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Asymptotically Optimal Prediction for
Time-Varying Data Generating Processes

Jie Ding, Jiawei Zhou, and Vahid Tarokh

Abstract—We develop a methodology (referred to as
kinetic prediction) for predicting time series undergoing
unknown abrupt changes in their data generating distri-
butions. Based on Kolmogorov-Tikhomirov’s ε-entropy, we
propose a concept called ε-predictability that quantifies
the size of a model class (which can be parametric or
nonparametric) and the maximal number of structural
changes that guarantee the achievability of asymptotically
optimal prediction. Moreover, for parametric distribution
families, we extend the aforementioned kinetic prediction
with discretized function spaces to its counterpart with
continuous function spaces, and propose a sequential Monte
Carlo based implementation. We also extend our method-
ology for predicting smoothly varying data generating
distributions. Under reasonable assumptions, we prove that
the average predictive performance converges almost surely
to the oracle bound, which corresponds to the case that the
data generating distributions are known in advance. The
results also shed some light on the so called “prediction-
inference dilemma”. Various examples and numerical re-
sults are provided to demonstrate the wide applicability of
our methodology.

Index Terms—Change points; Kinetic prediction;
Kolmogorov-Tikhomirov ε-entropy; Optimal prediction;
Sequential Monte-Carlo; Smooth variations; Time series;
Online tracking.

I. INTRODUCTION

In data analysis, sequentially observed data (either
in time or space) usually exhibit occasional but abrupt
changes in mean, variance, or correlation. In the pres-
ence of time-varying data generating processes, using
a fixed (parametric or nonparametric) model may not
be adequate for prediction. This motivates the use of
time-varying models, which are becoming increasingly
important for online data analysis. Roughly speaking, we
could categorize the changes in time-varying data gen-
erating processes into two kinds: “abrupt changes” and
“smooth variations”, where the former refers to a serious
sudden change in data generating distribution, and the
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latter refers to successive changes of small magnitude per
time step. Both kinds of changes are commonly observed
in practice. In order to put our ideas in focus, consider
a scalar time series {Yt}t=1,2,..., each Yt being an inde-
pendent Gaussian random variable with mean θt and unit
variance. Suppose that we are to predict (the distribution
of) YT+1 at each time T . Without recognizing potential
change points, one may use the maximum likelihood
estimator (MLE) θ̂ =

∑T
t=1 Yt/T for prediction. The

predicted distribution of YT+1 based on such an estimator
is asymptotically close to the population distribution
given that θt does not change. However, suppose for
instance that θ1 = · · · = θT/2 ̸= θT/2+1 = · · · = θT
with T being an even number. Without recognizing
an abrupt change in the data-generating model at time
T/2 + 1, the MLE is close to (θT/2 + θT/2+1)/2 for
large T , which can produce a large bias in prediction.
Thus, it is important to first determine the change point
(by applying a change detection procedure), and then
apply inference to each segment where the underlying
data-generating process does not vary. This has motivated
a large body of the work on (both online and offline)
change point detection.

Classical change point analysis can be roughly cate-
gorized into two scenarios, namely online detection and
offline detection. Deeply rooted in sequential analysis
[1], [2], online change detection is often studied in terms
of trade-offs between the probability of false alarm and
detection delay, from different perspectives such as the
cumulative sum (CUSUM) [3], [4], Shiryaev-Roberts
procedure [5], [6], minimax detection [7], [8], high
dimensional detection [9] (see, e.g., [10] for more ref-
erences). Various tests have been developed for tracking
changes in time series statistics including the mean [11],
the variance [12], the autocovariance function [11], [13],
and the spectrum [14]. Offline change detection aims to
discover multiple change points from a given sequence
of data, typically by minimizing the within-segment sum
of loss plus penalties (from frequentist perspective), or
the negative model evidence (from Bayesian perspective).
Large sample analysis focuses on the consistent selection
of the total number of changes (as sequence length goes
to infinity) [15]–[18]. A more comprehensive literature
review on offline analysis can be found in [18]. In
both online or offline cases, state-of-the-art methods and
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analysis may not be directly applicable to the situations
where the number of change points grows as a function
of sample size, and where consecutive change points
occur closely (also referred to as the transient changes).
Also, for handling multiple changes with unknown after-
change distributions, a practical algorithm with asymp-
totic optimality remains an important open challenge.
These motivated our present work.

In this paper, we develop a new framework for online
change point analysis that can achieve asymptotically
optimal prediction under various types of changes (in-
cluding abrupt changes and smooth variations) and a
wide class of evaluation metrics. We address change
point analysis from a perspective that is fundamentally
different from the existing literature. In particular, we
assume a deterministic stopping time (similar to the
classical offline detection), while we perform analysis on-
line (similar to the classical online detection). Moreover,
our evaluation metric for online analysis is to perform
asymptotically optimal prediction, instead of detection
delay or accuracy of change detection. More discussions
are given in the rest of the introduction. For example, an
investment analyst may be interested in online optimizing
the predictive performance of his/her modeling of asset
prices, which are likely to undergo market changes, while
stopping at a prescribed time (e.g. at expiration dates of
futures contracts).

We refer the set of potential density functions that
may generate the data in various epochs of time as
model class. We call a model nonparametric (resp.
parametric) whenever the elements of the model class
are not (resp. are) parameterized by a finite number
of unknown parameters. We next make the following
simple observation. Consider a sequence of independent
Gaussian random variables with changes in mean, oc-
curring at time t = 2, 4, . . . , 2k (where 2k−1 < T ≤
2k+1). For offline change point analysis, the last few
changes (with sufficient samples in between) may be
easily detected, but it is unclear whether the change
points at the beginning can be accurately discovered.
Nevertheless, in view of short-period changes, it is not
clear that this lack of detection accuracy results in a
significant loss in predictive performance. Similarly, in
online change point analysis, it is not clear if spurious
changes or undetected changes have significant impacts
on the average predictive performance. We therefore ask
the following critical question:

(Q1) Is it possible to achieve optimal prediction
without inferring the number and locations of abrupt
change points first (for either parametric or nonpara-
metric model classes)?

In other words, is prediction without inference pos-
sible? In this paper, we provide a positive answer to
the above question by proposing a new framework for

statistical prediction of time series. Our results are ap-
pealing since a small change that tends to be overlooked
may indicate its insignificance or non-persistency. More-
over, we present a methodology that achieves asymptotic
optimality (to be rigorously defined) for a wide range
of nonparametric and parametric model classes, and for
a wide range of abrupt change models. Interestingly,
we also show that there exists no statistical procedure
that is consistent in selecting the number of change
points, under the same set of assumptions that guarantee
optimal prediction. It is worth noting that the ideas
on the inference-prediction dilemma are in parallel to
those discovered in the literature of high dimensional
regression analysis [19], and in information criteria for
model selection [20]–[23].

Additionally, we are interested in prediction under
smoothly varying data-generating processes. These pro-
cesses often occur in practice, such as in environ-
mental science where temperature and humidity vary
smoothly [24], in finance where regression models with
time-varying coefficients are more favored [25], or in
control where the trajectory of a target can be cast
as smoothly-varying parameters [26]. There exists a
large literature on modeling smooth changes by spectral
arguments, including evolutionary spectra [27], [28], lo-
cally stationary time series [29], or other time/frequency
analysis such as wavelet approach [30].

In time-domain formulations, a systematic way to
characterize time-varying models is through the para-
metric state space models [31], where hidden states
may be interpreted as parameters. For linear state space
models with known parameters, state-of-the-art infer-
ence employs the Kalman filtering algorithm [26] (resp.
the Bellman-Ford/Viterbi algorithm [32]) for continuous
(resp. discrete) state space. For nonlinear state space
models with known or unknown parameters, Bayesian
inference implemented with Sequential Monte Carlo
(SMC) and Markov chain Monte Carlo (MCMC) may
be applied to numerically estimate the full posterior of
the states [33]. Other methodology to model smooth
variations is to apply local least-squares method or its
variants to estimate varying coefficient regression mod-
els [34], autoregressive models [35], Cox models [36],
nonlinear additive models [37], etc. For example, to
model small drifts of nonlinear time series models over
time, a computationally efficient method is to employ
an online adaptive filtering on the coefficients of spline
basis functions [37]. Nevertheless, the above methods
are not directly applicable to some practical situations
where parameters follow a mixture of abrupt changes
and slow variations. For example, data are generated
from Yt = θ∗t + et, where et are independent standard
Gaussian random variables, the squared loss (or score in
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our notation) is used to evaluate predictive performance,
and θt can be well approximated by an epoch of lin-
ear trend, followed by a sinusoid trend, etc. Suppose
we constructed a predictor θ̂t for Yt at each time t,
then our average score is given by S(Y1, . . . , YT ) =
T−1

∑T
t=1(Yt − θ̂t)

2 = T−1
∑T

t=1(θ
∗
t − θ̂t + et)

2. The
oracle score (when the true θ∗t ’s are known in the first
place) is given by S∗(Y1, . . . , YT ) = T−1

∑T
t=1 e

2
t . Is

it possible that S(Y1, . . . , YT ) − S∗(Y1, . . . , YT ) → 0
(either in probability or almost surely) as T → ∞? We
then raise the following question. To address smooth
variations, we focus on parametric model classes for
simplicity of presentation.

(Q2) Is it possible to achieve optimal prediction
(oracle score) when the underlying parameters (for a
parametric model class) undergo slow variations as
well as abrupt changes?

Clearly, there is no chance to achieve the above conver-
gence for θ∗t ’s that vary arbitrarily at each time instance.
Nevertheless, we will show that if the smooth variations
of θ∗t ’s can be approximated by locally deterministic
trends (which can be nonlinear), it is possible to approach
the oracle performance. This is intuitively reasonable.
For instance if θ∗t ’s follow a linear trend in a time
epoch of length ∆T , then the dimension of unknown
parameters reduces to only two (i.e. slope and intercept).
This intuition can be extended to polynomial or other
nonlinear trends.

Contributions and outline: In light of above dis-
cussions and challenges, we are motivated to come up
with a general solution that can 1) predict the outcomes
of both abrupt and smooth time-varying data generating
processes, and 2) achieve optimal prediction score by re-
quiring only mild assumptions on the laws governing the
changes. To this end, we propose a methodology referred
to as “kinetic prediction” to predict time series data,
for both nonparametric and parametric model classes.
And under mild assumptions, we prove that the average
predictive performance asymptotically approaches the
theoretical limit (oracle bound). The outline of this paper
is given next. In Section II, we establish the notation and
review the mathematical background. We also provide
mathematical formulation of the theoretical limits of
prediction (oracle bound), and the scoring rules that
we will use for the quantification of predictive perfor-
mance. In Section III, we consider optimal prediction
under unknown abrupt changes in either nonparametric
or parametric models. We propose a concept called “ε-
predictability”, to describe the size of a model class
that guarantees the achievability of optimal predictive
performance. To this end, we apply an ε-net to the
function (resp. parameter) space of the nonparametric
(resp. parametric) models, and sequentially adjust pre-
dictive weights of the elements of the net. This offers a

predictive prior for the arrival of the next observation.
We will also discuss the aforementioned “inference-
prediction dilemma”, and the related literature in non-
statistical online learning. In Section IV, we address
the optimal prediction from another perspective. Instead
of discretizing the function space, we propose kinetic
prediction that uses a distribution over a continuous
function space and sequentially update it. The method
in its form resembles classical Bayes’ rule. However,
they are not the same, and we shall mention some
of their (dis)similarities. We then propose a Monte-
Carlo technique for efficient computation of predictors
in a sequential manner. The new algorithm–which is
alternative to ε-net based methods–can more efficiently
search and sample from the parameter space.

In Section V, we extend the solutions in Section III to
handle smooth variations in addition to abrupt changes.
We only require that the smooth variations (of param-
eters) between each pair of abrupt changes approxi-
mately follow a locally deterministic evolution path.
For simplicity, we will focus on parametric models in
Section V. The generalization to non-parametric models
is straightforward.

II. BACKGROUND AND PROBLEM SETUP

We first introduce some notation, followed by a math-
ematical description of the problems to be addressed.

A. Notation

Throughout the paper, we assume that data is se-
quentially generated from some unknown probabilistic
distributions. Let Yt ∈ Y be a time series, where Yt
only depends on Y1:t−1. The data generating distribution
densities of Yt is denoted by gt(· | Y1:t−1). We may also
write this as gt when there are no ambiguities. For t = 1,
g1(· | Y1:0) is simply interpreted as a density g1(·) of Y1.

We use g∗t ,E∗(·) to respectively denote the true gener-
ating density of Yt at time t, and the expectation operator
with respect to the true data generating process. We will
assume that the density gt at each time belongs to a
subset G of a metric space (of functions) (G , dG ), where
G is a set of density functions. The diameter of a set
U ⊆ G is defined by supf,f̃∈U dG (f, f̃). Let

H : q 7→ −q log q − (1− q) log(1− q)

for q ∈ (0, 1) and H(0) = H(1) = 0 denote the binary
entropy function. Let card(A) denote the cardinality of
a finite set A.

Throughout the paper, random variables and their re-
alizations are often represented by upper-case and lower-
case letters, respectively. In this work, unless otherwise
specified, all the limits are taken by allowing T → ∞,
where T denotes the data size. We let a.s. denote “almost
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surely”, and N denote the set of all positive integers. Any
vector [Ya, . . . , Yb]T may be compactly re-written as Ya:b.
Let ⌊a⌋ (resp. ⌈a⌉) denote the largest (resp. smallest)
integer that is no larger (resp. smaller) than a. We may
denote a general (resp. Gaussian) distribution with mean
µ and variance σ2 by [µ, σ2] (resp. N (µ, σ2)).

Suppose that ĝt is our predicted density at each
time t using only the observations of Y1, . . . , Yt−1 (we
consider a point estimator for now). To evaluate the
predictive performance, we need to specify a scoring
function (also called a statistical scoring rule [38]–[40])
s : G × Y → R. A common practice is to use the
logarithmic score (also referred to as the negative log-
likelihood), s(g, y) = − log g(y). There are many other
“reasonable” scores discussed in the next subsection.
With some abuse of notation, we shall sometimes refer to
the parametric density gθ by parameter θ, and to s(gθ, y)
as s(θ, y) whenever there are no ambiguities.

B. Background

The optimal sequential predictive performance for
time steps t = 1, 2, · · · , T is defined to be the infimum
of the composite score

S(Y1, . . . , YT ) =

T∑
t=1

s(ĝt(· | Y1:t−1), Yt) (1)

over all the choices ĝt(· | Y1:t−1). We point out that
the notation of ĝt(· | Y1:t−1) in (1) is to emphasize
the potential dependency of ĝt on the past observations.
We have used upper-case S to denote the composite (or
cumulative) score.

Suppose that a genie presents us with the true g∗t , then
the composite score with genie’s aid is

S∗(Y1, . . . , YT ) =
T∑

t=1

s(g∗t (· | Y1:t−1), Yt).

We may write gt(· | Y1:t−1) as gt (for either gt = ĝt or
gt = g∗t ) for brevity when there are no ambiguities.

For a wide range of proper scoring rules (to be defined
later), we shall prove under mild conditions that

lim inf
T→∞

1

T

{
S(Y1, . . . , YT )− S∗(Y1, . . . , YT )

}
≥ 0, a.s.

(2)

In other words, the total score from any inference pro-
cedure cannot be better than the genie-aided score in the
above sense. A proof of this observation will be given
in Subsection II-C.

It is common to assume that all the data is generated by
the same data generating distribution g∗ (i.e. g∗t ≡ g∗),
and perform the estimation of g∗ in a statistical infer-
ence task. However, in many practical applications, both
abrupt changes and smooth changes in the true density

g∗t exist. Moreover, the number of abrupt changes and
their types (e.g. the slope of a linear drift) are unknown
(in advance). It is clear that if g∗t is time-varying in an
arbitrary way at each time step, it is impossible to achieve
any asymptotic optimality guarantees. But if the changes
are restricted to some extent, as we briefly discussed in
the introduction, it is possible to design a more flexible
method. In this light, we propose a methodology that
achieves optimal asymptotic prediction performance i.e.

1

T

{
S(Y1, . . . , YT )− S∗(Y1, . . . , YT )

}
→a.s. 0, (3)

or equivalently (in view of (2))

lim sup
T→∞

1

T

{
S(Y1, . . . , YT )− S∗(Y1, . . . , YT )

}
≤ 0, a.s.

(4)

Before we proceed to the next subsection, we provide
some examples for illustration of the main idea. These
examples will be revisited later in remarks and numerical
experiments.

