θ∗n[α];α), and Ĵn(θ̂n[α];α)

respectively by

V [α], V̂ [α], J [α], and Ĵ [α].

Then

tr{V [α]−1J [α]} − tr{V̂ [α]−1Ĵ [α]}
= tr{V [α]−1(J [α]− Ĵ [α])}+ tr{(V [α]−1 − V̂ [α]−1)Ĵ [α]}.

To prove (46) with k = 5, we only need to show that

sup
α∈An

1

nRn[α]
tr{V [α]−1(J [α]− Ĵ [α])} →p 0, (48)

sup
α∈An

1

nRn[α]
tr{(V [α]−1 − V̂ [α]−1)Ĵ [α]} →p 0. (49)

We only prove (48), and then (49) follows similar arguments.
Suppose that z is a N (0, I) random variable of dimension
dn[α], and V [α]−1/2 is a positive semidefinite matrix whose
square equals V [α]−1. Because of Assumption 4 and 5, (48)
could be rewritten as

sup
α∈An

1

nRn[α]
E

{
zTV [α]−1/2(J [α]− Ĵ [α])V [α]−1/2z

}
= op(1) sup

α∈An

1

nRn[α]
E‖V [α]−1/2z‖2

= op(1) sup
α∈An

1

nRn[α]
E‖z‖2

= op(1) sup
α∈An

dn[α]

nRn[α]
→p 0

where the first equality is due to (10) in Assumption 6, the
second equality is due to Assumption 4, and the last equality
is guaranteed by assumption (14).
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Next, we prove (46) with k = 6. Applying Lemma 7, we
could rewrite

|A6[α]|
Rn[α]

= A7[α] +A8[α] +A9[α],

where we define

A7[α] =
‖wn[α]‖2Vn(θ∗n[α];α)−1 − tr

{
Vn(θ∗n[α];α)−1Jn(θ∗n[α];α)

}
nRn[α]

,

A8[α] =
‖wn[α]‖2ν1,n[α]

nRn[α]
, A9[α] =

ν2,n[α]Twn[α]

nRn[α]
.

Using assumption (16) and similar arguments as in (47), we
can prove lim supα∈An |A7[α]| →p 0. Similarly, because

|A8[α]| = op(1)
‖wn[α]‖2

nRn[α]

where op(1) is uniform in An, assumption (17) guarantees that
supα∈An A8[α]→p 0. Cauchy inequality and assumption (17)
also imply that

sup
α∈An

|A9[α]| ≤ sup
α∈An

‖ν2,n[α]‖ × ‖wn[α]‖
nRn[α]

→p 0. (50)

Finally, we prove (43). From (44) and τ -consistency of
θ̂n[α], we have

Ln[α] = E∗ln(·, θ̂n[α];α)

= E∗ln(·,θ∗n[α];α) + n−2τOp(1)

where Op(1) is uniformly in An. Therefore

sup
α∈An

Ln[α]

Rn[α]
= 1 + sup

α∈An

Ln[α]− E∗Ln[α]

Rn[α]

= 1 +Op(1) sup
α∈An

1

n2τRn[α]
→p 1.

APPENDIX B
PROOF OF COROLLARY 1

A sketch of the proof is outlined below. We only need
to verify Assumptions 2 to 7. Assumption 4 is implied by
the assumption that X are independent and Vn(θ∗n;α) =
2Σxx = 2I . Due to the boundedness condition ‖θ∗n[α]‖ =
‖(Σxx[α])−1Σxµ[α]‖ < c

√
dn for some constant c. We choose

Hn[α] to be {θ ∈ Rdn[α] : ‖θ−θ∗n[α]‖ < c
√
dn}. We choose

any fixed τ satisfying

max

{
2w,

ζ

2

}
< τ ≤ 1

2
− w. (51)

For Assumption 2,

E∗`n
(
·,θ;α

)
− E∗`n

(
·,θ∗n[α];α

)
= ‖θ − θ∗n[α]‖2Σxx[α] ≥ ε

2

for all ‖θ − θ∗n[α]‖ ≥ ε. Moreover, En`n
(
·,θ;α

)
−

E∗`n
(
·,θ;α

)
has mean 0 and variance n−1Var{(Y −

θTX[α])2} = O(d2
n/n) = o(1) uniformly in θ ∈ Hn[α] and

α ∈ An.
For Assumption 3, Enψn(·,θ;α)−E∗ψn(·,θ;α) has mean

zero and covariance n−1Var{(Y − θTX[α])X[α]T}. Let A =

E∗{(Y − θTX[α])2X[α]X[α]T}. Let ‖·‖F denote the Frobe-
nius norm. Since∥∥∥∥n−1Var{(Y − θTX[α])X[α]T}

∥∥∥∥ ≤ n−1‖A‖

= n−1O(dn)‖E∗{X[α]X[α]T}‖
≤ n−1O(dn)‖E∗{X[α]X[α]T}‖F ≤ n−1O(d2

n)

uniformly in θ ∈ Hn[α] and α ∈ An. Thus any τ satisfying
(51) suffices.

