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Gradient Information for Representation and
Modeling

Jie Ding, Robert Calderbank, Vahid Tarokh

Abstract—Motivated by Fisher divergence, in this paper
we present a new set of information quantities which
we refer to as gradient information. These measures
serve as surrogates for classical information measures
such as those based on logarithmic loss, Kullback-Leibler
divergence, directed Shannon information, etc. in many
data-processing scenarios of interest, and often provide
significant computational advantage, improved stability
and robustness. As an example, we apply these measures to
the Chow-Liu tree algorithm, and demonstrate remarkable
performance and significant computational reduction using
both synthetic and real data.

Index Terms—Capacity; Fisher divergence; Hyvarinen
loss; Information; Stability; Tree Approximation.

I. INTRODUCTION

A standard step in data fitting and statistical model
selection is the application of a loss function (sometimes
referred to as scoring function) of the form s : (y, p) 7→
s(y, p), where y is the observed data and p(·) is a density
function. In this context, it is assumed that the smaller
s(y, p), the better y fits p. A class of such functions that
exhibit desirable statistical properties has been studied
in the context of proper scoring functions [1]. As a
special case, the logarithmic loss sL(y, p) = − log p(y)
has served as the cornerstone of classical statistical
analysis because of the intimate relation between log-
arithmic loss and the Kullback-Leibler (KL) divergence.
In fact, the KL divergence from a density function p
to the true data-generating density function p∗ can be
written as E{sL(y, p)} + c, where the expectation of
sL(y, p) is taken under p∗), and c is a constant that
only depends on p∗. Therefore, minimizing the sample
average n−1

∑n
i=1 sL(yi, p) over a set of candidates

density functions p asymptotically amounts to finding
the closest candidate p̂ to p∗ in KL divergence.
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A notable use of the logarithmic loss function is in
maximum likelihood estimation for parametric models.
By minimizing n−1

∑n
i=1 sL(yi, pθ) over θ ∈ Θ for

some parameter space Θ, an estimate θ̂ is obtained to
represent the data generating model. Some commonly
used objective loss function such as cross-entropy loss
for classification and squared loss for regression can be
regarded as special cases of the logarithmic loss function.
Another important use of the logarithmic loss is in model
comparison and model selection. In the presence of
multiple candidate models, data analysts have to follow
a model selection principle to select the most appropriate
model for interpretation or prediction. The log-likelihood
function, which can be regarded as logarithmic loss
evaluated at observed data, play a crucial role in most
state-of-the-art principles, including information criteria,
Bayesian likelihood, Bayes factors (see, e.g., [2], [3]
and the references therein). The logarithmic loss and
KL divergence are also foundational in inference and
information processing, exemplified by their use in vari-
ational inference [4], contrastive divergence learning [5],
learning with information gains [6]–[8], etc.

Is the logarithmic loss always the best choice? In a
series of recent works, a new loss function (also referred
to as the Hyvarinen scoring function) [9] has been
proposed as a surrogate for logarithmic loss function for
statistical inference and machine learning. It is defined
by

sH(y, p) =
1

2
∥∇y log p(y)∥2 +∆y log p(y), (1)

where ∇ denotes the gradient and ∆ denotes the Lapla-
cian, and p is defined over an unbounded domain. It
was first proposed in the context of parameter inference,
which can produce (in a way similar to the logarithmic
loss) a consistent estimation of θ of a probability density
function pθ(y) [9]. It was shown that sH(y, p) is compu-
tationally simpler to calculate in most cases, particularly
in the case of intractable normalizing constants. This
enables a richer class of models for prediction given
the same amount of computational resources. It was
discovered that the Hyvarinen loss also enjoys desirable
properties in Bayesian model comparison and provides
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better interpretability for Bayesian model selection in
the presence of vague or improper priors, compared
with classical Bayesian principles based on marginal
likelihoods or Bayes factors [10], [11].

On the other hand, from an information theoretic
view, the differential entropy (for a random variable)
is the expectation of its logarithmic loss, the mutual
information (between two random variables) is the KL
divergence from the product density function to the joint
density function, and the mutual information is linked to
differential entropy through the chain rule. This view is
crucial to motivate our new information measures. Moti-
vated by the definition of Shannon’s differential entropy,
it is natural to define the “entropy” for the Hyvarinen
loss. This turns out to be intimately related to Fisher
divergence. In fact the classical mutual information may
be re-defined based on Fisher divergence instead of KL
divergence. It turns out that these quantities still can be
interpreted in information theoretic manner.

The main contributions of our work are described
next. First, motivated by some recent advances in scoring
functions, we propose a set of information quantities
to measure the uncertainty, dependence, and stability of
random variables. We study their theoretical properties,
resemblance and difference to the existing counterpart
measures widely used in machine learning. Second, we
provide interpretations and applications of the proposed
gradient information, e.g. to fast tree approximation and
community discovery. Third, we point out some interest-
ing directions enabled by gradient information, including
a new form of causality for predictive modeling, channel
coding where the stability of channel capacity is of a
major concern, and general inequalities that could have
been highly nontrivial from an algebraic point of view.

The paper is outlined as follows. In Section II, we
introduce the Hyvarinen loss function and extend its
scope from unbounded to bounded continuous random
variables. We introduce a set of quantities in Sec-
tion II-C referred to as gradient information measures,
and study their properties, interpretations, and implica-
tions for machine learning. In Section III, we provide
some applications of the proposed concepts, including a
new algorithm for graphical modeling that parallels the
classical Chow-Liu tree algorithm (but from an alterna-
tive perspective that can enjoy computational benefit),
a new supervised learning algorithm, and a community
discovery algorithm. We conclude the paper and share
our thoughts on some future research in Section IV.