Example 1 (Gaussian with one unknown abrupt
change in mean). Recall the parametric example in the
introduction, where Yt ∼ N (θ∗t , 1), θ

∗
t ∈ Θ (a compact

space), and s(gθ, y) = 1
2 (y − θ)2 + c is the logarithmic

score (with c being a constant). In this case, our goal
(Equation (3)) discussed above can be cast as

1

T

{ T∑
t=1

(θ∗t − θ̂t + et)
2 −

T∑
t=1

e2t

}
→a.s. 0. (5)

where et is the random Gaussian noise at time t, dis-
tributed as N (0, 1). In practice, θ∗t usually dynamically
varies with time. As a simple example, let us assume
only one abrupt change point, in the sense that θ∗t = θ1
for 1 ≤ t ≤ T/2, and θ∗t = θ2 for T/2 < t ≤ T ,
and θ1 ̸= θ2. For illustration, Fig. 1 shows the case of
θ1 = 5 and θ2 = 6, and a realization of observations for
T = 500 with unit variance. Is it possible to construct
an estimator θ̂t using Y1:t−1 so that (5) can be achieved,
without knowing the location of the change point in
advance?

If a data analyst routinely assumes one unknown
parameter θ∗t = θ∗, and estimates it at each time using
maximum likelihood estimator θ̂t =

∑t
i=1 Yi/t, the left

term in (5) is almost surely lower bounded by a positive
constant. Thus the optimality cannot be achieved. This
is rigorously summarized in Proposition 1. We note that
the results can be largely generalized to other cases with
different segment lengths and multiple abrupt changes.
Moreover, similar situations recur if classical Bayesian
predictive estimation is used instead of MLE, for instance
θ̂t

∆
= E(θ|Y1, . . . , Yt−1). We do not pursue the details

here.
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Fig. 1. Example 1: independent Gaussian random variables with an abrupt change in their means.

Proposition 1. For Example 1, if we use the maximum
likelihood estimator (MLE) for θ̂t, we have

lim inf
T→∞

1

T

{ T∑
t=1

(θ∗t − θ̂t + et)
2 −

T∑
t=1

e2t

}
> 0, a.s.

Example 2 (Gaussian with many unknown abrupt
changes in mean). A less trivial version of Example 1
can be constructed when the number of change points
in {θ∗t }Tt=1 grows as a function of T . Specifically, we
generated ⌊T (1/3)⌋ number of change points, whose
locations are randomly generated from 1, . . . , T with
T = 500 according to the uniform distribution without
replacement, and the Gaussian means in each segment
are uniformly generated from [5, 6]. For illustration, a
realization of time-varying means and the corresponding
observations with unit variance are plotted in Fig. 2.

To sequentially predict, classical change detection
methods along with parameter inference in the latest
detected segment can adequately handle the situation
of Example 1. But they may fail to be applicable to
the current setting (as we shall show in numerical
experiments). Again, we would like to achieve the oracle
stated by Equation (5) in this setting.

Example 3 (Unknown distributions with unknown
abrupt changes). Suppose that Yt at different t’s are
independent random variables on [0, 1], with true density
functions in the form of

g∗t (y) =


3.25− (ct − y) if ct − 0.25 ≤ y < ct

3.25− (y − ct) if ct ≤ y < ct + 0.25

0.25 otherwise
(6)

where ct ∈ [0.25, 0.75]. In other words, the true den-
sities are in the form of a constant plus a triangle

centered at ct. Suppose that the sequence c1, . . . , cT is
piecewise constant, with abrupt changes at ⌊T/2k⌋, k =
1, . . . , ⌊log2(T )⌋, with values in each segment alternat-
ing between 0.25 and 0.75. Fig. 3(a) shows how ct’s vary
with time which index data densities, and Fig. 3(b) plots
one realization of observations, given that T = 500.

If we are to use logarithmic scoring rule, can we come
up with ĝt’s that achieve the oracle bound (recall (3)) in
the sense that

1

T

T∑
t=1

{− log ĝt(Yt) + log g∗t (Yt)} →a.s. 0 ? (7)

It is a challenging prediction task, since the locations and
number of abrupt changes, as well as the form of densi-
ties are completely unknown. Our proposed methodology
will solve this challenge under some mild assumptions
on g∗t ’s, e.g. we will require these to belong to various
function spaces and to satisfy some mathematical prop-
erties such as Lipschitz continuity condition. We will also
assume that the number of change points is sub-linear
in T .

Example 4 (Autoregression with both unknown
abrupt changes and smooth variations). In this ex-
ample, we consider time-dependent data. Suppose that
the underlying data generating model is a first order
time-varying autoregression Yt ∼ [θ∗t Yt−1, 1] (not neces-
sarily Gaussian) with parameter space (−1, 1). The true
parameter θ∗t is time-varying in the following manner.
At first it follows a linear trend, from θ∗1 = 0.9 to
θ∗T/2 = −0.9, subsequently it has an abrupt switch to
a constant θ∗T/2+1 = · · · = θ∗T = 0.8. Fig. 4 shows the
sequence {θ∗t }Tt=1 and a realization of observations, with
T = 500.

If we use the following square score (commonly used
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Fig. 2. Example 2: independent Gaussian random variables with growing number of abrupt changes in their means.
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Fig. 3. Example 3: independent random variables with densities varying with time.

for linear models),

s(gθ̂t , Yt) = {Yt − E∗(Yt | Y1:t−1)}2 = (Yt − θ̂tYt−1)
2,

then achieving the oracle (3) amounts to

1

T

{ T∑
t=1

(Yt − θ̂tYt−1)
2 −

T∑
t=1

e2t

}
→a.s. 0. (8)

where again et is the random Gaussian noise at time
t, distributed as N (0, 1). Achieving (8) is not a trivial
task, considering that the intercept and slope of each
underlying linear trend, the number of trends, and their
locations are unknown to data analysts in advance. The
example can be generalized to more complex cases where
there is a larger number of different linear trends, or
even nonlinear (e.g. quadratic and cubic) trends. Our
methodology will address these types of challenges using
a simplified framework, and provides rigorous theoretical
guarantees.

C. Scoring rules and “oracle” predictive performance

The logarithmic scoring rule has been extensively
employed in statistical inference, information theory, and
machine learning, since, among many other reasons, it
appears naturally from the Kullback-Leibler divergence.
For instance, maximum likelihood estimation is equiva-
lent to minimizing the expected logarithmic scoring rule:
θ̂MLE = argminθ

∫
Y{− log gθ(y)}g∗(y)dy.

In spite of the widespread use of the logarithmic
scoring rule, when measuring predictive performance
and model evidence, many other scoring rules are also
favored due to various reasons. Motivated by the works
of [38], [39], we will consider the following general
class of scoring rules in our evaluation of predictive
performance.

Definition 1 (Proper scoring rule). Denoting by g∗

the true data-generating density function, a scoring
rule s : (g, y) 7→ s(g, y) is said to be “proper” if∫
Y s(g, y)g

∗(y)dy ≥
∫
Y s(g

∗, y)g∗(y)dy for any density
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Fig. 4. Example 4: a first order autoregressive process whose coefficient first follows a linear trend, and then abruptly switches to a constant.

function g, and “strictly proper” if the equality happens
only if g = g∗ (almost everywhere).

Being proper ensures that the user has an incentive to
provide a predictive distribution close to g∗, and ideally
g∗ itself. Two other examples of proper scoring function
are

s(g, y) = (y −
∫
ỹg(ỹ)dỹ)2,

and

s(g, y) = −g(y) + 1

2

∫
g(ỹ)2dỹ,

whenever they are well defined for all g ∈ G. A
counterexample of a non-proper function is given by
s(g, y) = −g(y).

Next we will prove that for any proper scoring rules,
the predictive performance cannot be better than when
the true data generating processes is known advance (e.g.
with the assistance of a genie). To this end, we define a
regularity condition on random variables.

Definition 2 (Tail-exponential random variables). A
nonnegative random variable X is said to be tail-
exponential (TE) with parameters λ, a, b (λ > 0, a, b ≥
0), denoted by X ∼ TE(λ; a, b), if it satisfies

pr
{
X > a+ δ

}
≤ b exp(−δλ−1) (9)

for any constant δ > 0.

Roughly speaking, the TE class consists of the abso-
lute values of all random variables that have exponen-
tially decaying densities in the tail. Examples are the
truncated Gaussian, Gamma, Exponential, Chi-square,
and bounded nonnegative random variables.

We next make the following assumptions on the model
class, scoring function and data sequences.

Assumption 1. Let G ⊆ G be the model class (set of
density functions) which is a subset of function space G
with a metric dG . There exists a fixed constant 0 < cG <
∞ such that supg,g̃∈G dG (g, g̃) ≤ cG . In other words, the
diameter of G is bounded.

Assumption 2. For all g, g̃ ∈ G ⊆ G , |s(g, Yt) −
s(g̃, Yt)| ≤ Z(Yt) ·dG (g, g̃), where Z(·) is a nonnegative
measurable function such that for all t = 1, . . . , T ,
Z(Yt) ∼ TE(λ; a, b) for some fixed constants λ > 0, a ≥
0 and b ≥ 0.

Assumption 3. For all t = 1, . . . , T , there exists a fixed
constant cY > 0, such that for all g∗t ∈ G ⊆ G , if
Yt ∼ g∗t , then E∗{s(g∗t , Yt)2} ≤ cY .

Theorem 1 (Oracle performance). Suppose that As-
sumptions (1), (2) and (3) hold. Suppose that g∗t ∈ G
is a sequence of data generating densities of Yt for
t = 1, . . . , T , and that s(·, ·) is a proper scoring rule.
Then, for any arbitrary sequence of densities gt ∈ G, we
have

lim inf
T→∞

1

T

T∑
t=1

{
s(gt, Yt)− s(g∗t , Yt)

}
≥ 0, a.s. (10)

Proof: The proof is given in the Appendix.

Assumptions (1), (2) and (3) are satisfied by many
model classes, such as the Gaussian model class
N (θ∗t , 1) with θ∗t in a compact set, and the model classes
in Examples 3 and 4 (as we will show in the sequel).

Remark 1 (The choice of metric). Clearly an ap-
propriately selected metric dG can greatly simplify the
prediction task. We note that dG can be relaxed to be a
pseudo-norm without affecting the underlying technical
proofs. For instance, suppose that the quadratic scor-
ing rule s(g, Y ) = (Y − Eg(Y ))2 is selected, where



IEEE TRANSACTIONS ON INFORMATION THEORY 8

Eg(Y ) =
∫
yg(y)dy denotes the mean under density

g(·). Then

|s(g, Y )− s(g̃, Y )| =|Eg(Y )− Eg̃(Y )|×
|2Y − Eg(Y )− Eg̃(Y )|

Suppose that supg∈G |Eg(Y )| < ∞ and |Y | is tail-
exponential with the same parameters over g ∈ G, and
we define dG (g, g̃) = |Eg(Y ) − Eg̃(Y )|. Then it is easy
to prove that Eg(Y

4) < ∞, and Assumptions (1), (2),
and (3) hold.

In the above definition, dG is a pseudo-norm since
Eg(Y ) = Eg̃(Y ) does not necessarily imply g = g̃. This
fact can be used to greatly simplify the algorithms to be
developed later on (as mathematically we will only need
to apply ε-nets to a quotient space).

Remark 2 (Time dependency). We note that the above
assumptions do not require observations at different time
steps to be independent. In other words, g∗t may or may
not depend on Y1:t−1, as long as g∗t ∈ G. In general, it
is more cumbersome to verify Assumptions (1), (2) and
(3) if Yt’s are dependent. Additionally, the definition of a
proper scoring rule clearly does not require the data to
be independent. In fact, this definition can be extended
to requiring

E∗

{
s(g(· | Y1:t−1), Yt)

}
≥ E∗

{
s(g∗(· | Y1:t−1), Yt)

}
.

For brevity, we have written s(gt(· | Y1:t−1), Yt)
and s(g∗t (· | Y1:t−1), Yt) respectively as s(gt, Yt) and
s(g∗t , Yt) in the statement of Theorem 1.

An interesting dependent case is the autoregressive
models. Consider for instance the AR(1) model in Ex-
ample 4. Suppose that the initial observation Y1, noises
et’s, and coefficients θ∗t ’s are bounded and satisfy
E∗|Y1| ≤ c,E∗|et| ≤ c, |θ∗t | ≤ q for some constant
c > 0 and 0 < q < 1. Then it can be verified
that E∗|Yt| = E∗|θ∗t Yt−1 + et| ≤ c/(1 − q) (using
mathematical induction). Thus, the model class can be
defined by G = {g : y 7→ (2πσ2)−1/2 exp{−(y −
µ)2/(2σ2)}, |µ| ≤ c/(1− q), σ ≥ σ0}, where σ0 > 0 is
any fixed constant. Moreover, if we choose the quadratic
scoring rule s(g, Y ) = {Y − Eg(Y )}2, then we may
again use the metric outlined in Remark 1.

III. PREDICTION WHEN ONLY UNKNOWN ABRUPT
CHANGES OCCUR: GENERAL SOLUTION

In this section, we consider optimal prediction as-
suming that only unknown abrupt changes happen. We
propose an efficient algorithm and provide rigorous the-
ories proving that our method achieves oracle perfor-
mance without first performing inference (change point
detection). The model family can be either parametric
or nonparametric. This gives a positive answer to the

question (Q1) (posed in Section I). The general idea is to
first apply ε-nets to cover the function space by countably
many elements (if possible). The elements in an ε-net
give our approximations of true data generating density
functions (at a time epoch). We then adaptively assign
the weights of the elements upon the arrival of each new
observation. By appropriately choosing a vanishing rate
for ε > 0 and other tuning parameters (as functions of
sample size), we will prove the asymptotic optimality in
the sense of (3).

Recall that the model class G is a set of data generating
densities. We assume that G is totally bounded in the
metric space (G , dG ). This assumption holds for wide
classes of density functions. We note that the Arzelà-
Ascoli Theorem (resp. Kolmogorov-Riesz Compactness
Theorem) gives a necessary and sufficient condition for
a set to be totally bounded in the space of continuous
real-valued functions with sup norm (resp. in Lp spaces
with Lp norm). We will give more specific examples in
the sequel. We will also need the following definition of
Kolmogorov and Tikhomirov [41, Chapter 7].

Definition 3 (ε-net and function bases). A set U ⊆ G is
said to be an ε-net for the set G, if any point of the set G
is located at a distance no greater than ε from some point
of the set U . Moreover, for a set G ⊆ G , we define its ε-
entropy Hε(G) as the minimum of natural logarithms of
the cardinalities of all ε-nets of G. Following Kolmogorov
and Tikhomirov, we refer to the elements of an ε-net as
function bases.

The intuition for our approach is given next. Given a
totally bounded model class G ⊆ G , we first discretize it
by applying an ε-net U ⊆ G . Let the function base (see
above definition) be denoted by g

(ε)
i for i = 1, . . . , N .

By definition we have log(N) = Hε(G) (if U is the
smallest ε-net). Under appropriate smoothness conditions
of the scoring rule, each function base will be thought
of as a representative of all the functions within its ε-
neighborhood (since all the elements of its neighborhood
will have close predictive performance as measured by
the score). Based on the sequentially observed data
yt, our prediction for the data generating distribution
proceeds by assigning weights to the function bases, and
updating them upon arrival of data. This is done in a
manner that will quickly track abrupt changes in the
underlying data generating densities.

A. Algorithmic description

An algorithmic description of our prediction procedure
is summarized in Algorithm 1. We then discuss the
related work, examples, and provide rigorous theoretical
analysis.

We note that when η = 1, α = 0, and the scoring rule
is the negative log likelihood of the data, Algorithm 1
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Algorithm 1 Kinetic Prediction with Discretized Function Space
input Discretization parameter ε > 0 and a model class G ⊂ G , data {yt : t = 1, . . . , T} observed sequentially, learning

parameter η > 0, mixing parameter α ∈ [0, 1).
output {pt ∈ RN : t = 1, . . . , T} (predictive distributions over the function bases), and {ĝt : t = 1, . . . , T} (predicted data

generating densities).
1: Choose an ε-net for G (preferably with minimal cardinality), and obtain function base {g(ε)1 , . . . , g

(ε)
N } (with cardinality N

as described above).
2: Initialization: w0,1 = · · · = w0,N = 1/N ;
3: for t = 1 → T do
4: Predict ĝt according to the distribution {pt} (using one of the methods outlined in Theorem 2 below) with pt,i =

(
∑N

j=1 wt−1,j)
−1wt−1,i, i = 1, . . . , N ;

5: Observe (incoming data) yt and compute vt,i = wt−1,i exp{−η s(g
(ε)
i , yt)} for each i = 1, . . . , N .

6: Let wt,i = (1− α)vt,i + αN−1 ∑N
j=1 vt,j for each i = 1, . . . , N .