For Assumption 5,

‖ψn(z,θ1;α)−ψn(z,θ2;α)‖ = ‖X[α]X[α]T(θ1 − θ2)‖
≤ ‖X[α]X[α]T‖F ‖θ1 − θ2‖ ≤ cdn‖θ1 − θ2‖.

So mn[α] = cdn suffices. This together with the condition
2w < τ implies (9).

For Assumption 6, similar as before, it can be shown
that ‖Ĵn(θ;α) − Jn(θ;α)‖ = O(n−1/2d2) = o(1), and
‖V̂n(θ;α) − Vn(θ;α)‖ = o(1) uniformly in θ ∈ Hn[α] and
α ∈ An. Also, Vn(θ∗n;α)− Vn(θ;α) = 0.

For Assumption 7, (13) is implied by ζ/2 < τ , and (14) is
implied by ζ < 1− w. Since

E∗
{
ln(·,θ∗n[α];α)− E∗ln(·,θ∗n[α];α)

}
≤ E∗

{
ln(·,θ∗n[α];α)

}2
= O(d2

n),

(15) holds under m1 = 1 and ζ < 1−w. Similar calculations
as before show that (16) and (17) are implied by ζ < 1− 2w
and m2 = m3 = 1.
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APPENDIX C
PROOF OF THEOREM 2

First, we introduce the concept of “compound experts”.
A compound expert is defined as an expert sequence
(i1, i2, . . . , iT ) whose size ≤ k with some prescribed k > 0.
Then in order to tackle the problem of “tracking the best
expert”, we could simply apply the exponentially re-weighting
algorithm over all the possible compound experts, which can
yield provable tight regret bounds. The reason why this simple
strategy is not used in practice is that the number of compound
experts is usually too large to manage, while the fixed share
algorithm greatly reduces the computational complexity and
has similar regret bounds.

For our extension of “tracking the best expert” with graphi-
cal transitional constraints, following a similar proving strategy
used in [34, Chapter 5], we first prove an equivalence between
the results of the exponentially re-weighting algorithm over
compound experts and the algorithm that we propose, and then
apply the regret bound for the former algorithm directly.

The exponentially re-weighting algorithm that we are con-
sidering here is as follows. At each time t = 0, 1, . . . , T ,
the distribution over the compound experts is maintained
by w′t(i1, i2, . . . , iT ) (not necessarily normalized) for all the
sequences (i1, i2, . . . , iT ). The initial distribution is

w′0(i1, i2, . . . , iT )

= w′0(i1)w′0(i2|i1)w′0(i3|i1, i2) · · ·w′0(iT |i1, . . . , iT−1)

= w′0(i1)w′0(i2|i1)w′0(i3|i2) · · ·w′0(iT |iT−1)

= w′0(i1)

T−1∏
t=1

w′0(it+1|it)

= 1i1=1

T−1∏
t=1

[
(1− κβit)1it+1=it + κβit,it+11it+1 6=it

]
,

where the second equality is due to Markovian property.
This initial distribution over compound experts ensures that
only the “valid” expert sequences (those follow graphical
transitions) have positive probabilities. Based on the expo-
nentially re-weighting updating rule, the distribution at each
time instant t = 1, 2, . . . , T becomes w′t(i1, i2, . . . , iT ) =
w′0(i1, i2, . . . , iT ) exp(−η

∑t
s=1 l(is, zs)).

Marginally, at time t,

w′i,t =
∑

i1,...,it,i,it+2,...,iT

w′t(i1, . . . , it, it+2, . . . , iT ).

Then we have p′i,t = w′i,t/W
′
t with W ′t =

∑N
j=1 w

′
j,t, and

p′i,0 = w′i,0 = 1i=1. The exponentially forecaster draws action
according to expert i at time t+ 1 with probability p′i,t.