II. GRADIENT INFORMATION AND ITS PROPERTIES

A. Fisher divergence and Hyvarinen loss

We focus on multidimensional continuous random
variables (often denoted by Y ∈ Rd) in this paper unless
otherwise stated. We use p and E to denote the density
function and expectation with respect to the distribution
of Y , respectively. The jth entry of Y is denoted by
Yj (j = 1, . . . , d). Let [Y, Z] denote the joint vector that
consists of Y and Z. We often use upper and a lower case
letters to respectively denote a random variable and its
realizations. We consider a class of distributions P over
Rd that consists of distributions whose Lebesgue density
p(·) is a twice continuously differentiable function. We
use N (µ, V ) to denote a Gaussian distribution of mean
µ and covariance V . We use ∥·∥ to denote the Euclidean
norm. For a joint density function p(·) of (Y, Z), let pZ|Y
denote (y, z) 7→ p(z | y), a function of both y and z.

Suppose p denotes the true-data generating distri-
bution that is usually unknown. Given observed data
y1, . . . , yn, a typical machine learning problem is to
search for a density function q (usually parameterized)
over some space that is the most representative of the
data. For that purpose, a measure of difference between
probability distributions are needed. The existing liter-
ature largely replies on the KL divergence, which is
defined by

DKL(p, q) = E{log p(Y )/ log q(Y )}

(to log base e), where p(·), q(·) are two probability
density functions and E is with respect to p. Note that

DKL(p, q) = −E{log q(Y )}+ E{log p(Y )}

and it is only minimized at q = p (almost everywhere).
This implies that −E{log q(Y )} is minimized at q = p.
A direct consequence of the above observation is the
use of maximum likelihood estimation that minimizes
−
∑n

i=1 log q(yi). By the law of large numbers, the
estimator q̂ can be proved to be close to p for large
n. A possible alternative to KL divergence is the follow-
ing. The Fisher divergence from a probability density
function q(·) to another p(·) is

DF(p, q) =
1

2

∫
Rd

∥∇y log q(y)−∇y log p(y)∥2p(y)dy,

where ∇ is the gradient. It is also referred to as gen-
eralized Fisher information distance in physics, and has
found application in statistical inference (see, e.g., [12]),
with the difference that the ∇ operator is with respect
to the parameter instead of data. By similar argument as
in the KL divergence, the following result was proved
in [9].
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Proposition 1. Suppose that the following regularity
conditions hold:

1) p(·) and ∇y log q(·) on (−∞,∞) are continuously
differentiable,

2) E∥log∇yp(y)∥2 and E∥log∇yq(y)∥2 are finite,
3) lim|yj |→∞ p(y) · ∂j log q(y) = 0, (j = 1, . . . , d)
then we have

DF(p, q) = E{sH(y, q)}+ 1

2
E∥∇y log q(y)∥2. (2)

where sH(y, q), referred to as the Hyvarinen loss func-
tion, is defined in (1).

Suppose that a set of observations y1, . . . , yn are
drawn from some unknown p, a sample analog of
E{sH(y, q)} can be used to search for the q from a
space of density functions to approximate p (just like
the maximum likelihood estimation). Hyvarinen loss
function is particularly powerful when the probability
density function is only known up to a multiplicative
normalization constant. This is because (1) is invariant
under a constant multiplication of p(y). There has been
an extension to discrete random variables (see, e.g., [13],
[14]). We refer to [9], [11] for more details of Hyvarinen
loss in the context of i.i.d. and time series settings.

B. Extension of Hyvarinen loss to partially bounded
random variables

The definition in (1) only applies to unbounded ran-
dom variables. Following an extension to nonnegative
variables [15], we further extend the Hyvarinen loss
to general continuous variables including unbounded,
partially-bounded, and fully bounded cases. Suppose
that yj ∈ [aj , bj ], where aj , bj (j = 1, . . . , d) may
be at infinity (unbounded case). Suppose there exist
nonnegative integers αj , βj such that

p(y) · ∂yj
log q(y) · (yj − aj)

2αj (yj − bj)
2βj → 0 (3)

as y → a+j or y → b−j for all densities q within the
specified model class and true data-generating density p.
In the above condition, when aj = −∞ (resp. bj = ∞),
it is understood that αj = 0, (yj − aj)

2αj = 1 (resp.
βj = 0, (yj−bj)2βj = 1). Note that the assumption made
in [9] corresponds to the unbounded case with αj =
βj = 0. For any two vectors u, v ∈ Rd, and a vector of
nonnegative integers w ∈ Nd, let u ◦ v and uα denote
vectors in Rd whose jth entry is ujvj , u

αj

j , respectively.
As a special case, v0 = 1 for any scalar v. Clearly,
the operation ◦ is associative. Let a, b, α, β ∈ Rd, and
consider

D∇(p, q) =
1

2

∫
Dy

∥{∇ log q(y)−∇ log p(y)}

◦ {(y − a)α} ◦ {(y − b)β}∥2p(y)dy. (4)

Theorem 1. D∇(p, q) defined as above equals zero if
and only if p equals q almost everywhere. Moreover,
assume condition (3) holds, p(·) and ∇y log q(·) are
continuously differentiable, and

max
1≤j≤d

E|yαj+βj∂j log h(y)|2 <∞, for h = p, q.

Then D∇(p, q) can be written as s∇(y, q) + cp, where
cp is a constant that only depends on p, and s∇(y, q) is
defined as

1

2
∥{∇ log q(y)} ◦ {(y − a)α} ◦ {(y − b)β}∥2+
d∑

j=1

∂yj

{
(∂yj

log q(y))(yj − aj)
2αj (yj − bj)

2βj

}
. (5)

The regularity conditions made in Theorem 1 are
mild and hold for many commonly used distributions
such as sub-Gaussian and sub-exponential families. By
Theorem 1, the extended s∇(y, q) in (5) inherits the
properties of (1) and is applicable to a wide range of
continuous random variables. To summarize its desirable
properties, s∇(y, q) is

(P1) only a function of y,∇q(y),∇2q(y), which usu-
ally has an analytic form to evaluate (for parametric q);

(P2) invariant under scaling of q, which can be quite
favorable when the parameterized density q is known up
to a normalizing constant;

(P3) statistically proper [1] in the sense that its expec-
tation is only minimized at q = p (almost everywhere)
where q is the true data generating density;

(P4) applicable to a wide range of continuous random
variables whose entries may be bounded or unbounded
or a mixture of them.