7: end for

becomes the standard Bayesian posterior update. Smaller
η and properly chosen nonzero α give a “tempering”
effect on the weight updating, offering more flexibil-
ity/tolerance for potential underlying changes, while pro-
ducing different rates of convergence.

Remark 3 (Relation with non-statistical online learn-
ing). Algorithm 1 is similar to the fixed share algorithm
in the online learning literature [42], [43], where pre-
diction is non-statistical and is evaluated in terms of
“regret”. Instead of assumptions on a specific data gen-
erating process, it measures the forecaster’s performance
through the baseline of “experts”. At each time before
the arrival of a new data point, each expert “gives”
a prediction, and the forecaster average the experts’
predictions. The goal here is to keep the cumulative
“loss” (which is often assumed to be bounded) close to
that of the best expert. Although non-statistical learning
theory is apparently distinct from statistical prediction
tasks in terms of formulations and goals, there do exist
many technical relations. Suppose we apply an ε-net to a
model class G. We may think of our function bases (resp.
statical scoring rule) as N “experts” (resp. learning
loss) in online learning.

Similarly, our continuous-updating procedure (to be)
presented in Section IV can be thought of as an extension
of classical expert learning from countably many to
uncountably many experts.

Algorithm 1 is very simple to implement. In practice,
the difficulty mainly comes from determining a good ε-
net of the density function space. For parametric model
class, this can be done by directly discretizing the pa-
rameter space. For nonparametric model class, we may
design more sophisticated ε-nets. Some examples are
given below.

Example 5 (Parametric model class). Let θ denote
the parameter for the data generating process. Then
we may then write gt (resp. g∗t ) as gθt (resp. gθ∗

t
)

to emphasize dependence on the parameter. Suppose

that the parameter space Θ is a close interval [θ, θ]
in R. We can construct an N element ε-net by letting
ε = (θ−θ)/(2N) and by uniformly dividing the interval
[θ, θ] into equal length segments. Each function base then
corresponds to θ(ε)i = θ+(2i− 1)ε, for i = 1, 2, . . . , N .

Example 6 (Nonparametric: Lipschitz class). Let G
be the set of density functions g(·) defined on the closed
interval Y = [y, y] satisfying

|g(y)− g(y′)| ≤ L|y − y′|

for some Lipschitz constant L > 0, g(y) ≥ c, and g(y) =
c for some nonnegative constant c.

Let G̃ denote the set of nonnegative functions satisfy-
ing the above conditions, except that the elements are
not required to have ℓ1-norms equal to one. Clearly,
G ⊂ G̃. Consider the metric induced by ∥·∥∞ norm,
i.e., d(g1, g2)

∆
= supy∈Y |g1(y) − g2(y)|. Based on an

adaptation of Kolmogorov’s ε-corridor [41, Page 94],
we can construct an ε-net of G̃ denoted by U ′. The
construction is given as follows. For brevity, we let
ε′

∆
= ε/2L and |Y| ∆

= y − y. We let B denote all

vectors with entries 0 or 1, and length hε
∆
= ⌈|Y|/ε′⌉.

For each b = [b1, . . . , bhε ] ∈ B, we define the function
fb : Y → R by

fb(y) = c,

fb(y) = fb(y + (j − 1)ε′) + (2bj − 1)(y − (j − 1)ε′)

for y + (j − 1)ε′ < y ≤ y + jε′, for j = 1, . . . , hε. We
then define

Ũ = {fb : b ∈ B, fb(y) ≥ 0 for all y ∈ Y}.

In other words, Ũ consists of nonnegative curves that
starts from (y, c), moving linearly for every ε-length, with
slope L or −L indexed by binary sequences. A demo is
drawn in Fig. 5. By similar arguments as Kolmogorov’s
ε-corridor, it can be proved that Ũ is an ε-net of G̃,
implying

Hε(G̃) ≤ log{card(Ũ)} ≤ hε log 2 (11)
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Fig. 5. Illustration of two corridor-shaped function bases.

for small ε.
We define U as the “projection” of Ũ on G , given by

U
∆
=

{
f =

f̃

If̃
: f̃ ∈ Ũ

}
, where If̃

∆
=

∫
y∈Y

f̃(y)dy.

Next, we show that U is an c′ε-net of G for some fixed
positive constant c′. The idea of proof is that if for each
f ∈ G, its ε-neighborhood contains some f̃ ∈ Ũ , then
the integral of f̃ should be close to one, implying that
its normalized version is also close to f .

In fact, for each f ∈ G, since G ⊂ G̃ and Ũ is an
ε-net of G̃, there exists f̃ ∈ Ũ that satisfies d(f, f̃) ≤ ε.
Therefore, we have∣∣∣∣If̃ − 1

∣∣∣∣ ≤ ∫
y∈Y

|f̃(y)− f(y)|dy ≤ ε|Y| (12)

From (12) and elementary inequalities, we have

d

(
f,
f̃

If̃

)
≤ d(f, f̃) + d

(
f̃ ,

f̃

If̃

)
≤ ε+ ∥f̃∥∞

ε|Y|
1− ε|Y|

≤ ε+ (c+ L|Y|) ε|Y|
1− ε|Y|

≤ c′ε

for small ε, where c′ ∆
= 1 + 2(c + L|Y|)|Y| is a fixed

constant. Therefore, from (11) we have

Hε(G) ≤ hε/c′ log 2 = O(ε−1)

for small ε.

Example 7 (Nonparametric: Sobolev class). Let G be
the set of all density functions g(·) defined on the closed
interval Y = [y, y] satisfying ∥g∥∞ ≤ c1 , with (k− 1)-
th derivative absolutely continuous on Y and satisfying∫
y∈Y(g

(k)(x))2dx ≤ c2 for some fixed k ∈ N, c1, c2 ∈ R.

Let G̃ denote set of functions satisfying the same
conditions as above, except that the elements are not
required to be integrated to one and be nonnegative.
Using the result from [44, 19.10], it can be proved
that Hε(G̃) = O(ε−1/k) for small ε, under the metric
induced by ∥·∥∞ norm. Using a similar “projection”
technique to that proposed in Example 6, we can prove
that Hε(G) = O(ε−1/k) for small ε.

B. Theoretical Analysis

For the presentation of our results, we will need a
technical definition.

Definition 4 (ε-predictable). A sequence of density
functions g∗1 , . . . , g

∗
T ∈ G ⊆ G is ε-predictable with

respect to a sequence of positive integers {MT }, if there
exists a fixed constant β ∈ (0, 1/4) and a deterministic
sequence {εT } such that

lim
T→∞

(
T βεT +

MTHεT (G)
T 1−4β

)
= 0. (13)

The main result of this section is given in the following
theorem.

Theorem 2 (Prediction performance under abrupt
changes). Suppose that Assumptions (1), (2), and (3)
hold, and that the true data generating distribution
sequence {g∗t }Tt=1 has at most MT − 1 abrupt changes
by time T .

(i) Suppose that {g(ε)1 , . . . , g
(ε)
N } is an ε-net of G, and

that β > 0 is an arbitrary constant chosen such
that T β > max{cGa, a} (where cG , a were defined
in Assumptions (1) and (2)). If we choose α and η
by

α =
MT − 1

T − 1
, η =

√
8QT,N

T 1+2β
, (14)

where

QT,N
∆
=MT logN + (T − 1)H

(
MT − 1

T − 1

)
,

then Algorithm 1 outputs pt : t = 1, . . . , T such
that

T∑
t=1

N∑
i=1

pt,i s(g
(ε)
i , Yt)−

T∑
t=1

s(g∗t , Yt)

≤
√
2−1T 1+2βQT,N + T 1+βε. (15)

with probability at least 1 − C1T exp(−C2T
β),

where C1, C2 are fixed constants not depending on
T .

(ii) Suppose that {g∗t }Tt=1 is ε-predictable, then there
exist N (depending on T ) and function bases



IEEE TRANSACTIONS ON INFORMATION THEORY 11

g
(ε)
1,T , . . . , g

(ε)
N,T such that the output of Algorithm 1

satisfies

lim sup
T→∞

1

T

T∑
t=1

{ N∑
i=1

pt,i s(g
(ε)
i,T , Yt)− s(g∗t , Yt)

}
≤ 0 a.s. (16)

(iii) Under all the above assumptions, suppose that
s(g, y) is convex in its first argument, and we use
ĝt =

∑N
i=1 pt,ig

(ε)
i,T to predict at time t. Then

lim
T→∞

1

T

T∑
t=1

{
s(ĝt, Yt)− s(g∗t , Yt)

}
= 0 a.s.

(17)

(iv) Under all the above assumptions, suppose that we
independently draw Jt from 1, . . . , N with prob-
abilities specified in pt, and use ĝt = g

(ε)
Jt,T

as
predictor at each time t. Then

lim
T→∞

1

T

T∑
t=1

{
s(ĝt, Yt)− s(g∗t , Yt)

}
= 0 a.s.

(18)

Proof: The proof is given in the Appendix.

Remark 4. Theorem 2 Part (i) gives a non-asymptotic
bound on the sum

∑N
i=1 pt,i s(g

(ε)
i , yt), the average

predictive score over all function bases at each time. The
bound then leads to an asymptotic inequality in Part (ii).

Parts (iii) and (iv) can be implemented for prediction
in practice. The predictor in Part (iii) averages the
function bases according to their predictive weights, and
in Part (iv) it is randomly drawn from the function bases
according to their predictive weights. Under reasonable
assumptions, the scores of both predictors achieve the
oracle bound asymptotically (recall Theorem 1). From
extensive numerical studies, we conjecture that the pre-
dictor in Part (iii) exhibits less prediction variance than
that of Part (iv). On the other hand, it requires the
convexity of the score function which is not needed for
the predictor of Part (iv).

With only abrupt changes, the underlying density
function sequence is piece-wise constant. As we intro-
duced before, classical change detection framework often
requires that changes happen far away from each other.
In contrast, our kinetic prediction method does not have
such a requirement, and it can automatically approach
the oracle predictive performance. Moreover, our method
incorporates both nonparametric and parametric model
classes into a unified framework.

C. The inference-prediction dilemma

We have asked before “whether it is possible to
achieve optimal prediction without inferring the num-
ber and locations of abrupt change points first?”. To
this point, we have partially answered this question
affirmatively for the case when the unknown sequence
of densities comes from a size-controlled (in terms of
Kolmogorov-Tikhomirov ε-entropy) model class with a
reasonable number of abrupt changes.

The following proposition sheds further light on this
question.

Proposition 2 (Prediction without inference). Under
the assumptions of Theorem 2, there exists no statistical
procedure that is always consistent in selecting the
number of abrupt change points.

Proof: The proof is given in the Appendix.

We note that the distinction between the tasks of in-
ference and prediction originates from different statistical
objectives. The task of prediction focuses on minimizing
some statistical scoring function, whether or not the
model class is well-specified. In contrast, the task of
inference typically focuses on accurate identification of
the data generating model (from a well-specified model
class). It is a common practice to apply inference first,
and then use the obtained estimator (from either frequen-
tist or Bayesian perspective) for prediction. However, it
is not clear that this two-stage approach is always the
right way.

Interestingly, such inference-prediction dilemma has
been also directly or implicitly observed in several do-
mains. For example, in high dimensional regression anal-
ysis, it has been shown that near-oracle prediction loss
is possible even the data-generating variables cannot be
consistently selected [19], [45]. In model selection, there
have been many debates on whether Akaike information
criterion (AIC) [20] or Bayesian information criterion
(BIC) [21], which also represent a broader range of
criteria, should be used. It is known that in a nested
well-specified model class, BIC-like criteria is typically
consistent in selecting the true model, while AIC suffers
a non-vanishing overfitting probability. However, AIC
is shown to exhibit optimal predictive power in mis-
specified settings, while BIC is not [23]. A comprehen-
sive review in that direction can be found in [46].

We note that for change point analysis, questions (Q1)
and (Q2) (see the introduction) are legitimate, whenever
we are only interested in predictive performance.

IV. PREDICTION UNDER UNKNOWN ABRUPT
CHANGES: PARAMETRIC SOLUTION

In the above, we have discussed our kinetic prediction
framework for data generating distributions in general
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function spaces under abrupt changes. Applying an ε-net,
we can “represent” potentially infinite dimensional space
of the model class by countably many function bases
(“representatives”). Under mild smoothness conditions,
we proved that by applying our prediction strategy to the
discretized function bases, the oracle predictive perfor-
mance can be asymptotically approached. Although this
“discretization technique” can be applied to both non-
parametric and parametric function spaces, when we are
working with a fully parametric model class, we may
perform prediction directly with the continuous space.
This can be seen as the limiting case when ε → 0,
and the partition produces uncountably many arbitrarily
close representatives of the space. Our kinetic prediction
methodology for this scenario aims to automatically
search the space (using Markov chain particles) and
update the best performing parameters sequentially.

More specifically, suppose the parametric data gener-
ating distribution is gθ(·), indexed by a parameter θ ∈
Θ ⊆ Rn, where the parameter space Θ is compact. We
shall then identify each density function with a parameter
θ. For example, the true data generating densities g∗t (·)
can be described by the underlying parameter sequence
θ∗t , the scoring rule s(g, y) can be rewritten as s(θ, y),
and the task of making predictions of the data generating
process is then turned into the prediction of the time-
varying parameter θ∗t , when there are no ambiguities.

We will assume the model class to be well-specified,
i.e. the true data generating parameter θ∗t ∈ Θ, ∀t =
1, . . . , T , and the parameter space Θ is a hypercube in
Rn (also called an n−dimensional cube). In particular,
Θ = Θ1 × Θ2 × · · · × Θn, with each Θj being a
one-dimensional closed interval: Θj = [θj , θj ] ∈ R,
j = 1, . . . , n. We use |·| to denote the Lebesgue measure
of the parameter space (or the volume of a hypercube
here), namely |Θj | = (θj − θj) and |Θ| =

∏n
j=1 |Θj |.

We will predict by working with this continuous param-
eter space directly, assuming that the underlying true
parameter sequence {θ∗t }Tt=1 contains unknown abrupt
changes. Our goal is to achieve the oracle performance
as previously defined.

A. Algorithmic description

We summarize the pseudocode in Algorithm 2. At
each time step t, before the next observation yt is
revealed, the algorithm gives a predictive distribution
pt(θ) of the underlying parameter θ∗t , based on the past
y1:t−1 and scoring functions. The point predictor θ̂t
for θ∗t can then be generated based on the predictive
distribution. For instance, it could be chosen to be the
mean of pt(θ), or a random draw according to it (See
Parts (iii) and (iv) of Corollary 1).

In Algorithm 2, the updating step (19) resembles that
of Bayesian update, with the only difference in learning

parameter η. A discussion on this has been made in
Subsection III-A. The mixing step (20) is crucial as it
redistributes belief on the parameter space. At an infor-
mal level, it provides the potential for those parameters
with little evidence in the past to quickly gain more
evidence in the future whenever they become the true
parameters (after abrupt changes). The mixing parameter
α is related to the frequency of abrupt changes occurring
in the sequence. The less frequent changes occur, the
less α ≥ 0 is needed to redistribute the belief. This
can also be seen from αopt = MT−1

T−1 in the following
Proposition 3.

B. Theoretical analysis

We next discuss analogs of assumptions made in
Section II-C needed for theoretical analysis. Assumption
(1) is automatically satisfied if the parameter space Θ
is a bounded hypercube, and if we define the metric by
dG (gθ, gθ̃)

∆
= ∥θ− θ̃∥2. We thus introduce the following

analogs of Assumptions (2) and (3) in the parametric
setting.

Assumption 2′. The parameter space Θ ⊆ Rn is a
hypercube. For all θ, θ̃ ∈ Θ ⊆ Rn, we have |s(θ, Yt) −
s(θ̃, Yt)| ≤ Z(Yt) · ∥θ − θ̃∥2 for all t = 1, . . . , T , where
Z(·) is a nonnegative measurable function such that for
all t = 1, . . . , T , Z(Yt) ∼ TE(λ; a, b) for some fixed
constants λ > 0, a ≥ 0 and b ≥ 0.

Assumption 3′. For all t = 1, . . . , T , there exists a fixed
constant cY > 0 that does not depend on t, such that for
all θ∗t ∈ Θ ⊆ Rn, if Yt ∼ gθ∗

t
, then E∗{s(θ∗t , Yt)2} ≤

cY .

The following theorem provides a performance guar-
antee for the parametric kinetic prediction.

Theorem 3 (Finite prediction bound). Suppose that
Assumption (2′) holds, and we let

∆
∆
= sup

θ,θ̃∈Θ

∥θ − θ̃∥2.