Lemma 8: For all κ ∈ (0, 1/D), for any sequence of
T outcomes, and for all t = 0, 1, . . . , T , the predictive
distribution pi,t for i = 1, . . . , N generated by our proposed
Algorithm 1 is the same as the predictive distribution p′i,t for
i = 1, . . . , N that is maintained by the special exponentially
re-weighting algorithm described above.

Proof: It is enough to show that for all i and t, wi,t =
w′i,t. We proceed by induction on t. For t = 0, wi,0 = w′i,0 =

1i=1 for all i. For the induction step, assume that wi,s = w′i,s
for all i and all s < t. We then have

w′i,t =
∑

i1,...,it,it+2,...,iT

w′t(i1, . . . , it, i, it+2, . . . , iT )

=
∑

i1,...,it,it+2,...,iT

e−η
∑t
s=1 l(is,zs)×

w′0(i1, . . . , it, i, it+2, . . . , iT )

=
∑
i1,...,it

e−η
∑t
s=1 l(is,zs)w′0(i1, . . . , it, i)

=
∑
i1,...,it

e−η
∑t
s=1 l(is,zs)w′0(i1, . . . , it)

w′0(i1, . . . , it, i)

w′0(i1, . . . , it)

=
∑
i1,...,it

e−η
∑t
s=1 l(is,zs)w′0(i1, . . . , it)×[

(1− κβit)1i=it + κβit,i1i 6=it

]
=
∑
i1,...,it

e−ηl(it,zt) exp

(
−η

t−1∑
s=1

l(is, zs)

)
×

w′0(i1, . . . , it)

[
(1− κβit)1i=it + κβit,i1i 6=it

]
=
∑
it

e−ηl(it,zt)w′it,t−1

[
(1− κβit)1i=it + κβit,i1i 6=it

]
.

By induction hypothesis, w′i,t further equals

∑
it

e−ηl(it,zt)wit,t−1

[
(1− κβit)1i=it + κβit,i1i6=it

]
=
∑
it

vit,t−1

[
(1− κβit)1i=it + κβit,i1i6=it

]

= (1− κβi)vi,t + κ

N∑
j=1

βjivj,t = wi,t

where the last equality is by βii = 0.
Lemma 9: For all T ≥ 1, if l ∈ [0, 1] and we run the

exponentially weighted forecaster over compound experts as
described before, we will have

T∑
t=1

N∑
i=1

p′i,tl(i, zt) ≤
1

η
ln

1

W ′T
+
η

8
T

Proof: First, notice that

W ′t =

N∑
i=1

w′i,t

=

N∑
i=1

N∑
i1,...,it,it+2,...,iT

w′t(i1, . . . , it, i, it+2, . . . , iT )

=
∑

i1,...,iT

w′t(i1, . . . , iT ).
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Then, we also have
N∑
i=1

p′i,tl(i, zt) =
∑
it

l(it, zt)
w′it,t
W ′t−1

=
∑
it

l(it, zt)

∑
i1,...,it−1,it+1,...,iT

w′t−1(i1, . . . , iT )

W ′t−1

=
∑

i1,...,iT

w′t(i1, . . . , iT )

W ′t−1

l(it, zt).

Then we can directly apply Lemma 5.1 in [34, Chapter 5] by
noticing that W ′0 = 1.

Proof of Theorem 2
Proof: According to Lemma 8, it is equivalent to prove

the bound for the equivalent exponentially weighted forecaster.
There we have

w′0(i1, . . . , iT )

= 1i1=1

T−1∏
t=1

[
(1− κβit)1it+1=it + κβit,it+1

1it+1 6=it

]
≥ (1− κD)T−k−1κk

for all the sequence (i1, . . . , iT ) with size ≤ k and transitions
restricted on the graph.

Also, we have

lnw′T (i1, . . . , iT ) = lnw′0(i1, . . . , iT )− η
T∑
t=1

l(it, zt).

And W ′T ≥ w′T (i1, . . . , iT ). Then by Lemma 9 and some
simple manipulations, we will get

T∑
t=1

( N∑
i=1

l(i, zt)pi,t − l(it, zt)
)

≤ 1

η
(T − k − 1) log

1

1− κD
+

1

η
k log

1

κ
+ η

T

8
.

In order to minimize the above bound with respect to (κ, η),
we first take derivative w.r.t κ and setting it to zero gives
κ = k/

(
(T − 1)D

)
. Then the bound becomes S/η + ηT/8.

Minimizing w.r.t. η gives the minimal bound
√
TS/2 with

η =
√

8S/T . This concludes the proof.
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