C. Information quantities and properties

The classical information quantities largely rely on
KL divergence. For instance, the Shannon entropy is
the expectation of the log loss function, and the mutual
information is the KL divergence between product of
marginal densities and joint density. Likewise, starting
from the Hyvarinen loss, we define the following en-
tropy, conditional entropy and mutual information that
are generally referred to as gradient information.

Definition 1 (Gradient information). For a continuous
random variable Y = [Y1, Y2] we define the following
information quantities:

• Entropy: H∇(Y ) = E{s∇(Y, pY )}
• Conditional entropy:
H∇(Z | Y ) = Ep{s∇([Y, Z], pZ|Y )}

• Mutual information: I∇(Y, Z) = D∇(pY Z , pY pZ).
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where pY , pZ denotes the marginal densities and pY Z

denotes the joint density of random variables Y,Z.

For partially bounded random variables in Subsec-
tion II-B, we let α, β be the smallest nonnegative integers
such that (3) holds. The above definition can be extended
to discrete random variables but we leave this extension
to a future work. The gradient entropy (denoted by ‘G-
entropy’) along with the Shannon entropy (‘S-entropy’)
for some common distribution families are tabulated in
Table I.

Let q = p in Theorem 1, it is not difficult to observe
the following identity.

H∇(Y ) = −1

2
J(Y ) (6)

where

J(Y ) = ∥{∇ log p(y)} ◦ {(y − a)α} ◦ {(y − b)β}∥2.

For unbounded Y and zero vectors α, β, J(Y ) reduces to∫
R p(y)∥∇y log p(y)∥2dy which is sometimes called the

Fisher information of Y that has many implications in
physics (see, e.g. [16]). A related but different definition
of Fisher information is the variance of the partial deriva-
tive with respect to the parameter of a log-likelihood
function. As a consequence of (6), we have H∇(Y ) ≤ 0.
Its interpretation is elaborated in Subsection II-D. Also,
I∇(Y, Z) equals to zero if and only if Y and Z are
independent.

Next we show that the above information quantities
enjoy desirable quantities such as chain rule and con-
ditioning reduces entropy that are reminiscent of the
properties of Shannon Information. However, they can be
more suitable for machine learning due to computational
and interpretation advantages we shall point out.

Theorem 2. Suppose the assumptions in Theorem 1
hold. We have the chain rules

I∇(Y ;Z) = H∇(Y ) +H∇(Z)−H∇(Y, Z) (7)

H∇(Y, Z) = H∇(Y ) +H∇(Z | Y ) (8)

As a by product of Theorem 2, I∇(Y,Z) = H∇(Z)−
H∇(Z | Y ) ≥ 0 (i.e. conditioning reduces entropy), with
equality if and only if Y, Z are independent.

We may also define the following “generalized asso-
ciation”:

Ic(Y ;Z) = − I∇(Y ;Z)

H∇(Y, Z)
(9)

between two random variables Y, Z. It can be proved
that Ic ∈ [0, 1), and Ic = 0 if and only if Y, Z are
independent. In the bivariate Gaussian case, Ic = ρ2

where ρ is the usual correlation.

It is worth mentioning that not all properties of gra-
dient information are counterparts of those in classical
Shannon information. Examples are given in the follow-
ing proposition that are used in proving our results in
the supplementary material.

Proposition 2. For any two unbounded random vari-
ables Y, Z whose joint distribution exists and satisfies
conditions of Proposition 1, we have

H∇(Z | Y ) ≤ E{H∇(Z | Y = y)} (10)

where the expectation on the right hand side is with
respect to Y .

Suppose further that Y and Z are independent, then

H∇(Y + Z | Z) = 2H∇(Y ). (11)

Compared with (Shannon) differential entropy of a
random variable that measures its descriptive complexity,
the entropy and conditional entropy in Definition 1
measure the uncertainty in prediction. The following
Proposition 3 serves as a continuous analog of Fano’s
inequality that bounds the mean-squared prediction error,
and is also intimately related to the Cramér-Rao bound.
It can be extended to multidimensional case but we do
not pursue the details here.

Proposition 3. Suppose that Y is an unbounded scalar
random variable to predict, and X is a variable (pro-
viding side information about Y ) such that the joint
distribution of (X,Y ) exists. Suppose that Ŷ (X) is any
estimate of Y which is only a function of X . Then the
expected L2 prediction error satisfies

E(Y − Ŷ (X))2 ≥ 1

−2H∇(Y | X)
(12)

with equality if and only if Y is Gaussian and indepen-
dent with X , and Ŷ (X) = EY .

D. Stability interpretation

In modern machine learning systems with uncertainty
in data generating processes, stability is a key issue of
concern. We introduce a relationship between the gradi-
ent information and KL divergence based information
that is widely used in machine learning. For brevity,
we narrow our scope to unbounded continuous random
variables and introduce the following definition and
results. Its proof follows from the de Bruijn’s identity,
Theorem 1 of [17], and Theorem 2 in Section II.