For the kinetic prediction Algorithm 2, we define the
average predictive score

s̄(θ, yt)
∆
=

∫
Θ

s(θ, yt)pt(θ)dθ

for a realization yt at time t. If the underlying parameter
sequence {θ∗t }Tt=1 contains at most MT − 1 (MT ≥ 1)
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Algorithm 2 Kinetic Prediction with Continuous Parameter Space
Input: Compact parameter space Θ ⊆ Rn, data {yt, t = 1, . . . , T} observed sequentially, learning parameter η > 0,

and mixing parameter α ∈ [0, 1).
Output: Predictive distribution of the unknown parameter {pt(θ), t = 1, . . . , T} and predicted sequence {θ̂t}Tt=1.

1: Initialization: f0(θ) = 1, ∀θ ∈ Θ;
2: for t = 1 → T do
3: Predict parameter θ̂t according to the predictive distribution pt(θ) = {

∫
Θ
ft−1(θ̃)dθ̃}−1ft−1(θ);

4: After receiving yt, compute the score function s(θ, yt) for all θ ∈ Θ;
5: Update:

f̃t(θ) = ft−1(θ) · e−ηs(θ,yt) (19)

6: Mix:

ft(θ) = (1− α)f̃t(θ) + α

∫
Θ
f̃t(θ̃)dθ̃

|Θ|
(20)

7: end for

abrupt changes, then for any value d > a we have

T∑
t=1

s̄(θ, Yt)−
T∑

t=1

s(θ∗t , Yt) ≤
1

η

[
(T −MT ) ln

1

1− α
+

(MT − 1) ln
1

α
− (T −MT ) ln

(
1 +

α

1− α
r
(n)
T

)
−

T∑
t=T−MT+1

ln(r
(n)
t )

]
+
ηTd2∆2

8
(21)

with probability at least 1 − bT exp
[
−(d− a)λ−1

]
,

where

r
(n)
t

∆
=

n∏
j=1

1− exp(−ηtd|Θj |)
ηtd|Θj |

∈ (0, 1). (22)

Proof: The proof is given in the Appendix.

It can be proved that {r(n)t }Tt=1 is a monotonically
decreasing sequence in t. Thus

T∑
t=T−MT+1

ln(r
(n)
t ) ≥MT ln(r

(n)
T ).

Also we have (T −MT ) ln{1 + αr
(n)
T /(1 − α)} ≥ 0.

In light of these, the inequality (21) can be written in a
slightly weaker but more compact form:

T∑
t=1

s̄(θ, yt)−
T∑

t=1

s(θ∗t , yt) ≤
1

η

[
(T −MT ) ln

1

1− α
+

(MT − 1) ln
1

α
−MT ln(r

(n)
T )

]
+
ηTd2∆2

8
. (23)

In practice we want to choose good values for param-
eters α and η to run Algorithm 2 such that the regret
bound is small. The following results give some insight
on how to select the parameters.

Proposition 3 (Choice of parameters). Regardless of
the learning parameter η, for the regret bound in (21) to
be minimized, the optimal mixing parameter is given by

αopt =
MT − 1

(T − 1)(1− r
(n)
T )

.

For the bound in (23) to be minimized, the optimal mixing
parameter is exactly αopt = (MT − 1)/(T − 1), using
which (23) reduces to

T∑
t=1

s̄(θ, yt)−
T∑

t=1

s(θ∗t , yt) ≤
1

η

[
(T − 1)H

(
MT − 1

T − 1

)
−

MT ln(r
(n)
T )

]
+
ηTd2∆2

8
(24)

where H(·) is the binary entropy function. The optimal
value for the learning parameter η has no close form,
but can be calculated by numerical methods.

Corollary 1 (Asymptotic prediction performance).
Suppose that Assumption (2′) holds, {θ∗t }Tt=1 is the true
data generating parameter sequence, and the model class
represented by Θ is well-specified, then:

(i) If Assumption (3′) holds, and the scoring rule s(·, ·)
is proper, then for any parameter sequence {θt}Tt=1,
we have

lim inf
T→∞

1

T

{ T∑
t=1

s(θt, Yt)−
T∑

t=1

s(θ∗t , Yt)

}
≥ 0 a.s.

(ii) If the true parameter sequence {θ∗t }Tt=1 has at most
MT − 1 abrupt changes by time T , and MT =
O(T γ) with γ ∈ [0, 1), then Algorithm 2 outputs
pt(θ) that satisfies

lim sup
T→∞

1

T

{ T∑
t=1

s̄(θ, Yt)−
T∑

t=1

s(θ∗t , Yt)

}
≤ 0 a.s.
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given mixing parameter αT = (MT − 1)/(T − 1),
and learning parameter ηT = O(T−β) where 0 <
β < (1− γ)/2.

(iii) Under the above assumptions (in Parts (i) and
(ii)), if the scoring rule s(·, ·) is convex in its first
argument θ ∈ Θ, and the predicted parameter
θ̂t from Algorithm 2 is given by θ̂t = Ept(θ) =∫
Θ
θpt(θ)dθ, then

lim
T→∞

1

T

{ T∑
t=1

s(θ̂t, Yt)−
T∑

t=1

s(θ∗t , Yt)

}
= 0 a.s.

(iv) Under the above assumptions (in Parts (i) and (ii)),
if the predicted parameter θ̂t from Algorithm 2 is
independently drawn from the predictive distribu-
tion pt(·), then

lim
T→∞

1

T

{ T∑
t=1

s(θ̂t, Yt)−
T∑

t=1

s(θ∗t , Yt)

}
= 0 a.s.

Proof: The proof is given in the Appendix.

Remark 5 (Discussion on the theoretical results).
Theorem 3 and Proposition 3 give a predictive score
bound on the difference between the average score pro-
duced by our kinetic algorithm and that produced by
a genie (who knows that the true parameter sequence
is piece-wise constant with MT segments). Recall that
the genie’s performance is the oracle bound if s(·, ·) is
a proper scoring rule. Thus our prediction method is
guaranteed not to perform too badly, for any known data
horizon T . Corollary 1 shows that our prediction scheme
asymptotically approaches the oracle bound, as long as
the number of abrupt changes grows sub-linearly with
time.

In the proposed kinetic algorithms, we implicitly re-
quire the knowledge of data horizon T . This is a reason-
able assumption in many applications. For example, in
high-frequency trading, the data horizon for predicting
the prices of a second-bar financial asset is typically
chosen to be one day. In some other applications such as
trajectory prediction or weather forecasting, prediction
needs to made continuously, so the data horizon is not
prescribed. In the second case, the proposed methodol-
ogy is not directly applicable, since appropriately chosen
tuning parameters α, η require the knowledge of T (see
Corollary 1.(ii)). We conjecture that this issue can be
solved by a “doubling trick”. Specifically, we may start
with an initial data horizon T0 and the corresponding
αT0

, ηT0
; Every time the current size of data t is doubled,

e.g., at t = 2T0, we update the parameters to α2T0 , η2T0

according to the doubled data horizon.
Recall that in Corollary 1.(ii), the mixing parameter

α = (MT −1)/(T−1) also depends on MT , the number
of abrupt changes up to and including time step T . In

practice this could be set from a data analyst’s prior in-
formation. Otherwise, an appropriate α can be searched
from a grid of [0, 1], based on the corresponding average
predictive score. An alternative approach is to postulate
α = T ρ with ρ ∈ [0, 1) being an unknown parameter,
and then apply Monte Carlo methods in an analogous
manner to that of [33]. Our numerical studies show that
the predictive power of the kinetic prediction is not very
sensitive to a wide range of choices of α, η.

C. Efficient Monte Carlo implementation

In contrast with Algorithm 1, where the weight updates
can be directly evaluated, the implementation of Algo-
rithm 2 is more cumbersome. In particular, the numerical
calculation of the integral

∫
Θ
f̃t(θ̃)dθ̃ in the mixing step

(20) may be computationally difficult in practice. Thus
we need to develop efficient methods to evaluate the
continuous predictive distribution functions pt(θ) and
related integrals, as well as methods for sampling from
the predicted distributions. Motivated by the resemblance
of our methods to Bayesian approach, we propose to use
Monte Carlo methods for an efficient implementation.

Our idea is to first recast Algorithm 2 as a special
case of state space models, and then apply particle filter
techniques. In fact, we can rewrite the mixing step (20)
as

ft(θ) = (1− α)f̃t(θ) + α

∫
Θ
f̃t(θ̃)dθ̃

|Θ|

=

∫
Θ

f̃t(θ̃)K(θ|θ̃)dθ̃

where
K(θ|θ̃) ∆

= (1− α)δ(θ) + α/|Θ|

which is a transition kernel from θ̃ to θ, and δ(·) is the
Dirac delta function in the space Θ. This can be seen as
the continuous state transition kernel from θ̃ to θ in a
hidden Markov model.

Interestingly, the above formulation gives a natural
Bayesian interpretation. Instead of a frequentist perspec-
tive that assumes a certain number of change points in
the true data generating parameter sequence {θ∗t }Tt=1, we
now think of {θt}Tt=1 as hidden states that follow some
transitional law. The output pt(·) in Algorithm 2 is then
interpreted as the predictive distribution p(θt|y1:t−1).

Following the above Bayesian interpretation, we de-
sign the following three-step particle filter for implement-
ing Algorithm 2. We start by drawing initial particles (or
samples) with equal weights from a uniform distribution
on Θ, and then perform the following three steps at each
time step:
(1) Update the weights based on exp(−ηs(·, yt));
(2) Resample the particles according to their weights;
(3) Move the particles according to the kernel K(·, ·).
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The last step is easily implemented by either keeping a
particle unchanged with probability (1−α), or replacing
it with a random draw from Unif(Θ) with probability α.

Despite its simplicity, the above implementation of
particle filter suffers two well known problems, namely
the sample degeneracy and impoverishment [47]. In
practice, if α is chosen to be too small, the moving
step (3) doesn’t change much of the samples’ locations,
so the particle filter is very similar to a sequential
importance sampling algorithm with resampling [48]. It
is foreseeable (and experiments also show) that although
the samples could still follow the changes in under-
lying parameters, the underlying weights will quickly
concentrate on a small number of samples. And after
resampling, most of the samples fall in the same location
in the parameter space. In order to resolve this issue, we
borrow some ideas from the iterated batch importance
sampling (IBIS) algorithm [49], and propose the follow-
ing Algorithm 3.

In the above algorithm, resampling is triggered when
ESS (Effective Sample Size, estimated from the particle
weights) drops below a threshold (step (9)). There are
various ways to do resampling, such as multinomial
resampling, residual resampling, and systematic resam-
pling [50]. It is then followed by a rejuvenation step,
which moves the particles according to some Markov
kernel K ′ which leaves the current distribution invariant.
A typical kernel that we use is a Metropolis-Hastings
(MH) kernel [51], which proceeds as follows:

(a) Sample θ̃ ∼ q(·|θ̄it), where q is the proposal distribu-
tion of our choice [52] (for example, we can choose
q to be an independent Gaussian distribution with
mean and covariance estimated from samples);

(b) Compute

A(θ̃|θ̄it) = min

(
1,
f̃t(θ̃)q(θ̄

i
t|θ̃)

f̃t(θ̄it)q(θ̃|θ̄it)

)
;

(c) With probability A(θ̃|θ̄it), set θit+1 = θ̃, otherwise set
θit+1 = θ̄it.

The above step only requires point evaluation of the (un-
normalized) targeting distribution f̃t(θ). A nontrivial part
in such evaluation is to calculate integrals

∫
Θ
f̃τ (θ̃)dθ̃

for τ = 1, 2, . . . , t − 1, according to (19) and (20).
Fortunately, these integrals can be estimated as a by-
product in our algorithm. In fact, for the quantities in
Step (6), direct calculations show that

R̃t −→
N→∞

∫
Θ
f̃t(θ̃)dθ̃∫

Θ
f̃t−1(θ̃)dθ̃

(for t ≥ 2), and

R̃1 −→
N→∞

∫
Θ

f̃1(θ̃)dθ̃ in probability.

We therefore obtain

R̂t −→
N→∞

∫
Θ

f̃t(θ̃)dθ̃ in probability

for a given t, which gives a consistent estimator of the
integral

∫
Θ
f̃t(θ̃)dθ̃. Therefore, using these estimators

{R̂τ}t−1
τ=1, we can evaluate f̃t(θ) based on recursive

equations (19) and (20) in Algorithm 2 for any θ ∈ Θ,
so that an MH rejuvenation can be done after resampling
to increase sample diversity. It would be interesting
to study the asymptotic regime where N diverges as
some function of T , so that the propagated errors from
Monte Carlo approximation are always negligible. We
leave that for future research. The complexity of the
recursive procedure of f̃t(θ) function evaluation for all
the samples at time t is O(Nt), so the overall complexity
of Algorithm 3 is O(NT 2).

V. PREDICTION UNDER SMOOTH VARIATIONS AS
WELL AS ABRUPT CHANGES

In practice, we often encounter situations when the
data generating distributions in various epochs of time
vary smoothly. By “smooth variations,” we mean small
but persistent changes of densities during a certain time
epoch. In those cases, it may not be a good idea to
approximate density functions g1, g2, . . . by a number of
functions with occasional abrupt changes, since changes
(either small or abrupt) happen “all the time”. However,
if such small variations can be well-approximated by
locally linear, quadratic, or other deterministic patterns
(illustrated in Fig. 6), it is possible to reduce the di-
mension by treating a sequence of parameters (with a
given change pattern) as “one parameter”. Following this
intuition, we propose the following concept which we
refer to as “function flow”. As a result, we show that
it is still possible to achieve optimal prediction under
smooth variations as well as abrupt changes, by adapting
our previous methodology.

Definition 5 (Function/parameter flow). A function
flow f on a set of function bases G is defined to be a map
f : N → G. If each g ∈ G is parameterized with θ ∈ Θ,
we also call f a parameter flow, and write f : N → Θ.
The set of all the flows is denoted by F .

Consider, for example, independent Gaussian N (µt, 1)
with µt ∈ [0, 1], t = 1, 2, . . .. Suppose that we have an
ε-net bases µ1 = ε, µ2 = 2ε, etc. If the true means
follow a linear trend in a certain period, then it can be
approximated by µt = (a + bt)ε for some integers a, b.
It would be easier to apply our kinetic procedure to two
unknown a, b instead of too many unknown µt’s. We
can define a set of parameter flows fε : t 7→ εt for a
grid of ε’s, and then apply kinetic prediction procedure
to the flows (in an analogous manner to Algorithm 1).
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Algorithm 3 Sequential Monte Carlo for Kinetic Prediction (SMC-KP) in Compact Parameter Spaces
Input: Compact parameter space Θ ⊆ Rn, data {yt}Tt=1 observed sequentially, learning parameter η > 0, mixing

parameter α ∈ (0, 1), number of particles N , and ESS threshold c ∈ [0, 1].
Output: (W i

t , θ
i
t)

N
i=1 as weighted samples from the predictive distribution {pt(θ)}Tt=1 defined in Algorithm 2.

1: Initialization: sample θi1 independently from Unif(Θ), and let W i
1 = N−1, for all i = 1, . . . , N .

2: for t = 1 → T do
3: Use the weighted samples (W i

t , θ
i
t)

N
i=1 to approximate the predictive distribution pt(θ).

4: Receive/Read yt.
5: Update wi

t =W i
t · e−ηs(θi

t,yt) for all i = 1, . . . , N ;
6: Calculate R̃t =

∑N
i=1 w

i
t, R̂t =

∏t
τ=1 R̃τ (to be used in Step (11));

7: Normalize W i
t+1 = wi

t/
∑N

i=1 w
i
t. Note that (W i

t+1, θ
i
t)

N
i=1 approximates the density f̃t(θ)∫

Θ
f̃t(θ̃)dθ̃

.

8: Calculate ESS = 1/
(∑N

i=1(W
i
t )

2
)
;

9: if ESS < cN then
10: Resample:

Resample (W i
t+1, θ

i
t)

N
i=1 (e.g. using multinomial distribution) to obtain equally weighted samples (W i

t+1 =
N−1, θ̄it)

N
i=1;

11: Rejuvenate/Move:
Draw θit+1 ∼ K ′(·|θ̄it) where K ′ is an MCMC kernel targeting at the density f̃t(θ)∫

Θ
f̃t(θ̃)dθ̃

. Our choice of the
kernel K ′ is a Metropolis-Hastings (MH) type, which uses results from step (6) and is explained in detail
below this Algorithm.

12: else
13: W i

t+1 =W i
t+1, θit+1 = θit;

14: end if
15: Move θit+1 according to the transition kernel K(·|θit+1)

∆
= (1 − α)δ(·) + α/|Θ| in the following way: with

probability 1− α, let θit+1 = θit+1, and with probability α, let θit+1 ∼ Unif(Θ), for all i = 1, . . . , N .
16: end for

Fig. 6. Some examples of local deterministic trends of parameters (for a parametric model class).