Definition 2 (Perturbed random variable). Let Y be
any random variable with a finite variance with density
p(·). Let e be an standard Gaussian random variable
independent of Y . Let Yv = Y +

√
ve with density pv(·).
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TABLE I: Examples of gradient entropy versus Shannon entropy for common distributions

DISTRIBUTION PARAMETER DENSITY SUPPORT G-ENTROPY S-ENTROPY

GAUSSIAN MEAN µ, VARIANCE σ2 1√
2πσ

e−(y−µ)2/2σ2

(−∞,∞) − 1
2σ2

1
2 log(2πeσ

2)

GAMMA SHAPE α AND RATE β βα

Γ(α)y
α−1e−βy [0,∞) −1

2 (α+ 1) α+ log Γ(α)
β + (1− α)ψ(α)

EXPONENTIAL RATE λ λe−λy [0,∞) −1 1− log(λ)

UNIFORM RANGE a, b 1
b−a [a, b] 0 log(b− a)

PARETO SCALE a, SHAPE γ γaγ

yγ+1 [a,∞) − 1+γ
2+γ log a

γ + 1 + 1
γ

Proposition 4. We have

H∇(Y ) = − d

dv
H(Yv) |v=0,

D∇(p, q) = − d

dv
DKL(pv, qv) |v=0

H∇(Z | Y ) = − d

dv
H(Zv | Yv) |v=0

I∇(Y ;Z) = − d

dv
I(Yv;Zv) |v=0

The identities in Proposition 4 indicates that gradient
information describes the non-equilibrium dynamics of
the its counterpart under KL divergence. It further indi-
cates that minimizing gradient information is intimately
related to enhancing stability. We refer to [17] for more
discussions on this. Moreover, the non-negativeness of
I∇(Y ;Z) means that perturbing Y and Z with inde-
pendent noises will decrease their mutual information.
Similar interpretations apply to other three identities.

E. Implication on causality

The identification of causality usually serves as a
key step towards simplified modeling and learning. Let
X1, X2, . . . and Y1, Y2, . . . be two sequences of data. In
general, we say a series Xt causes another series Yt if
knowing the past {X1, . . . , Xt−1} can provide informa-
tion on the future of Yt given the past of {Y1, . . . , Yt−1}.
This school of thoughts is exemplified by the seminal
work of Granger [18] in identifying causal relations
between multivariate times series. The Granger causality
is typically tested in linear models between Yt and Xt

(with lags) and the two processes are assumed to be
stationary [19]. In general, this type of of causality can be
unified by Kolmogorov complexity K(·) which, not only
extends Granger causality to nonstationary and nonlinear
processes, but also includes various other approximations
of Kolmogorov information in the literature, such as
Shannon’s mutual information, Renyi’s information, di-
rected Shannon information, directed Renyi information,

combinatorial measures of information (e.g. Lempel-Ziv
information).

Intuitively, the quantity measures how much com-
plexity of the series {Yt} is reduced by know-
ing {Xt}. The past {X1, . . . , Xt−1} provide informa-
tion about Yt if K(Yt|Xt−1, . . . , X1, Yt−1, . . . , Y1) <
K(Yt|Yt−1, . . . , Y1) for Kolmogorov complexity measure
K(·). In this case, additional predictive information is
provided by the series {Xt} if

K(Yt|Yt−1, . . . , Y1)−K(Yt|Yt−1, . . . , Y1, Xt−1, . . . , X1)

is greater than zero. We define the left hand side of the
above term to be the Kolmogorov causal information
provided by series {Xt} for predicting {Yt}.

However, Kolmogorov information is in general not
computable and its surrogates may be used instead. For
example, consider replacing the complexity measure K
by Shannon entropy H(Y ) = −

∫
p(y) log p(y)dy for a

continuous random variable Y . In this case, Kolmogorov
causal information reduces to the directed Shannon in-
formation [20].

Using gradient entropy as the surrogate for the Kol-
mogorov information, we can define gradient-directed
information (as a surrogate for Kolmogorov causal in-
formation) as:

H∇(Yt|Yt−1, . . . , Y1)−H∇(Yt|Yt−1, . . . , Y1, Xt−1, . . . , X1).

The above measure provides an alternative method of
measuring the causality from the sensitivity point of
view. It also provides significant computational advan-
tages particularly when density normalizing constants are
unknown.

III. APPLICATIONS OF GRADIENT INFORMATION

A. Tree approximation of joint distributions

Many machine learning tasks involve high dimen-
sional data where the number of observations is large
compared to the number of variables. One approach that



6

we often undertake is divide and conquer (e.g. group-
ing different dimensions in smaller subsets, removing
irreverent connections). We then bootstrap the models we
learn for the subsets or sparse graphs to the entire data
dimensions. An effective approach is to assume a tree
dependence structure among the variables to simplify the
learning, compress data, or to find good initial states
for more complex graphical models. In light of the
properties (P1)-(P4) of sP (y, p) (in Subsection II-B), we
expect to develop faster and more stable algorithms for
approximating high-dimensional data distributions based
on gradient information.

In particular, given an nth-order probability distribu-
tion p(X1, . . . , Xn) with Xi being continuous random
variables, we wish to find the following optimal first-
order dependence tree pτ .

Definition 3. A distribution pτ0(X1, . . . , Xn) (τ0 ∈ Tn)
follows the optimal first-order dependence tree, if

D∇(p, pτ0) ≤ D∇(p, pτ )

for all τ ∈ Tn, where Tn is the set of all possible first-
order dependence trees (see Fig. 1 for an illustration).

An analogous definition is given in the pioneering
work of Chow [21], but we use D∇ instead of DKL here
to measure the discrepancy of approximation. Exhaustive
search is a not computationally feasible for any moder-
ately large n, since there are nn−2 dependence trees in
Tn (by Cayley’s formula). Motivated by the Chow-Liu
algorithm [21] (based on the KL divergence), we provide
the following theorem that enables tree approximation
of joint distributions using a fast greedy algorithm with
O(n)-complexity. The problem is formulated as the
search for a maximum spanning tree. The procedure is
outlined in Algo. 1.

Theorem 3. Under the assumptions made in Theo-
rem 2, the best tree approximation of a joint distribu-
tion p(y1, . . . , yn) under Fisher divergence D∇(·, ·) is
the maximum spanning tree with weight H∇(Yi, Yj(i)),
where (i, j(i)) is an edge that denotes p(Yi | Yj(i)).

We apply our algorithm to a protein signaling flow
cytometry dataset. The dataset encodes the presence of
p = 11 proteins in n = 7466 cells. It was first analyzed
using Bayesian networks in [23] who fit a directed
acyclic graph to the data, later studied in [24] using
different methods. The tree can be used as a graphical
visualization tool to highlight the most highly correlated
genes in the correlation network.

We suppose that any pair of random variables Y1, Y2

Fig. 1: Illustration of joint distribution with tree structure:
p(x1, x2, x3, x4, x5, x6) = p(x1) p(x2 | x1) p(x4 | x2)
p(x5 | x2) p(x6 | x5) p(x3 | x1) p(x6 | x3).

follow the following exponential family distribution

p(y1, y2) ∝ exp{θ1y21y22 + θ2y
2
1 + θ3y

2
2

+ θ4y1y2 + θ5y1 + θ6y2} (13)

Note that the constant is a function of θ and it does not
have a closed form. The above distribution is a special
case of a class of exponential family distributions with
normal conditionals. This family is intriguing from the
perspective of graphical modeling as, in contrast to the
Gaussian case, conditional dependence may also express
itself in the variances [24]. To estimate the density, we
minimize the sample average of (1), and obtain a closed
form solution θ̂ (to be elaborated in the supplement).
Based on the estimates, we can obtain a consistent
estimator of the entropy H∇(Y1, Y2) by a sample analog
of (6), using Monte Carlo samples generated from the
estimated density. To calculate H∇(Y1) and H∇(Y2), we
calculate the marginal distributions in closed form, and
obtain a consistent estimation of entropy and mutual
information by sample analogs. The details are elabo-
rated in the “derivations for exponential family example”
section in the supplement. Figure 2 shows the network
structure after applying our method to the data using
the proposed approach. Our result is consistent with the
estimated graph structure in [23].

We record the computational time by running different
number of variables (p from 2 to 11) in Fig 3, which
shows the gradient information based algorithm is more
than 100 times faster than Shannon information based
algorithm.

It is worth noting that the method of Algo. 1 can
also be used to perform supervised classification. Given
features X1, . . . , Xp and their corresponding label Y , we
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Algorithm 1 Generic tree approximation based on gradient information
input Observations of Y1, . . . , Yp
output A first-order dependence trees τ , and (optionally) a joint density p(y1, . . . , yp) built on τ

1: Estimate I∇(Yi, Yj) for each i ̸= j, i, j = 1, . . . , p.
2: Build an undirected weighted graph with p vertices representing Y1, . . . , Yp, where the weight between vertices i, j is
I∇(Yi, Yj).

3: Apply Kruskal’s algorithm [22] (or alternative algorithms) to obtain a maximum spanning tree τ .
4: Derive or approximate the conditional distribution p(yi | yj(i)) that corresponds to each edge (i, j(i)), and thus obtain
p(y1, . . . , yp).

Fig. 2: The tree discovered from the protein data.

calculate the tree distribution that approximates the joint
distribution of p(x1, . . . , xp) for each class of Y . We
then perform a likelihood ratio test to decide which class
a given feature vector x1, . . . , xp is associated with. In
calculating the joint density, we let the spanning tree be
rooted at a node with the largest geodesic distance and
the rest of the nodes are ranked according to the height
directed preorder (HDP) traversal of the tree [25]. In a
synthetic data experiment, we generate two classes of
data from an independent Gaussian vector [X1, . . . , Xp].
The covariance Cov(Xi, Xj) of the first class of data
is ρ|i−j|, and the covariance of the second class is
(−ρ)|i−j| (for i, j = 1, . . . , p). We generated 100 data
in each of the 1000 replications and record the cross
validation accuracy (with 30% test data) in Table II.
We also compared our method (denoted by “Chow-Liu
tree”) with two popular classification methods, random
forest [26] and elastic net [27]. The results indicate the
superior performance of our method. Elastic net does
not work well for this example mainly because the two

C
om

pu
ta

tio
n 

co
st

 (
se

co
nd

s) Gradient information
Shannon information

Fig. 3: Comparison of computational costs of Chow-
Liu tree approximation using classical Shannon infor-
mation [21] and gradient information (proposed here),
depicted in logarithmic scale.

TABLE II: Classification accuracy of three methods for
data with different levels of correlation

ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9

CHOW-LIU TREE 0.610 0.829 0.965 0.994

RANDOM FOREST 0.607 0.759 0.886 0.953

ELASTIC NET 0.535 0.537 0.541 0.526

classes of data are not linearly separable.

B. Community discovery

Many real-world networks of data exhibit a commu-
nity structure: the vertices of the network are partitioned
into groups such that the statistical dependence is high
among vertices in the same group and low otherwise.
Most of the community detection methods (e.g. stochas-
tic block models [28]) focus on the concentration of
linkages in random graphs. Here we provide an alter-
native perspective using gradient mutual information.
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Algorithm 2 Community discovery based on mutual information
input Observations of Y1, . . . , Yp, number of communities k (1 ≤ k ≤ p)
output A partition of {1, . . . , p} into k subsets

1: Apply Algo. 1 to obtain the spanning tree τ (with weights being the mutual information).
2: Remove the k edges that have the smallest weights from τ .
3: The output partition is represented by the connected components of the current τ .

Fig. 4: The communities of states detected from quarterly
growth rates of payroll employment for the U.S. states
(the number of communities is set to be four).

More precisely, we do not perform communities dis-
covery from edge connections, but from dependence
among variables/vertices (assuming multiple observa-
tions at each vertex). Such dependence is quantified by
mutual information. And the obtained communities can
be understood as disjoint subsets of variables that exhibit
large within-community dependence and small inter-
community dependence. We propose a fast community
discovery approach based on Algo. 1. The main idea,
summarized in Algo. 2, is to first obtain a spanning
tree that best represents the joint distribution, and then
construct communities by removing weak-dependence
connections.