In other words, at each time t = 1, 2, . . ., each base gn
in Algorithm 1 is replaced with some f(t), a flow f
evaluated at t.

We note that each function base in Definition 3 can be
regarded as a special flow, which takes a constant value
as time elapses. As was in Definition 4, the size of all the
flows need to be restricted in order to guarantee optimal
prediction. Our key ideas and corresponding notation in
this section are illustrated in Fig. 7.

In the remaining of this section, for simplicity we
only present our methodology by considering a para-
metric model class with unknown linear trends in the
parameters. For further simplicity, we only consider a
one-dimensional parameter space Θ ⊆ [θ, θ] in our
presentation. Extension to richer classes of function
flows, higher dimensional parameter spaces, and non-
parametric models is straightforward.

We denote the parametric model class as G = {gθ :
θ ∈ Θ}, where Θ ⊂ R is equipped with a metric dΘ,
and define the metric dG (gθ, gθ̃)

∆
= dΘ(θ, θ̃). We let G(ε)

be an ε-net of G, given by

g
(ε)
j = g

θ
(ε)
j

, with θ(ε)j = θ + jdΘ(0, ε) (25)

for j = 0, . . . , Nε − 1, Nε = ⌈dΘ(θ, θ)/dΘ(0, ε)⌉.
Clearly, Θ(ε) ∆

= {θ(ε)j : j = 0, . . . , Nε−1} is an ε-net of
Θ. With a slight abuse of notation, we shall sometimes
refer to a parametric density gθ as parameter θ, and to
s(gθ, y) as s(θ, y) in the sequel.

Definition 6 (Linear parameter flow). A linear parame-
ter flow f over Θ(ε) is defined to be a map f : N → Θ(ε),
such that

t 7→ f(t) = θ(κ+ζt) mod Nε
(26)
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Fig. 7. Illustration of some notation in kinetic prediction.

where κ ∈ {0, 1, . . . , Nε − 1} and ζ ∈
{−⌊Nε/2⌋, . . . ,−1, 0, 1, . . . , ⌊Nε/2⌋} are constants
that index f . The set of all the linear flows is denoted
by F .

Suppose that ε is very small, then for any linear trend
in some time epoch, its starting point and the slope can
be well approximated by some θκ and ζε, respectively.
Moreover, if the path of true parameters is approximately
segment-wise linear, we may be able to achieve optimal
prediction by applying kinetic prediction over all the
linear parameter flows. All the linear flows may be cate-
gorized into three types, illustrated in Fig. 8(a), (b), and
(c). These respectively illustrate parameter base (constant
flow), parameter flow from small to large values, and
parameter flow from large to small values.

In view of the above set-up, the previously presented
algorithms and theories can be extended in a straightfor-
ward manner. An example is given in Algorithm 4 which
has a computational complexity O(N) = O(ε−2) at each
time t. Next, we provide performance guarantees for this
algorithm.

Before we proceed to the theoretical results, we make
the following assumption which slightly extends As-
sumption (2′).

Assumption 2′′. The parameter space Θ ⊆ Rn is a
one-dimensional interval. For all θ, θ̃ ∈ Θ ⊆ Rn, we
have |s(θ, Yt) − s(θ̃, Yt)| ≤ Z(Yt) · dΘ(θ, θ̃) for all
t = 1, . . . , T , where Z(Yt) is similarly defined as in
Assumption (2′), and dΘ(θ, θ′)

∆
= ∥θ−θ̃∥u2 with u ∈ (0, 1]

being a fixed constant.

In the sequel, we suppose that 0 = t0 < t1 < · · · <
tMT

= T , and define for any set of MT linear functions

Lm : Dm → Θ, Dm
∆
= {tm−1 + 1, . . . , tm}

(m = 1, . . . ,MT ) the distance to the true data generating
parameters

∆T (L1, . . . , LMT
, D1, . . . , DMT

)
∆
=

Mt∑
m=1

∑
t∈Dm

dΘ(Lm(t), θ∗t ).

We further define the minimal segment-wise linear ap-

proximation error as

∆T
∆
= min

L1,...,LMT
,

D1,...,DMT

∆T (L1, . . . , LMT
, D1, . . . , DMT

).

(28)

Note that ∆T implicitly depends on MT .

Theorem 4. Assume that Assumptions (1), (2′′), and (3)
hold.

(i) Suppose that {f1, . . . , fN} are linear flows on G(ε),
and that β > 0 is an arbitrarily chosen constant.
If we choose α and η as in (14), then Algorithm 4
outputs pt : t = 1, . . . , T such that

T∑
t=1

Nε∑
n=1

pt,n s(θ
(ε)
n , Yt) ≤

T∑
t=1

s(θ∗t , Yt)+√
2−1T 1+2βQT,N + 2T 2+βε+ T β∆T (29)

holds with probability at least 1 −
C1T exp(−C2T

β), for some fixed constants
C1 and C2.

(ii) Moreover, if there exists a fixed constant β ∈
(0, 0.2] satisfying

MT = O(T 1−5β), ∆T = o(T 1−β), (30)

and we choose ε = T−ν for any fixed ν > 1 + β
in (25), then

lim sup
T→∞

1

T

T∑
t=1

{ Nε∑
n=1

pt,n s(θ
(ε)
n , Yt)− s(θ∗t , Yt)

}
≤ 0 a.s. (31)

(iii) Suppose that s(gθ, y) is convex in θ, and we use
θ̂t =

∑Nε

n=1 pt,nθ
(ε)
n for prediction at time t. Then

lim
T→∞

1

T

T∑
t=1

{
s(θ̂t, Yt)− s(θ∗t , Yt)

}
= 0 a.s.

(iv) Suppose that we independently generate Jt from
multinomial distribution with probability pt, and
use fθJt

for prediction at each time t. Then

lim
T→∞

1

T

T∑
t=1

{
s(θ

(ε)
Jt
, Yt)− s(θ∗t , Yt)

}
= 0 a.s.

(32)
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Fig. 8. Illustration of three types of linear flows t 7→ f(t) = θ(κ+ζt) mod Nε
: (a) ζ = 0, (b) ζ > 0, (c) ζ < 0, and (d) different slopes.

Algorithm 4 Sequential prediction for time series (with 1-D parameter space)
input {yt : t = 1, . . . , T}, ε > 0, η > 0, α ∈ [0, 1]
output {pt : t = 1, . . . , T} (predictive weights over the function bases)

1: Initialize Nε = ⌊(b − a)/ε⌋ (where [a, b] is the parameter space), w0 = [1/Nε, . . . , 1/Nε]
T, N = Nε + 2Nε⌊Nε/2⌋,

wF
0 = [1/N, . . . , 1/N ]T

2: Let f1, . . . , fN be the N linear parameter flows.
3: for t = 1 → T do
4: Normalize the predictive weights pt,n = (

∑Nε
j=1 wt−1,j)

−1wt−1,n, n = 1, . . . , Nε.
5: Obtain yt and compute vt,n = wF

t−1,n exp{−η s(fn(t), yt)} for each n = 1, . . . , N .
6: Let wF

t,n = (1− α)vt,n + αN−1 ∑N
j=1 vt,j .

7: Aggregate the predictive weights from wF
t to wt, namely for each n = 1, . . . , Nε,

wt,n =
∑

j∈A(n)

wF
t,j , where A(n) = {j : 1 ≤ j ≤ N, fj(t) = θ(ε)n (the nth parameter base) }. (27)

8: end for

Remark 6. We emphasize that Nε is the number of
bases while N is the number of flows, so Nε ̸= N ,
and their relation is described in Line 1 of Algorithm 4.
Theorem 4 can be regarded as an extension of The-
orem 3. We note that in the above definition of Dm,
it is possible for Dm to consist of a single point tm
as a degenerate linear function). In general, smooth
variations of parameters (or parametric densities) can
be regarded as concatenation of parameter flows with
some combinatorial structures.

Remark 7 (Infill Asymptotics). In the above theorem,
assumption (30) only requires that ∆T is sublinear in
T . In this section, we provide a wide class of the true
parameter paths {θ∗t : t = 1, . . . , T} that satisfies the
required assumption. We consider the following charac-
terization. Suppose that Λ : [0, 1] → Θ is a continuous
function, and

θ∗t = Λ(t/T ). (33)

In other words, Λ approximately contains all the time
evolution of true parameters from 1 to T . As T tends
to infinity, for a any given u0 ∈ (0, 1), more and more
data generated from ut = t/T ∈ [u0 − ε, u0 + ε] close
to u0 are observed. This type of “infill statistics” has

been used before in the study of a rigorous asymptotic
treatment of locally stationary processes [29], [53].

It has been well known that smooth functions can
be well approximated by B-splines [54]. Let [0, 1] be
partitioned into J equal-sized intervals {Ij}Jj=1. Let F
denote the space of polynomial splines of degree ℓ ≥ 1,
consisting of functions g(·) satisfying 1) the restriction
of g(·) to each interval is a polynomial of degree ℓ,
and 2) g(·) ∈ Cℓ−1[a, b] (ℓ − 1 times continuously
differentiable). There exists a normalized B-spline basis
{bj}J+ℓ

j=1 for F. Suppose each considered (non)linear
function f has kth derivative, f (k), and satisfies the
Holder condition with exponent ρ: |f (k)(x)−f (k)(x′)| ≤
M |x − x′|ρ for all x, x′ ∈ [0, 1], where k ≤ ℓ is a
nonnegative integer, ρ ∈ (0, 1] such that k + ρ > 0.5,
and M > 0. Define the norm ∥f∥∞ = supu∈[0,1] |f(u)|
for a any continuous function f : [0, 1] → R. Standard
results on splines imply that there exists F (·) ∈ F with
J + 1 B-spline basis such that

∥Λ− F∥∞ = O
(
J−(ℓ+ρ)

)
.

Then the key assumption (30) required by Theorem 4
is satisfied. Let J =MT . It is easy to prove that if MT
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is chosen such that

MT

T 1−5β
= O(1),

TM
−(1+ρ)
T

T 1−β
= o(1) (34)

then the key assumption (30) required by Theorem 4 is
satisfied. It suffices to choose M = Tw, with β/(1+ρ) <
w ≤ 1 − 5β. Clearly, a valid w can always be found
by choosing small enough β. In other words, as long
as nature generates the true parameter sequence from a
smooth function in an “infill” manner, assumption (30)
is easily satisfied. It is not difficult to show that (33) can
be extended to

θ∗t = Λ(t/T ) + ζt

with ζt satisfying T β supt=1,...,T ζt → 0 as T → ∞.

VI. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments to
demonstrate our theoretical results and wide applicability
of the proposed methodology using both synthetic and
real-world data. Throughout the experiments, we fix
the following tuning parameters. In view of Theorem 2
and Theorem 4, we set ε = T−1/3 for Algorithm 1,
ε = |Θ|T−ν (ν = 5/4) for Algorithm 4; We use
MT = ⌊T 1/3⌋, β = 1/8 for both algorithms, and α,
η accordingly defined in (14). In view of Corollary 1,
we use η = 10T−1/3 and different α’s in Algorithm 3.
Here, |Θ| denotes the Lebesgue measure of the parameter
space (for parametric models), and it is used to enhance
the predictive performance under limited data (according
to our empirical studies). In practice, a data analyst
may achieve better predictive performance of kinetic
prediction by fine tuning the above parameters for any
particular dataset.

A. Synthetic data experiment: abrupt changes in mean

In this subsection, we consider prediction under abrupt
changes in mean for random Gaussian observations,
introduced in Examples 1 and 2. In both examples,
our kinetic prediction was realized by running Algo-
rithm 3. For comparison, we implemented two “first-
infer-then-predict” change detection algorithm, one by
employing quadratic loss and BIC [18] into a multi-
window detection method (denoted as MW), the other
one by using CUSUM. Since the CUSUM was originally
designed for detecting a single change, we adapted it
to handle multiple changes in a way similar to multi-
ple change point algorithm. In particular, in an online
fashion whenever a change point is detected, we reset
the CUSUM algorithm and make prediction based on
the latest detected segment. We shall also compare with
the standard Bayesian procedure (which corresponds to
η = 1 and α = 0).

Recall that in Example 1, data are generated according
to a Gaussian distribution with unit variance and a chang-
ing mean parameter at different time. We set T = 500,
the true mean sequence θ∗t = 5 for 1 ≤ t ≤ T/2,
and θ∗t = 6 for T/2 < t ≤ T . We run Algorithm 3
for kinetic prediction with the parameter space [4, 7]
and α = 1/(T − 1). The score function is set to be
s(θ, y) = (y − θ)2/2, which is the logarithmic scoring
rule for the Gaussian data. To predict at time t using the
change detection technique, we first detect changes on
the batch data Y1:t−1, and then use the estimated mean
in the last segment as the predicted value for time t.
The predicted parameter at t = 1 is randomly drawn
from the parameter space since there is no observation
yet. Fig. 9 shows the predicted mean sequences from
different prediction methods, along with the true mean
sequence, for a single realization of data shown in Fig. 1.
Since Algorithm 3 generates a predictive distribution
instead of a single value for the unknown parameter
at each time step, we use the expected value of that
distribution as our predictor in the figure. As we can see,
both kinetic prediction and classical change detection can
predict well given one abrupt change in the unknown
parameter sequence, while kinetic prediction behaves
more smoothly because it has long memories making
itself more robust to data outliers. The standard Bayesian
updating procedure fails to follow the true sequence
after the abrupt change, and its predictor converges to
(θ∗1 + θ∗T )/2. In order to further compare our kinetic
prediction and the change detection method in terms of
cumulative scores, we repeat the experiment for 10 times
for different random observation sequences, and evaluate
the “average additional score over the oracle” given by
the left-hand-side term in (5), for t = 1, . . . , T = 500.
Here, we only show results for the MW change detection
method for better visualization because its performance
is close to the adapted CUSUM. The average perfor-
mance from the repeated experiments is summarized in
Fig. 10, which shows that the average additional score
goes to zero for each prediction method, and the kinetic
prediction outperforms the change detection scheme in
that it generally attains a lower score with less variance.

In Example 2, instead of only one change point in
the Gaussian mean, the number of abrupt changes in
the true parameter sequence is set to be ⌊T (1/3)⌋ for
a given time T . The locations of the change points are
uniformly random between [2, . . . , T ], and the true mean
on each constant segment is uniformly generated from
the interval [5, 6]. Algorithm 3 is run for kinetic predic-
tion with parameter space [5, 6], α = ⌊T (1/3)⌋/(T − 1),
and the logarithmic scoring rule. The standard Bayesian
updating is also run by Algorithm 3 with η = 1 and
α = 0. Fig. 11 shows the histograms of the sampled
particles, at certain time steps, for a single realization of
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Fig. 9. Synthetic data experiment in Subsection VI-A, Example 1: comparison of different methods in sequentially predicting the Gaussian
mean sequence with one abrupt change point.

the parameter and observation sequence with T = 500
(as shown in Fig. 2). As we can see, the predictive
distributions from the kinetic prediction can quickly
concentrate around the location of the true parameter
after abrupt changes, while the standard Bayesian update
fails to do so. We also repeat the experiments for 10
times for each T = 50, 100, 150, 250, 500, and plot the
average additional score over the oracle for each T for
both the kinetic prediction and MW change detection
method in Fig. 12. Our kinetic prediction is comparable
to the change detection methods in this experiment.

B. Synthetic data experiment: abrupt changes in non-
parametric densities

The purpose of this experiment is to demonstrate the
application of kinetic prediction to nonparametric model
classes, where densities are not necessarily differentiable
and are only known to belong to the Lipschitz class. We
generate synthetic data from Example 3. A realization
of data was shown in Fig. 3. Note that in this example,
Assumption (2) is satisfied under logarithmic scoring
rule, due to the elementary inequality

| log x− log y| ≤ |x− y|
min{x, y}

for any two positive numbers x and y. By implementing
Algorithm 1 and the strategy discussed in Example 6,
we obtain Fig. 13 which shows the sequential predictive
weights and snapshots of the predictors in Theorem 2(iii)
at time t = 250, 500. As we can see from the plot,

the distributional changes in predictive weights mostly
capture the true change points (especially around t = 250
when there are sufficient data before and after that
change). To show the convergence, we also repeat the ex-
periments for different T ’s (T = 50, 100, 150, 250, 500)
and estimate the difference between the average score of
our predictor and the oracle (i.e. the left-hand-side term
in (7)). The estimates and their standard errors are shown
in Fig. 14. As our theory expects, the difference goes to
zero as T becomes large.

C. Synthetic data experiment: abrupt changes and
smooth variations in mean

The purpose of this experiment is to demonstrate the
application of kinetic prediction to parametric models
with both abrupt changes and smooth variations. We
consider the independent Gaussian model Yt ∼ N (µt, 1),
with parameter space Θ = [−10, 10]. The time-varying
means µt’s consist of four segments: first a quadratic
trend, then two linear trends with different slopes, fol-
lowed by a cosine pattern. Each switch from one segment
to another is abrupt. The mathematical formula describ-
ing the changes are

µt =


5− T−2(t− T1/2)

2 if t ≤ T1

− 7 + 60(t− T1)/T if T1 < t ≤ T2

− 7 + 20(t− T2)/T if T2 < t ≤ T3

2 + 5 sin{6π(t− T3)/(T − T3)} otherwise

where Tk
∆
= ⌊kT/4⌋ for k = 1, 2, 3.
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Fig. 10. Synthetic data experiment in Subsection VI-A, Example 1: comparison of the kinetic predictor and a change-detection predictor on
the average additional score over the oracle. The result is the average of 10 repeated experiments and the shaded region describes the +1/−1
standard errors.

We used quadratic score (Yt − θ̂t)
2/2 to evaluate

predictive performance in the algorithm. The multiplier
1/2 is not theoretically essential, but it has the natu-
ral interpretation of negative log-likelihood of Gaussian
observations with unit variance. By implementing Algo-
rithm 4, we obtain Fig. 15(a) which shows the sequential
predictive weights. As we can see from the plot, our
predictive weights capture the true trends, and switch
promptly after abrupt changes occur. Fig. 15(b) plots
our predictor versus true mean at each time step, along
with the realization of data. The prediction well matches
the truth in general. We also repeat the experiments for
different T ’s (T = 50, 100, 150, 250, 500) and estimate
the difference between the average score of our predictor
and the oracle (i.e. the left term in (5)) at the time step
t = T . The estimates and their standard errors are plotted
in Fig. 16, showing the convergence to zero.

D. Synthetic data experiment: abrupt changes and
smooth variations in time-varying autoregression

The purpose of this experiment is to demonstrate the
application of kinetic prediction to non-i.i.d. data. We
consider the time-varying autoregression in Example 4. A
realization of data was shown in Fig. 4. By implementing
Algorithm 4 with the parameter space Θ = [−1, 1], we
obtain Fig. 17(a) which shows the sequential predictive
weights at each time step. As we can see from the plot,
the masses of our predictive weights concentrate along
the true flow of parameters (autoregressive coefficients)
for t = 1, . . . , T/2. The true parameter abruptly switches
to the constant 0.8 for t > T/2, and our predictive
weights successfully capture the change shortly after-

wards. The catch-up to 0.8 is hesitating at the beginning;
but when there are sufficient data as the evidence of
switch, the masses concentrate more on 0.8 as t grows
large. Fig. 17(b) shows the true and predicted conditional
means at each time step. We can see that the prediction
matches the truth very well.

We also repeat the experiments for different T ’s
(T = 50, 100, 150, 250, 500) and estimate the difference
between the average score of our predictor and the oracle
(i.e. the left-hand-side term in (8)). The estimates and
their standard errors are shown in Fig. 18. As our theory
expects, the difference goes to zero as T becomes large.

E. Real data experiment: discovering time-varying coin-
tegration

The purpose of this experiment is to apply kinetic
prediction proposed in Section IV to discover time-
varying cointegration [55], [56] in financial applications.
The panel data we used (denoted by Y ) consist of 390
stock prices of Apple Inc. (denoted by Y1,t) and Alphabet
Inc. Class A (denoted by Y2,t), collected every half
hour starting from November 17, 2015. The data were
standardized using a mean and standard deviation that
were calculated using historical data collected before that
date. We note that linear transformations of raw data
do not cause essential difference in Algorithms 2 and
3, but they make it easier to plot. The pre-processed
data are shown in Fig. 19(a). Each of Y1,t, Y2,t is a
process integrated of order 1, according to the augmented
Dickey-Fuller test under 0.01 significance level.

Suppose that there exist two deterministic series
a0,t, a1,t with a few unknown abrupt changes, such that
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Fig. 11. Synthetic data experiment in Subsection VI-A, Example 2: predictive distribution of the Gaussian mean from kinetic prediction and
ordinary Bayesian updating at some time steps, along with the true mean marked by the black dash-dot line.

Y2,t − (a0,t + a1,tY1,t) is stationary. This time-varying
cointegration may be more reasonable than a fixed-
parameter cointegration, considering potential regime
changes in the financial market. We are primarily in-
terested in a sequential context, where the estimates of
a0,t, a1,t depend only on Y1, . . . ,Yt−1, and we hope that
“the predictive residues”

Rt
∆
= Y2,t − (â0,t + â1,tY1,t) (35)

become stationary. We first apply Algorithm 3 with the
quadratic score s : (θ, yt) 7→ (y2,t − a0 − a1y1,t)

2/2,
parameter space a0,t, a1,t ∈ [−2, 2], and default tuning
parameters as described at the beginning of Section VI.
The means and standard deviations of parameters com-
puted from our predictive distribution at each time step
are plotted in Fig. 19(c)&(d). We use those means as
â0,t, â1,t and compute the predictive residues in (35),
and plot the sequence in Fig. 19(b) (abbreviated as
“Kinetic”). For comparison, we also apply classical re-
cursive least squares method to estimate â0,t, â1,t, and
plot the corresponding predictive residues in Fig. 19(b)
(abbreviated as “RLS”). For numerical stability, all the
results are computed starting from t = 6. From Fig. 19,
we can see that the parameters undergo significant regime
changes over time, especially for the intercept term.
The residue sequence given by “Kinetic” is stationary,
while that given by “RLS” is not, according to the
Dickey-Fuller test under 0.01 significance level. Visually,
the former sequence does look more stationary as they
fluctuate more frequently around zero (marked by a black

dash).
We plot the average score

∑t
i=1R

2
i /t given by two

methods at each time step t given that T = 390
in Fig. 20(a). We also compute the average score
at the last time step, namely

∑T
t=1R

2
t /T for T =

50, 100, 150, 250, 390 (with Algorithm 3 running on cor-
responding tuning parameters), and plot the score of
“RLS” minus that of “Kinetic” in Fig. 20(b). The results
show that “Kinetic” is dominantly better than “RLS”
method also in terms of scores.

F. Real data experiment: predicting stochastic volatili-
ties

The purpose of this experiment is to apply kinetic
prediction to predict stochastic volatilities in a financial
market. Forecasting volatility plays an important role in
risk management and asset allocation. To model financial
time series with time-varying volatility, the autoregres-
sive conditional heteroskedasticity (ARCH) models [57]
and the generalized ARCH (GARCH) [58] have been
commonly adopted. We refer to [59] for an extensive
literature on stochastic volatility models.

We collected 500 daily stock prices of SPDR S&P
500 ETF (SPDR), denoted by st, from Jan 6, 2007 to 31
Dec 08. Let Yt = 102 log(st/st−1) be the so-called log-
returns (where the scaling is done for numerical conve-
nience). The squared log-returns are shown in Fig. 21(a)
in black dash. We note that the squared return on an asset
at one time step (assuming a zero mean return) can be
interpreted as a conditionally unbiased estimator of the
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Fig. 12. Synthetic data experiment in Subsection VI-A, Example 2: comparison of the kinetic predictor and a change-detection predictor on
the average additional score over the oracle, where each point was computed as the average of 10 repeated experiments and the shaded region
describes the +1/−1 standard errors.

true but unobserved conditional variance of the asset.
After some exploratory studies, we adopt the following
GARCH(1,1) as the parametric model class,

v2t = a0 + a1Y
2
t−1 + b1v

2
t−1, Yt = vtet, (36)

where et’s are i.i.d. N (0, 1) noises. In other words, the
true (but unobservable) volatility vt at each time step t
only depends on the squared observation Yt−1 and the
true volatility in the last time step. We used negative
log-likelihood as the score function. In other words,
s : (θ, yt) 7→ (log ht + h−1

t y2t )/2 is used, where ht is
the predicted volatility at time step t corresponding to
θ

∆
= [a0, a1, b1]. Here, ht can be recursively computed

using (36), θ, and v1
∆
= Y 2

1 . Rigorously speaking,
the above score is predictive log-likelihood, since ht
is computed using all the data before time step t in a
sequential setting [60]. It is worth noting that in the
volatility forecasting literature, it is also common to
write a score function in the form of L(v2t , ht), and
use volatility proxies such as the squared return Y 2

t in
place of v2t . Our scoring function is equivalent to the
so called “QLIKE” loss functions, which is proved to
be robust in the sense of [61, Definition 1]. Squared
score in the form of (Y 2

t − ht)
2 is also commonly

used, but it is more sensitive to extreme observations and
the level of volatility of returns. For other widely-used
score functions used to evaluate conditional variance
forecasting, we refer to [61] and the references therein.

We suppose that the true parameters a0,t, a1,t, b1,t
at each time step t may not be all the same (e.g.
during a financial crisis). We first apply Algorithm 3
with parameter space a0,t, a1,t, b1,t ∈ [0, 1] (which is

standard for GARCH), and default tuning parameters as
described at the beginning of Section VI. The means
and standard deviations of parameters computed from
our predictive distribution at each time step are plotted
in Fig. 21(b)(c)(d). We use those means to compute the
predictive volatilities, and plot the sequence in Fig. 21(a)
(abbreviated as “Kinetic”). For comparison, we also
apply a fixed-parameter GARCH(1,1) to estimate the
parameters at each time t, using y1, . . . , yt−1. We then
plot the corresponding predictive volatilities in Fig. 21(a)
(abbreviated as “GARCH”).

We plot the average scores of two methods at each
time step t given T = 500 in Fig. 22(a). We also
compute the average score at the last time step t = T , for
T = 50, 100, 150, 250, 500 (with Algorithm 3 running
on corresponding tuning parameters), and plot the scores
of “GARCH” minus those of “Kinetic” in Fig. 22(b).
The results show that “Kinetic” is dominantly better than
“GARCH” method in terms of scores.

One anonymous reviewer pointed out an interesting
observation that the difference between the average
scores of our method and GARCH seems to decrease to
zero (from Fig. 22), while the gap between our method
and RLS (from Fig. 20) does not decrease to zero. An
insight on why GARCH closes the gap for large T
comes from Fig. 21(b)(c)(d), which indicates that there
exists no significant changes in parameters after around
t = 50. As a result, the average performance of GARCH
becomes closer to the proposed method as time elapses.
Likewise, Fig. 19(c)(d) indicates multiple abrupt changes
throughout t = 1, . . . , 390, thus the proposed method is
constantly much better than the RLS method as shown
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Fig. 13. Synthetic data experiment in Subsection VI-B: (a) the heat map showing the sequential predictive weights (in log scale) over the
function bases at each time step, along with the true locations of abrupt changes marked in blue dashes, (b)&(c) true and predicted density
functions at t = 250 and t = 500.

Fig. 14. Synthetic data experiment in Subsection VI-B: the average score of our predictor minus the oracle for different T ’s, where each point
was computed from 10 repeated experiments and the shaded region describes the +1/−1 standard errors.

in Fig. 20.

VII. CONCLUSION

It is common to arrange economic data in the form of
a time series (which must be sequentially analyzed), with
the eventual goal of optimally predicting future values.
To handle potential unknown abrupt changes and smooth
variations in the underlying data generating processes,
we proposed a novel methodology to approach the ora-
cle predictive performance. The general idea is to first
apply an ε-net, and then properly update the predictive
weights over function bases. For the parametric case,
we also proposed a generic algorithm that directly runs

over a continuous parameter space without the need
of discretization. Moreover, to capture frequent drifts
in parameters, we extended the above methodology by
proposing the concept of “function flows”. The idea
is that smooth changes can usually be approximated
by many locally deterministic trends, such as linear
functions (in time t). Our methodology is applicable to a
wide range of model classes and scoring rules. We hope
this work sheds some new light on the relation between
inference and prediction in general as well.

Future work can be done in the following directions.
1) When we were concerned with parametric models, the
parameter space is assumed to be compact. In practice,
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Fig. 15. Synthetic data experiment in Subsection VI-C: (a) the heat map showing the sequential predictive weights (in log scale) over the
parameter bases, along with the true parameters at each time step marked in blue dashes, and (b) the true and predicted mean at each time step,
along with the observed data.

Fig. 16. Synthetic data experiment in Subsection VI-C: the average score of our predictor minus the oracle for different T ’s, where each point
was computed from 10 repeated experiments and the shaded region describes the +1/−1 standard errors.

the parameter space can be unbounded, or not known
in advance. For unbounded parameter space, a possible
solution is to transform parameters to a bounded range,
and then apply the proposed technique. For unknown
parameter space, we may perform parameter estimation
from repetitive subsampling of data, and form an em-
pirical parameter space from the estimated parameters.
Another general solution is to adaptively expand the
current parameter space as more data are observed. The
main challenge lies in the characterization of optimal
bias-variance tradeoff. 2) We believe that the existing
performance bounds can be tighter for high-dimensional
parameter space, given prior knowledge such as spar-
sity in parameter components, or patterned switching of
change points (e.g. seasonality or Markovity).

APPENDIX

APPENDIX: TECHNICAL PROOFS

Proofs for Section II

Proof of Proposition 1
Proof: The left-hand-side term in (5) is

1

T

T∑
t=1

(θ∗t − θ̂t)
2 +

1

T

T∑
t=1

2(θ∗t − θ̂t)et (A.37)

Since {2(θ∗t − θ̂t)et} is a martingale difference sequence
with bounded variance, we obtain T−1

∑T
t=1 2(θ

∗
t −

θ̂t)et →a.s. 0 by a martingale convergence theorem [62,
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Fig. 17. Synthetic data experiment in Subsection VI-D: (a) the heat map showing the sequential predictive weights (in log scale) over the
parameter bases, along with the true parameters at each time step marked in blue dashes, and (b) the true and predicted conditional mean at
each time step.

Fig. 18. Synthetic data experiment in Subsection VI-D: the average score of our predictor minus the oracle for different T ’s, where each point
was computed from 10 repeated experiments and the shaded region describes the +1/−1 standard errors.

Theorem 1]. It remains to prove that

lim inf
T→∞

T−1
T∑

t=1

(θ∗t − θ̂t)
2 > 0, a.s. (A.38)

We arbitrarily choose a fixed δ ∈ (0, |θ1 − θ2|/2). We
let T1 = ⌊T/2⌋ for simplicity. By the law of large
numbers, for all sufficiently large T , we have for all
t = ⌊3T/4⌋, . . . , T∣∣∣∣ 1T1

T1∑
i=1

Yi − θ1

∣∣∣∣ < δ, and

∣∣∣∣ 1

t− T1

t∑
i=T1+1

Yi − θ2

∣∣∣∣ < δ, a.s. (A.39)

By direct calculations and the triangle inequality, (A.39)
implies that

|θ̂t − θ2| =
∣∣∣∣12(θ1 − θ2) +

T1
T

1

T1

T1∑
i=1

(Yi − θ1)+

t− T1
T

1

t− T1

t∑
i=T1+1

(Yi − θ2)

∣∣∣∣ ≥ 1

2
|θ1 − θ2| − δ.

Therefore,

1

T

T∑
t=1

(θ∗t − θ̂t)
2 ≥ 1

T

T∑
t=⌊3T/4⌋

(θ2 − θ̂t)
2

≥ 1

4

(
1

2
|θ1 − θ2| − δ

)
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Fig. 19. Real data experiment in Subsection VI-E: (a) the preprocessed observations, (b) the cointegration residues of two prediction methods,
(c)&(d) the sequential predictive means of the intercept a0 and coefficient a1 in cointegration, along with their +1/-1 standard deviations.
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Fig. 20. Real data experiment in Subsection VI-E: (a) the average scores of two methods at each time step t for fixed T = 390, (b) the average
score of the recursive least squares method minus that of the kinetic method for different T ’s.

for all sufficiently large T almost surely. This implies
(A.38).

Proof of Theorem 1

Proof:

We first prove that for an arbitrarily given sequence of

data generating densities gt ∈ G, t = 1, . . . , T , we have

1

T

T∑
t=1

[
s(gt, Yt)− E∗{s(gt, Yt) | Y1:t−1}

]
→a.s. 0,

(A.40)

where E∗ refers to the expectation with respect to the
true joint distribution of Y1, . . . , YT . We note that the
conditioning on Y1:t−1 is to emphasize the potential
dependency of data (see Remark 2). A more rigorous no-
tation would replace s(gt, Yt) with s(gt(· | Y1:t−1), Yt).
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Fig. 21. Real data experiment in Subsection VI-F: (a) the predicted volatilities by kinetic and recursive GARCH methods, along with the
squared log returns, (b)-(d) the sequential predictive means of the three coefficients a0, a1, b1, along with their +1/-1 standard deviations.
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Fig. 22. Synthetic data experiment in Subsection VI-F: (a) the average scores of two methods at each time step t for fixed T = 500, (b) the
average score of the recursive GARCH method minus that of the kinetic method for different T ’s.