In a data study, we considered a dataset constructed
in [29]. The data was also studied in [30] using an
algorithm that recovers the communities using the eigen-
vectors of the sample covariance matrix. The data con-
sists of quarterly growth rates of payroll employment
for the U.S. states (excluding Alaska and Hawaii) from
the second quarter of 1956 to the fourth of 2007, which
results in a panel of n = 48 time series over T = 207
periods. The data are seasonally adjusted and annualized.
We show the results of applying our clustering algorithm
to the sample in Figure 4. The communities roughly
match the clusters of Fig. 3 in [30] using a partial
correlation network model.

IV. CONCLUSIONS

Representation and modeling of data from limited
observations are key issues in machine learning. Ex-
isting methods for determining randomness, conditional
randomness, stability, causality, discrepancy, information
gains, etc. in data representation and modeling largely
depend on KL divergence and logarithmic loss. For
enhanced stability and reduced computationally cost, at
least in some occasions, we introduced gradient infor-
mation as a possible surrogate to classical information
measures that have been widely used in machine learning
practice (e.g. mutual information in feature selection, KL
divergence in variational inference). Gradient informa-
tion is motivated from a perspective different from that
of the KL divergence, and provides new theoretical tools
for representation of information and data modeling.

Some future directions for research are outlined below.
First, the propose gradient information and its properties
can be extended to discrete random variables. Second,
it would be interesting to apply the tree approximation
algorithm based on gradient information to more com-
plicated graphical models (e.g. better initialization or di-
mension reduction). Third, gradient information may be
utilized to a broad range of machine learning frameworks
such as variational inference, information gains, neural
networks, etc. to ensure stability in estimation, reduced
amount of training data, and computational complexity.
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SUPPLEMENTARY MATERIAL

In the supplement, we include proofs of theoreti-
cal results, and provide two additional applications of
gradient information. One application is about channel
stability. The second application is in derivation of some
general inequalities using gradient information (which
are otherwise highly nontrivial to establish).
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Supplementary Material for
“Gradient Information for Representation and Modeling”

PROOF OF THEOREM 1

It can be seen that D∇(p, q) = 0 if and only if ∇p(y) = ∇q(y) almost everywhere. Since p and q are densities
and integrate to one, ∇p(y) = ∇q(y) is equivalent to p(y) = q(y) almost everywhere.

Using direct calculation and integration by parts, we have

D∇(p, q) =
1

2

∫
[a,b]

p(y)|(∇ log q(y)) ◦ (y − a)αj ◦ (y − b)βj |2dx

−
d∑

j=1

∫
[aj ,bj ]

p(y) (∂yj
log p(y))(∂yj

log q(y))(yj − aj)
2αj (yj − bj)

2βjdyj + C

and the j-th term in the above summation is

−
∫
[aj ,bj ]

p(y) (∂yj
log p(y))(∂yj

log q(y))(yj − aj)
2αj (yj − bj)

2βjdyj

= −
∫
[aj ,bj ]

(∂yj
p(y)) (∂yj

log q(y))(yj − aj)
2αj (yj − bj)

2βjdyj

= −p(y)(∂yj
log q(y))(yj − aj)

2αj (yj − bj)
2βj |bjaj

+

∫
[aj ,bj ]

p(y) ∂yj

{
(∂yj

log q(y))(yj − aj)
2αj (yj − bj)

2βj

}
dyj

=

∫
[aj ,bj ]

p(y) ∂yj

{
(∂yj

log q(y))(yj − aj)
2αj (yj − bd)

2βj

}
dyj

where the last identity holds under (3).

PROOF OF THEOREM 2

We use ∇y,z and ∇y to highlight that the derivative is taken with regard to [y, z] and y, respectively. We only
prove for unbounded Y, Z. The proof of the extended case is similar, as discussed in Subsection II-B.

We first prove Identity (7). Applying Proposition 1 and Identity (6), we obtain the following identities (where
expectations are with respect to pY Z):

D∇(pY Z , pY pZ) = E{s∇([Y, Z], pY pZ)}+
1

2
E∥∇y,z log pY,Z(Y, Z)∥2

=
1

2
E
(
∥∇y log{pY (Y )pZ(Z)}∥2 + ∥∇z log{pY (Y )pZ(Z)}∥2

)
+∆y log{pY (Y )pZ(Z)}+∆z log{pY (Y )pZ(Z)} − E{s∇([Y, Z], pY Z)}

= E{s∇(Y, pY )}+ E{s∇(Z, pZ)} − E{s∇([Y,Z], pY Z)}.

We then prove Identity (8). Direct calculations give

E{s∇([Y, Z], pY,Z)} =
1

2
E∥∇y,z{log pY (Y ) + log pZ|Y (Z | Y )}∥2 + E

(
∆y,z{log pY (Y ) + log pZ|Y (Z | Y )}

)
=

1

2
E
(
∥∇y log pY (Y )∥2

+ ∥∇y,z log pZ|Y (Z | Y )∥2
)
+ E{∆y log pY (Y )}+ E{∆y,z log pZ|Y (Z | Y )}+ c

= H∇(Y ) +H∇(Z | Y ) + c

where c denotes

c = E{∇y log pY (Y )T · ∇y log pZ|Y (Z | Y )}.
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It remains to show that c = 0. We use dy, Dy, Dy(−j)
to denote the dimension of Y , domain of Y , domain of the

subvector of Y excluding dimension j, respectively. Dz and Dy,z are similarly defined. We have

c = E{∇y log pY (Y )T · ∇y log pZ|Y (Z | Y )}

=

dy∑
j=1

∫
Dy,z

pY,Z(y, z)
∂yj
pY (y)

pY (y)
·
∂yj
pZ|Y (z | y)
p(z | y)

dydz

=

dy∑
j=1

∫
Dy,z

∂yj
pY (y) · ∂yj

p(z | y)dydz

=

dy∑
j=1

∫
Dy(−j),z

(
pY (y) · ∂yj

p(z | y) |∞−∞ −
∫
Dj

pY (y)∂
2
yj
p(z | y)dyj

)∏
k ̸=j

dykdz

= −
∫
Dy

pY (y)

(∫
Dz

∆yp(z | y)dz
)
dy = −

∫
Dy

pY (y)

(
∆y

∫
Dz

p(z | y)dz
)
dy = 0.