To prove (A.40), we first show that the summands in
(A.40) form a martingale difference sequence. In fact,

E∗

{
s(gt, Yt)− E∗{s(gt, Yt) | Y1:t−1}

∣∣ Y1:t−1

}
= 0

for each t = 1, 2, . . .. For a martingale dif-
ference sequence X1, X2, . . ., Kolmogorov’s strong
law of large numbers for martingales states that if∑∞

t=1 t
−2EX2

t < ∞, then T−1
∑T

t=1Xt →a.s. 0 [62],
[63]. Thus, to obtain (A.40) it is sufficient to prove
that E∗{maxg∈G s(g, Yt)

2} is upper bounded by a fixed

constant.
It follows from Assumption (2) that for some constant

cZ , EZ2
t ≤ cZ and EZt ≤

√
cZ for all t, where Zt =

Z(Yt) as defined in Assumption (2). Thus,

E∗

{
max
g∈G

|s(g, Yt)− s(g∗t , Yt)|2
}

≤ E

{
Z2
t max

g∈G
dG (g, g

∗
t )

2

}
≤ cZc

2
G . (A.41)

where cG is defined in Assumption (1). By triangle
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inequality, for any g ∈ G we have

|s(g, Yt)2 − s(g∗t , Yt)
2| ≤ |s(g, Yt)− s(g∗t , Yt)|2+
2|s(g∗t , Yt)| · |s(g, Yt)− s(g∗t , Yt)|,

It then follows from Cauchy inequality that

E∗

{
max
g∈G

|s(g, Yt)2 − s(g∗t , Yt)
2|
}

≤ 2
√

E∗|s(g∗t , Yt)|2×√
E∗

{
max
g∈G

|s(g, Yt)− s(g∗t , Yt)|2
}

≤ c′ (A.42)

where c′ ∆
= cZc

2
G +2

√
cY · cZc2G is a fixed constant, and

cY is given by Assumption (3).
Combining (A.41) and (A.42), we obtain

E∗

{
max
g∈G

s(g, Yt)
2

}
≤ E∗

{
s(g∗t , Yt)

2

}
+

E∗

{
max
g∈G

|s(g, Yt)2 − s(g∗t , Yt)
2|
}

≤ cY + c′. (A.43)

which concludes the proof for (A.40). The proof of
(10) follows directly from (A.40), E∗{s(gt, Yt)} ≥
E∗{s(g∗t , Yt)} (by the definition of proper scoring rule),
and the identity

T∑
t=1

{
s(gt, Yt)− s(g∗t , Yt)

}

=

T∑
t=1

{
s(gt, Yt)− E∗{s(gt, Yt)}

}
+

T∑
t=1

{
E∗{s(gt, Yt)} − E∗{s(g∗t , Yt)}

}
−

T∑
t=1

{
s(g∗t , Yt)− E∗{s(g∗t , Yt)}

}
.

Proofs for Section III

First, we introduce some technical lemmas.

Lemma 1. If X1, X2 are nonnegative random variables
that satisfy X1 ∼ TE(λ; a, b) and X2 ≤ cX1 almost
surely for some constant c > 0. Then

X2 ∼ TE(cλ; ca, b). (A.44)

Proof: For any constant δ > 0, we have

pr
{
X2 > ca+ δ

}
≤ pr

{
X1 > a+ δc−1

}
≤ b exp{−δ(cλ)−1}.

This concludes the proof.
In the sequel, we define g

(ε)
i , pt,i, and wt,i as they

were in Algorithm 1. We let Wt
∆
=
∑N

i=1 wt,i.

Lemma 2. Suppose that Assumptions (1), (2), (3) hold.
Suppose that Algorithm 1 is run with α = 0 and any
initial weights such that W0 ≤ 1. Then for each T ≥ 1
and any β > 0 such that T β > cGa,

T∑
t=1

N∑
i=1

pt,i s(g
(ε)
i , Yt) ≤ −1

η
log(WT ) +

η

8
T 1+2β

(A.45)

holds with probability at least 1− c1T exp(−c2T β) for
some fixed constants c1, c2 > 0 (the randomness comes
from {Yt}Tt=1).

Proof: This is a variant of Lemma 5.1 of [43]. From
Assumptions (1) (2) (3), and Lemma 1, it is easy to see
that for each t,

sup
g,g̃∈G

|s(g, Yt)− s(g̃, Yt)| ∼ TE(cGλ; cGa, b).

Define the event Et = {ω ∈ Ω : supg,g̃∈G |s(g, Yt(ω))−
s(g̃, Yt(ω))| ≤ T β}. By Definition (2), if T β > cGa,

pr(Et) ≤ b exp

[
−{T β − cGa}(cGλ)−1

]
where Et denotes the complement of event Et. This
implies that the event ∩T

t=1Et holds with probability
at least 1 − c1T exp(−c2T β) for some fixed constants
c1, c2 > 0.

Now we place ourselves on ∩T
t=1Et. It remains to

prove (A.45). For this we could directly apply the prov-
ing techniques as in [43, Lemma 5.1] by treating each
g
(ε)
i as an expert and s(g(ε)i , Yt) as the loss function for

the expert, which gives

T∑
t=1

N∑
i=1

pt,i s(g
(ε)
i , Yt) ≤ −1

η
log(WT )+

ηT

8

[
sup

t=1,...,T

{
sup
g∈G

s(g, Yt)− inf
g∈G

s(g, Yt)
}]2

.

On the events ∩T
t=1Et, we have that for all t =

1, . . . , T ,

sup
g∈G

s(g, Yt)− inf
g∈G

s(g, Yt) = sup
g,g̃∈G

|s(g, Yt)−s(g̃, Yt)| ≤ T β ,

which concludes the proof.

Lemma 3. Suppose that Assumptions (1), (2), (3)
hold. Suppose the true data generating density sequence
{g∗t }Tt=1 has at most MT − 1 abrupt changes, and let
m = 1, . . . ,MT index the constant stages {g∗t }Tt=1.
Denote the time index set of the m-th stage as Dm =
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{tm−1, tm−1 + 1, · · · , tm − 1}, where 1 < t1 < t2 <
· · · < tMT−1 are the changes time points, and we define
t0 = 1 and tMT

= T + 1. For each constant stage m,
let the true data generating density be g∗(m), and the

closest function base be g(ε)(m). In other words, g∗t = g∗(m)

whenever t ∈ Dm, and that dG (g
∗
(m), g

(ε)
(m)) ≤ ε. Then

if we run Algorithm 1 with α ∈ (0, 1) and any initial
weights such that W0 ≤ 1, for each T ≥ 1 and any
β > 0 such that T β > cGa, we will have

T∑
t=1

N∑
i=1

pt,i s(g
(ε)
i , yt)−

MT∑
m=1

∑
t∈Dm

s(g
(ε)
(m), Yt)

≤ MT

η
logN − 1

η
log{αMT−1(1− α)T−MT }+ η

8
T 1+2β

holds with probability at least 1 − c1T exp(−c2T β),
where c1, c2 are the same as those defined in Lemma 2.

Proof: Lemma 3 can be proved using Lemma 2 and
a direct adaptation of [43, Theorem 5.2].

Proof of Theorem 2
Proof:

(i) With the same assumptions and notations as in
Lemma 3, we obtain

MT∑
m=1

∑
t∈Dm

s(g
(ε)
(m), Yt)−

T∑
t=1

s(g∗t , Yt)

=

MT∑
m=1

∑
t∈Dm

{s(g(ε)(m), Yt)− s(g∗(m), Yt)}

≤
MT∑
m=1

∑
t∈Dm

Ztε ≤ Z(T )Tε (A.46)

where Zt = Z(Yt) ∼ TE(λ; a, b) are nonnegative
random variables defined in Assumption (2), and
Z(T ) ∆

= max{Zt : t = 1, . . . , T}. Simple calcula-
tion gives that

pr(Z(T ) > T β) = pr

(
∪T
t=1

{
Zt > T β

})
≤

T∑
t=1

pr(Zt > T β)

≤ Tb exp{−(T β − a)λ−1} (A.47)

for all T > a−β . From (A.47), the right-hand side
of (A.46) is less than T 1+βε with probability at
least 1−c3T exp(−c4T β) for some fixed constants
c3, c4 > 0. Combining this with Lemma 3, we

obtain that
T∑

t=1

N∑
i=1

pt,i s(g
(ε)
i , yt)−

T∑
t=1

s(g∗t , yt)

=
T∑

t=1

N∑
i=1

pt,i s(g
(ε)
i , yt)−

MT∑
m=1

∑
t∈Dm

s(g
(ε)
(m), Yt)

+

MT∑
m=1

∑
t∈Dm

s(g
(ε)
(m), Yt)−

T∑
t=1

s(g∗t , Yt)

≤ MT

η
logN − 1

η
log{αMT−1(1− α)T−MT }+

η

8
T 1+2β + T 1+βε (A.48)

holds with probability at least 1 −
c1T exp(−c2T β) − c3T exp(−c4T β) ≥
1 − C1T exp(−C2T

β), where c1, c2 were defined
in Lemma 3, and C1

∆
= c1+ c3, C2

∆
= min{c2, c4}.

Choose α and η as in (14), then the inequality
(A.48) becomes (15).

(ii) We arbitrarily pick up εT that satisfies (13), and
apply an εT -net on G, denoted by {g(ε)i : i =
1, . . . , N} with logN = HG(εT ). Recall the binary
entropy inequality

H(q) ≤ 2 log(2)
√
q(1− q) ≤ 2 log(2)

√
q.
(A.49)

Thus, the right hand side of inequality (15) divided
by T equals√

2−1T−1+2βQT,N + T βεT ≤
√
2−1×√

T−1+2βMTHG(εT ) + 2 log(2)T−1/2+2βM
1/2
T +

T βεT (A.50)

which converges to zero given (13). Therefore, (i)
implies that

1

T

T∑
t=1

{ N∑
i=1

pt,i s(g
(ε)
i,T , Yt)− s(g∗t , Yt)

}
≤ o(1)

holds with probability at least 1 −
C1T exp(−C2T

β).
From

∑∞
T=1 C1T exp(−C2T

β) < ∞ and using
Borel-Cantelli lemma, we can prove (16).

(iii) The result follows directly from from (16) and the
convexity

s(ĝt, Yt) ≤
N∑
i=1

pt,i s(g
(ε)
i,T , Yt),

combined with Theorem 1.
(iv) First, we note that

Bt
∆
= s(g(ε)

Jt,T
, Yt)−

N∑
i=1

pt,i s(g
(ε)
i,T , Yt)
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is a martingale difference sequence with respect to
(Jt, Yt). We already proved (A.43) which implies
that E|Bt| < ∞. Because Jt is independently
generated from {1, . . . , N} with probability pt,i
which is determined before time t, we have

E∗(Bt | J1:t−1, Y1:t−1) = E∗(Bt | Y1:t−1) =

E∗

{[
s(g(ε)

Jt,T
, Yt)−

N∑
i=1

pt,i s(g
(ε)
i,T , Yt)

]
| Y1:t−1

}
= 0.

Next, we prove that E(Bt | J1:t−1, Y1:t−1)
2

is upper bounded by a constant. Recall that
pt,i, i = 1, . . . , N are in the σ-field generated by
(J1:t−1, Y1:t−1). We have

E∗(Bt | J1:t−1, Y1:t−1)
2

= var(Bt | J1:t−1, Y1:t−1) = var(Bt | Y1:t−1)

= E∗

{
var(Bt | Y1:t) | Y1:t−1

}
+

var

{
E∗(Bt | Y1:t) | Y1:t−1

}
(A.51)

= E∗

{
var(Bt | Y1:t) | Y1:t−1

}
= E∗

{ N∑
j=1

pt,j

(
s(g

(ε)
j , Yt)−

N∑
i=1

pt,i s(g
(ε)
i , Yt)

)2

| Y1:t−1

}

≤
N∑
j=1

pt,j × 2E∗

{
s(g

(ε)
i , Yt)

2+

( N∑
i=1

pt,i s(g
(ε)
i , Yt)

)2

| Y1:t−1

}
≤ 4E∗

{
max
g∈G

s(g, Yt)
2

}
≤ C (A.52)

for some constant C, where (A.51) is from the
Eve’s law, and (A.52) is due to the bound in (A.43).
Finally, by a martingale convergence theorem [62,
Theorem 1], we have T−1

∑T
t=1Bt →a.s. 0. Com-

bining this with (16) and Theorem 1, we obtain
(18).

Proof of Proposition 2
Proof:

We prove by construction. Suppose that the distribu-
tions of Y1:T (denoted by P1) contains two abrupt change
points 1 < t1 < t2 < T such that Yt1+1, . . . , Yt2 are
i.i.d. distributed, with distributions different from that of
Yt1 and Yt2+1. Now consider the distribution of Y1:T

(denoted by P2) that replace the distribution of each
Yt1+1, . . . , Yt2 with that of Yt1 . We let #(Pk) denote the
number of change points of the distribution for k = 1, 2.
Let ψ(Y1:T ) denote the selected number of change points
by any selection procedure (denoted by ψ). Using Le
Cam’s method, we obtain

max
k=1,2

Pk

{
#(Pk) ̸= ψ(Y1:T )

}
≥ 1

2
− 1

2
dTV(P1, P2)

(A.53)

where dTV denotes the total variation distance. Pinsker’s
inequality gives

dTV(P1, P2) ≤
√

1

2
dKL(P1, P2)

=

√
1

2
(t2 − t1)dKL(g∗t2 , g

∗
t1). (A.54)

where dKL denotes the Kullback-Leibler divergence.
If procedure ψ is consistent in selecting the number
of abrupt change points, then maxk=1,2 Pk

{
#(Pk) ̸=

ψ(Y1:T )
}
→ 0. Inequalities (A.53) and (A.54) imply that

consistent selection is not possible as long as

(t2 − t1) dKL(g
∗
t2 , g

∗
t1) ≤ q < 2 (A.55)

for some positive constant q. Since condition (A.55) does
not violate the assumptions of Theorem 2, the proof is
complete.

Proofs for Section IV

We first introduce some helpful technical lemmas.

Lemma 4. ( [43, Lemma A.1]) Let X be a random
variable with a ≤ X ≤ b. Then for any s ∈ R,

lnE[esX ] ≤ sE[X] +
s2(b− a)2

8
.

Lemma 5. Suppose that Θ ∆
= [a, b] ⊆ R is a compact

interval. For any function f(x) : Θ → R that is Lipschitz
continuous, i.e.

∀x1, x2 ∈ Θ, |f(x1)− f(x2)| ≤ D · |x1 − x2|

where D > 0 is the Lipschitz constant, we have∫
Θ

e−f(x)dx ≥ e
−min

x∈Θ
f(x)

· |Θ| · r

where |Θ| ∆
=
∫
Θ
dx = (b− a), and

r
∆
=

1− exp(−D|Θ|)
D|Θ|

∈ (0, 1).

Proof: Since Lipschitz continuity implies continuity
and the function f(x) is defined on a compact space, the
minimum value is always attained (by the Extreme Value
Theorem).
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First consider the case when min
x∈Θ

f(x) = f(a). Parti-

tion the interval [a, b] evenly into N pieces, with each
piece of length ϵ = |Θ|/N . Denote the end points of the
small intervals as a = x0 < x1 < · · · < xN = b. By
Riemann integration theory, we have∫

Θ

e−f(x)dx = lim
ϵ→0

N−1∑
i=0

ϵ · e−f(xi)

Using the Lipschitz condition that is satisfied by f , we
have that

e−f(xi) = e−f(x0)ef(x0)−f(xi) ≥ e−f(x0) · e−D|xi−x0|

= e−f(x0) · e−D·iϵ.

Therefore, we have
N−1∑
i=0

ϵ · e−f(xi) ≥ ϵ · e−f(x0)
N−1∑
i=0

e−D·iϵ

= ϵ · e−f(a) 1− e−D·Nϵ

1− e−D·ϵ

= ϵ · e−f(a) 1− e−D·|Θ|

1− e−D·ϵ .

Taking the limit as ϵ→ 0 on both sides, we obtain∫
Θ

e−f(x)dx ≥e−f(a)(1− e−D·|Θ|) lim
ϵ→0

ϵ

1− e−D·ϵ

=e−f(a) 1− e−D·|Θ|

D

by L’Hopital’s rule. By assumption min
x∈Θ

f(x) = f(a),
hence the lemma is proved for this case.