PROOF OF PROPOSITION 2
We first prove (10). By a derivation similar to the proof of Theorem 2, we obtain

H∇(Z | Y ) = −1

2
E∥∇[z,y] log p(z | y)∥2 (14)

for any two random variables Z, Y whose joint distribution exists. Therefore,

H∇(Z | Y ) = −1

2
E∥∇Y,Z log pZ|Y (Z | Y )∥2 ≤ −1

2
E∥∇Z log pZ|Y (Z | Y )∥2 = E{H∇(Z | Y = y)}.

We then prove (11). Suppose W = Y + Z. It follows from (14) that

H∇(W | Z) = −2× 1

2
E∥∇w log p(w − z)∥2

= −E∥∇y log p(y)∥2 = 2H∇(Y ).

PROOF OF PROPOSITION 3
Lemma 1. Given a fixed covariance matrix V of a random variable Y supported on Rd, the distribution that
maximizes H∇(Y ) is Gaussian (with an arbitrary mean), and the maximum is −Tr(V −1)/2.

We now prove that the maximum entropy distribution on Rd is Gaussian given second moment constraints. The
results are readily observable from the known results that the distribution with a fixed variance that minimizes
the Fisher information is the Gaussian distribution, typically proved using calculus of variations and differential
equations (see, e.g. [31]). Here we provide a much simpler proof.

Proof: Suppose that Y1, Y2 are two i.i.d. random variables following the maximum entropy distribution. Then
2Y1 follows the maximum entropy distribution with variance 2V , and by definition, J(2Y1) ≤ J(Y1+Y2). Direction
calculations show that J(2Y1) = J(Y1)/2, therefore, it follows from the convolution inequality [32] that

J(Y1)

2
= J(2Y1) ≤ J(Y1 + Y2) ≤

1

J(Y1)−1 + J(Y2)−1
=
J(Y1)

2

with equality only if the equality for convolution inequality for Fisher information holds, which implies that Y1, Y2
must be Gaussian.

Proof of Proposition 3:
By Lemma 1, we have

E(Y − Ŷ (X))2 = EXEY |X(Y − Ŷ (x) | X = x)2 ≥ EXVar(Y | X = x) ≥ EX
1

−2H∇(Y | X = x)
.

Moreover, applying Cauchy’s inequality and Identity 10, we obtain

EX
1

−2H∇(Y | X = x)
≥ 1

EX{−2H∇(Y | X = x)}
≥ 1

−2H∇(Y | X)
.

This concludes the proof.
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PROOF OF THEOREM 3

Let pa denote a distribution with first-order dependence tree structure. Using Proposition 1 and Identity 6, we
have

E{D∇(p, p
a)} = E{s∇(Y, pa)}+

1

2
E∥∇y log p(y)∥2 = E{s∇(Y, pa)} −H∇(Y ) (15)

In order to minimize E{D∇(p, p
a)}, we only need to minimize E{s∇(Y, pa)}. Let j(i) index the parent node of

i on the tree that represents pa. Without loss of generality, let Y1 denote the root of the tree, and Ea denote the
set of edges. By Identity (8) in Theorem 2, the Markovity of pa, and the fact that pa(·) agrees with p(·) on all the
first and second order marginal distributions, we can rewrite E{s∇(Y, pa)} as

E{s∇(Y, pa)} = E{s∇(Y1, pa1)}+
∑

{i,j(i)}∈Ea

E{s∇(Yi, pai|j(i))}

= H∇(Y1) +
∑

{i,j(i)}∈Ea

{H∇(Yi)− I∇(Yi;Yj(i))}

=

n∑
i=1

H∇(Yi)−
∑

{i,j(i)}∈Ea

I∇(Yi;Yj(i)).

This concludes the proof.

DERIVATIONS FOR EXPONENTIAL FAMILY EXAMPLE

The sample average of (1) is a quadratic function of θ = [θ1, . . . , θ5]. The closed form solution θ̂ is derived as

θ̂ = −
{ n∑

j=1

(a1,ja
T

1,j + a2,ja
T

2,j)

}−1 n∑
j=1

(a3,j + a4,j) (16)

where

a1,j = [2y1,iy
2
2,i, 2y1,i, 0, y2,i, 1, 0]

T, a2,j = [2y21,iy2,i, 0, 2y2,i, y1,i, 0, 1]
T,

a3,j = [2y22,i, 2, 0, 0, 0, 0]
T, a4,j = [2y21,i, 0, 2, 0, 0, 0]

T,

The distribution density of Y2 is

p(y2) ∝ (−θ1y22 − θ2)
−1/2 exp

{
− (θ4y2 + θ5)

2

4(θ1y22 + θ2)
+ θ3y

2
2 + θ6y2

}
(17)

So its entropy can be estimated by

− 1

2n

n∑
j=1

∥∇ log pθ̂(y2)∥
2 = − 1

2n

n∑
j=1

{
−1

2

2θ̂1y2,j

θ̂1y22,j + θ̂2
+

1

4

2θ̂1y2,i(θ̂4y2,i + θ̂5)
2

(θ1y22,i + θ2)2
− 1

4

2θ̂4(θ̂4y2,i + θ̂5)

θ1y22,i + θ2
+ 2θ̂3y2,i + θ̂6

}2

.

The value of H∇(Y1) can be similarly estimated. We therefore get an consistent (under some moment conditions)
estimate I∇(Y1, Y2) from Proposition 7.

The conditional distribution density p(y1 | y2) can be calculated from (13) and (17):

p(y1 | y2) ∝ (−θ1y22 − θ2)
1/2 exp

{
θ1y

2
1y

2
2 + θ2y

2
1 + θ4y1y2 + θ5y1 +

(θ4y2 + θ5)
2

4(θ1y22 + θ2)

}
(18)
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APPLICATION: STABILITY OF CHANNEL CAPACITY

Consider input X , output Y , and a time invariant channel described by conditional distribution pY |X . The channel
capacity in many cases is achieved by maximizing I(X;Y ) over the marginal distribution of X , pX (see for example
the channel coding theorem [33]). In practical applications, we may also be interested in the stability of channel
capacity, in the sense that the capacity is not very sensitive to perturbations at both ends of the channel. One
possible way to define the channel stability is through the definition of I∇(X;Y ) which can be interpreted as the
sensitivity of I(X;Y ): the smaller the better (see Subsection II-D).

It is thus reasonable to assume that solutions of the following types of optimization problem would lead to
channel coding that is both efficient in transmitting signals and robust against noise.

max
pX

I(X;Y )/I∇(X;Y ). (19)

It has been well known that Gaussian input maximizes the Gaussian channel capacity under power constraints. In
the following theorem, we show that Gaussian input also minimizes I∇(X;Y ) for Gaussian channels under power
constraints. The result further indicates that Gaussian input achieves the optimum of (19), i.e. it enjoys not only
the largest information capacity but also the smallest instability.

Theorem 4. For Gaussian channel Y = X + N where N ∼ N (0, vN ) and var(X) = vX , the pX that achieves
the minimum of I∇(X;Y ) is Gaussian.

min
pX

I∇(X;Y ). (20)

Moreover, the smallest mutual information is

I∇(X;Y ) = H∇(Y )−H∇(Y | X) = − 1

2(vX + vN )
+

1

vN
=

2vX + vN
2(vX + vN )vX

,

which is increasing in vX with range [v−1
N , 2v−1

N ).

Proof: By Identity (8) in Theorem 2, we have I∇(X;Y ) = H∇(Y )−H∇(Y | X). Using Identity 11, we have

H∇(Y | X) = H∇(X +N | X) = 2H∇(N) = − 1

vN

which is a constant that does not depend on X . Thus, minimizing (20) is equivalent to minimizing H∇(Y ) under
the constraint that Var(Y ) ≤ vN + vX . Using Lemma 1 concludes the proof.

APPLICATION: SOME ELEMENTARY INEQUALITIES

Proposition 5. Under the same assumptions of Theorem 2, we have

H∇(Y1, . . . , Yn) =

n∑
i=1

H∇(Yi | Y1, . . . , Yi−1) ≤
n∑

i=1

H∇(Yi). (21)

Proof: The result can be obtained by recursively applying Identity (8) in Theorem 2 for n random variables
Y1, . . . , Yn.

We can generalize Proposition 5 to show how the monotonicity of the average entropy rates of subsets as the
size of the subsets increases.

Proposition 6. Suppose that Y1, . . . , Yn have a joint distribution. For every S ⊆ {1, . . . , n}, let YS = {Yi : i ∈ S},
and YSc = {Yi : i /∈ S}. Let

h
(n)
k =

1(
n
k

) ∑
S:card(S)=k

H∇(YS)

k
, (22)

t
(n)
k =

1(
n
k

) ∑
S:card(S)=k

1

−H∇(YS)/k
, (23)
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Then

h
(n)
1 ≥ · · · ≥ h(n)n

t
(n)
1 ≥ · · · ≥ t(n)n

Proof: Inequalities (22) can be proved using the same arguments as in the proof of Theorem 16.8.1 in [33]
(which only uses Proposition 5). We only prove the Inequality (23) here. The proof of Theorem 16.8.1 in [33]
implies that

1

n

n∑
i=1

H∇(Y−i)

n− 1
≥ 1

n
H∇(Y1, . . . , Yn) (24)

where Y−i denotes [Y1, . . . , Yi−1, Yi+1, Yn]. Thus, we have

1

n

n∑
i=1

1
−H∇(Y−i)

n−1

≥ 1
1
n

∑n
i=1

−H∇(Y−i)
n−1

≥ 1

− 1
nH∇(Y1, . . . , Yn)

(25)

where the first inequality of (25) follows from the fact that H∇(·) is a negative function and the harmonic mean
is no larger than the arithmetic mean, and the second inequality follows from (24). Inequality (25) is equivalent
to t

(n)
n−1 ≥ t

(n)
n . To prove (23), we first condition on a k-element subset, and apply the existing result to obtain

t
(k)
k−1 ≥ t

(k)
n . We then take a uniform choice over the k-element subset and its k − 1-element subsets.

Consider the specific case where Yi’s are jointly distributed according to Gaussian distribution with covariance
V . We can have inequalities for traces, as Gaussian gradient entropy is

−1

2
Tr(V −1).

Throughout the remainder of this chapter, we will assume that V is a positive definite symmetric n× n matrix.

Proposition 7. For any positive definite matrix V , we have

Tr(V −1) ≥
n∑

i=1

Tr(V −1
i ). (26)

for any set of block matrices {V1, . . . , Vn} of V whose rows (resp. columns) form a partition of the rows (resp.
columns) of V . Moreover, the equality holds if and only if V are block-diagonal with blocks {V1, . . . , Vn}.

Inequality (26) immediately follows from (21). We note that the inequality in (26) can also be proved by using
block matrix inversion and Woodbury matrix identity, but it is much more involved compared with the simple proof
here using entropy inequality.

Proposition 8. If hk denotes the product of the determinants of all the principal k-rowed minors of a positive
definite n× n matrix V , i.e.,

hk =
∑

1≤i1<···<ik≤n

Tr(V (i1, . . . , ik)
−1)

then

h1 ≤ · · · ≤ hk(
n−1
k−1

) ≤ · · · ≤ hn

with equality if and only if V is a diagonal matrix.

Proof: Let X ∼ N (0, V ). Then the inequality follows directly from Proposition 6 and k
(
n
k

)
= n

(
n−1
k−1

)
. The

proof of Inequality (22) implies that if X is Gaussian, the equality holds if and only if the entries of X are
independent, i.e., V is diagonal.