For the case when min
x∈Θ

f(x) = f(b), the proof is
similar.

Finally consider the situation where we have
min
x∈Θ

f(x) = f(c) with some c ∈ (a, b). Let Θ1
∆
= [a, c]

and Θ2
∆
= [c, b]. We already proved that∫

Θ1

e−f(x)dx ≥e−f(c) 1− e−D·|Θ1|

D
,∫

Θ2

e−f(x)dx ≥e−f(c) 1− e−D·|Θ2|

D
.

By adding them, we have∫
Θ

e−f(x)dx ≥e−f(c) 2− e−D·|Θ1| − e−D·|Θ2|

D

Let g(c) = e−D·|Θ1| + e−D·|Θ2|, where |Θ1| = (c − a)
and |Θ2| = (b− c). Direct calculations show that g(c) is
convex in c ∈ [a, b]. So we have

g(c) ≤ g(a) = g(b) = 1 + e−D·|Θ|

Therefore, we still obtain∫
Θ

e−f(x)dx ≥ e−f(c) 1− e−D·|Θ|

D
,

where f(c) = min
x∈Θ

f(x), and this is the same as the
inequality stated in the lemma.

Furthermore, we can easily show that r → 1 whenever
D|Θ| → 0, and r → 0 whenever D|Θ| → ∞, and that r
is a decreasing function in D|Θ|.

Lemma 6. Suppose that Θ = Θ1 × Θ2 × · · · × Θn ⊆
Rn, where each Θj is a one-dimensional closed interval:
Θj = [θj , θj ] ∈ R, j = 1, . . . , n. For any function f(x) :
Θ → R that is Lipschitz continuous with D > 0 is the
Lipschitz constant, i.e.

∀x1,x2 ∈ Θ, |f(x1)− f(x2)| ≤ D · ∥x1 − x2∥2
we have ∫

Θ

e−f(x)dx ≥ e
−min

x∈Θ
f(x)

· |Θ| · r(n)

where |Θ| ∆
=
∫
Θ
dx =

∏n
j=1 |Θj | =

∏n
j=1(θj − θj) is

the Lebesgue measure of the hypercube Θ, and

r(n)
∆
=

n∏
j=1

1− exp(−D|Θj |)
D|Θj |

∈ (0, 1).

Proof: Since Lipschitz continuity implies continuity
and the function f(x) is defined on a compact space,
the minimum value can always be attained from the
Extreme Value Theorem. Let x∗ = [x∗1, x

∗
2, · · · , x∗n]T =

argminx∈Θ f(x).
First, for dimension j = 1, . . . , n, we divide Θj into

Nj pieces evenly with each piece having length ϵj =
|Θj |/Nj . Denote the end points of the small intervals in
dimension j as θj = x

(0)
j < x

(1)
j < · · · < x

(Nj)
j = θj .

Then by Riemann integration formula, we have∫
Θ

e−f(x)dx = lim
ϵ1→0

lim
ϵ2→0

· · · lim
ϵn→0

(ϵ1ϵ2 · · · ϵn)

N1∑
i1=1

N2∑
i2=1

· · ·
Nn∑
in=1

e−f
(
[x

(i1)
1 ,x

(i2)
2 ,··· ,x(in)

n ]T
)
.

Now fix i2 to in, only let i1 vary, from lemma 5 we have

lim
ϵ1→0

ϵ1

N1∑
i1=1

e−f
(
[x

(i1)
1 ,x

(i2)
2 ,··· ,x(in)

n ]T
)

≥ e−f
(
[x∗

1 ,x
(i2)
2 ,··· ,x(in)

n ]T
)
· 1− e−D|Θ1|

D
.

This is because the function f(·) above can be seen
as a univariate function f1(·) : Θ1 → R, and
e−minx1∈Θ1 f1(x1) ≥ e−f1(x

∗
1). Then we can fix i3 to in,

and only let i2 vary and apply the same reasoning. By
repeated application of this procedure, we conclude that∫

Θ

e−f(x)dx ≥ e−f(x∗)

[ n∏
j=1

1− e−D|Θj |

D|Θj |

]
|Θ|

which is exactly the result in the lemma.
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Next we start the analysis of Algorithm 2. We first in-
troduce some additional notations. Let lt(·) be a function
of θ after yt is revealed, given by lt(θ) = s(θ, yt). We
define L(s,t](·) =

∑t
τ=s+1 lτ (·) as the partial cumulative

score function, and define L[s,t](·), L[s,t)(·) similarly.

Lemma 7. Assume that the parameter space Θ = Θ1 ×
Θ2×· · ·×Θn ⊆ Rn is an n−dimensional cube, and the
score functions lt(θ) : Θ → R are Lipschitz continuous
uniformly over t = 1, . . . , T , with the common Lipschitz
constant d > 0. Then for Algorithm 2, we have∫

Θ

f̃t(θ)dθ ≥ max
θ∈Θ

f̃t(θ) · r(n)t · |Θ| (A.56)

for all t = 1, 2, . . . , T , where

r
(n)
t =

n∏
j=1

1− exp(−ηtd|Θj |)
ηtd|Θj |

∈ (0, 1) (A.57)

for all t = 1, . . . , T . Moreover, {r(n)t }Tt=1 is a decreasing
sequence in t.

Proof: Let gs,t(θ) = e
−η

t∑
i=s

li(θ)
, θ ∈ Θ, s, t ∈

{1, . . . , T} and s ≤ t. We first show that for any

t ∈ {1, . . . , T}, f̃t(θ) may be written as
t∑

s=1
Cs,tgs,t(θ)

where Cs,t ≥ 0 are constants. To prove this, we first start
with

f̃1(θ) = f0(θ)e
−ηl1(θ) = e−ηl1(θ) = g1,1(θ)

with C1,1 = 1. Then suppose f̃t(θ) =
t∑

s=1
Cs,tgs,t(θ)

(where Cs,t > 0) is true for some t = 1, . . . , T . From
the procedure (20) of Algorithm 2, we have

ft(θ) = (1− α)f̃t(θ) +At

where At = α|Θ|−1
∫
Θ
f̃t(θ̃)dθ̃ is a constant regardless

of θ (which only depends on y1:t through the score
function). Then from procedure (19), we obtain

f̃t+1(θ) =ft(θ) · e−ηlt+1(θ)

=(1− α)f̃t(θ)e
−ηlt+1(θ) +Ate

−ηlt+1(θ)

=(1− α)

t∑
s=1

Cs,tgs,t(θ) · e−ηlt+1(θ)+

Atgt+1,t+1(θ)

=(1− α)

t∑
s=1

Cs,tgs,t+1(θ) +Atgt+1,t+1(θ)

=
t+1∑
s=1

Cs,t+1gs,t+1(θ)

where

Cs,t+1 =

{
(1− α)Cs,t if s ≤ t

At if s = t+ 1
.

Therefore, we have proved by mathematical induction

that for all t = 1, . . . , T , f̃t(θ) =
t∑

s=1
Cs,tgs,t(θ) with

constants Cs,t > 0 given by the recursion above.
Now, since li(θ) is Lipschitz continuous with Lipschitz

constant being d (by assumption), η
t∑

i=s

li(θ) is also Lip-

schitz continuous with Lipschitz constant η(t− s+ 1)d.
Applying Lemma 6, we obtain∫

Θ

gs,t(θ)dθ ≥ max
θ∈Θ

gs,t(θ) · r(n)s,t · |Θ|

with

r
(n)
s,t

∆
=

n∏
j=1

1− exp(−η(t− s+ 1)d|Θj |)
η(t− s+ 1)d|Θj |

∈ (0, 1).

Thus, we obtain∫
Θ

f̃t(θ)dθ =

∫
Θ

t∑
s=1

Cs,tgs,t(θ)dθ

=

t∑
s=1

Cs,t

∫
Θ

gs,t(θ)dθ

≥
t∑

s=1

Cs,t max
θ∈Θ

gs,t(θ)r
(n)
s,t |Θ|

=
t∑

s=1

max
θ∈Θ

{Cs,tgs,t(θ)}r(n)s,t |Θ|

≥
(

min
s=1,...,t

r
(n)
s,t

)
·

t∑
s=1

max
θ∈Θ

{Cs,tgs,t(θ)}|Θ|

≥
(

min
s=1,...,t

r
(n)
s,t

)
·max
θ∈Θ

t∑
s=1

[Cs,tgs,t(θ)]|Θ|

=max
θ∈Θ

f̃t(θ) · r(n)t · |Θ|

where

min
s=1,...,t

r
(n)
s,t = r

(n)
1,t = r

(n)
t .

This is true for any t = 1, . . . , T , and it is easy to verify
that the sequence {r(n)t }Tt=1 is a monotonically decreas-
ing sequence with lim

t→0
r
(n)
t = 1 and lim

t→∞
r
(n)
t = 0.

Lemma 8. Under the same assumptions as in Lemma 7,
for Algorithm 2, for all s, t ∈ {0, 1, . . . , T} and t ≥ s+1,
we have

f̃t(θ)

fs(θ)
≥
[
(1− α) + αr

(n)
T

]t−s−1

e−η
∑t

i=s+1 li(θ)

≥(1− α)t−s−1e−η
∑t

i=s+1 li(θ),

where r(n)T was defined in (A.57).
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Proof: Using the result of Lemma 7, we have

ft(θ) =(1− α)f̃t(θ) +
α

|Θ|

∫
Θ

f̃t(θ̃)dθ̃

≥(1− α)f̃t(θ) +
α

|Θ|

∫
Θ

max
θ∈Θ

f̃t(θ) · r(n)t · |Θ|

≥{(1− α) + αr
(n)
t }f̃t(θ)

={(1− α) + αr
(n)
t }ft−1(θ)e

−ηlt(θ).

Since ft(θ) > 0 almost surely for all θ ∈ Θ and t =
0, 1, . . . (from the proof of Lemma 7), we have

ft(θ)

ft−1(θ)
≥ [(1− α) + αr

(n)
t ]e−ηlt(θ).

When t ≥ s+ 2, by applying the inequality recursively,
we have

ft−1(θ)

fs(θ)
≥

t−1∏
i=s+1

[(1− α) + αr
(n)
i ]e−ηL(s,t−1](θ).

It follows that

f̃t(θ)

fs(θ)
=
ft−1(θ) · e−ηlt(θ)

fs(θ)

≥
t∏

i=s+1

[(1− α) + αr
(n)
i ]e−ηL(s,t](θ).

When t = s+ 1, we also have

f̃t(θ)

fs(θ)
= e−ηlt(θ) = e−ηL(s,t](θ).

Finally, the proof is complete by using the fact that
r
(n)
i ≥ r

(n)
T > 0 for all i = 1, . . . , T .

Lemma 9. Under the same assumptions as in Lemma 7,
for Algorithm 2, for all θ, θ̃ ∈ Θ and t = 1, 2, . . . , T , we
have

ft(θ)

f̃t(θ̃)
≥ αr

(n)
t , (A.58)

where r(n)t was defined in (A.57).

Proof: From the mixing step (20) and Lemma 7, we
have

ft(θ) ≥α
∫
Θ
f̃t(θ̃)dθ̃

|Θ|
≥α · r(n)t ·max

θ∈Θ
f̃t(θ) ≥ α · r(n)t · f̃t(θ̃)

for any θ̃ ∈ Θ.

Proof of Theorem 3
Proof: Under the assumptions of Theorem 3, the

assumptions of Lemma 7 hold with probability at least
1− bT exp

[
−(d− a)λ−1

]
; we focus on the events that

those assumptions hold.

First, we note that

∫
Θ

ft(θ)dθ =(1− α)

∫
Θ

f̃t(θ)dθ + α

∫
Θ
f̃t(θ̃)dθ̃

|Θ|

∫
Θ

dθ

=(1− α)

∫
Θ

f̃t(θ)dθ + α

∫
Θ

f̃t(θ̃)dθ̃

=

∫
Θ

f̃t(θ)dθ.

Denote Zt
∆
=

∫
Θ
ft(θ)dθ =

∫
Θ
f̃t(θ)dθ. Then by

Lemma 4,

ln
Zt

Zt−1
= ln

∫
Θ
f̃t(θ)dθ∫

Θ
ft−1(θ)dθ

= ln

∫
Θ
ft−1(θ)e

−ηlt(θ)dθ∫
Θ
ft−1(θ)dθ

= ln

∫
Θ

pt(θ)e
−ηlt(θ)dθ = lnEpt [e

−ηlt(θ)]

≤− ηEpt [lt(θ)] +
η2
(
supθ,θ̃∈Θ |lt(θ)− lt(θ̃)|

)2
8

≤− ηl̄t(θ) +
η2(d∆)2

8

where l̄t(θ)
∆
= Ept [lt(θ)] = s̄(θ, yt), and ∆

∆
=

supθ,θ̃∈Θ∥θ − θ̃∥2 in the theorem. By telescoping, we
obtain

ln
ZT

Z0
≤ −η

T∑
t=1

l̄t(θ) +
η2T (d∆)2

8
, (A.59)

and lnZ0 = ln
∫
Θ
1dθ = ln |Θ|.

Next, suppose that the sequence {θ∗t }Tt=1 contains k ∆
=

MT −1 abrupt switches. We denote the change locations
and two endpoints by 0 = t0 < t1 < t2 < · · · < tk+1 =
T . Let {θt1 , θt2 , · · · , θtk+1

} be the constant parameters
in the k+1 time segments, namely θ∗t = θtj for tj−1 <
t ≤ tj , j = 1, 2, . . . , k + 1. Note that we allow that
θti+1 = θti for some i, whenever the sequence {θ∗t }Tt=1

has number of switches less than k. Then we have

f̃tk+1
(θtk+1

) =f̃t1(θt1)
k∏

i=1

f̃ti+1(θti+1)

f̃ti(θti)

=f0(θt1)
f̃t1(θt1)

f0(θt1)

k∏
i=1

fti(θti+1)

f̃ti(θti)

f̃ti+1(θti+1)

fti(θti+1)
.

Applying the results of Lemma 8 and Lemma 9, we
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obtain

f̃T (θ
∗
T ) = f̃tk+1

(θtk+1
)

≥ 1 · (1− α+ αr
(n)
T )t1−1 · e−η

∑t1
j=1 lj(θt1 )·

k∏
i=1

[
αr

(n)
ti · (1− α+ αr

(n)
T )ti+1−ti−1e−η

∑ti+1
j=ti+1 lj(θti+1

)

]

= (1− α+ αr
(n)
T )tk+1−(k+1) · αk ·

( k∏
i=1

r
(n)
ti

)
· e

−η
T∑

t=1
lt(θ

∗
t )

= (1− α)T−k−1αk ·
(
1 +

α

1− α
r
(n)
T

)T−k−1

·
( k∏

i=1

r
(n)
ti

)
·

e
−η

T∑
t=1

lt(θ
∗
t )
.

Applying Lemma 7, we obtain

ZT =

∫
Θ

f̃T (θ)dθ ≥r(n)T |Θ|max
θ∈Θ

f̃T (θ)

≥r(n)T |Θ|f̃T (θ∗T ),

which implies

ln
ZT

Z0
= lnZT − ln |Θ| ≥ ln r

(n)
T + ln f̃T (θ

∗
T )

≥ (T − k − 1) ln(1− α) + k lnα+

(T − k − 1) ln

(
1 +

α

1− α
r
(n)
T

)
+

k+1∑
i=1

ln r
(n)
ti − η

T∑
t=1

lt(θ
∗
t ). (A.60)

By combining (A.59) and (A.60), and using the fact that
{r(n)t }Tt=1 is a decreasing sequence, we obtain the bound
in (21).

Proof of Corollary 1.
Proof:

(i) This is a restatement of Theorem 1 in the paramet-
ric case. Proof is similar to that of Theorem 1.

(ii) From the results of Theorem 3 and Proposition 3,
we know that under the assumptions here, we have

1

T

{ T∑
t=1

s̄(θ, Yt)−
T∑

t=1

s(θ∗t , Yt)

}
≤ 1

TηT

[
(T − 1)H

(
MT − 1

T − 1

)
−MT ln(r

(n)
T )

]
+

ηT (d∆)2

8

holds with probability at least 1 −
bT exp

[
−(d− a)λ−1

]
. Denote right-hand-side

bound above as BT , and the event
{
ω ∈ Ω :

1
T

{∑T
t=1 s̄(θ, Yt) −

∑T
t=1 s(θ

∗
t , Yt)

}
≤ BT

}
as

AT . Let d = dT = O(T δ) with δ ∈ (0, β/2). First
we have

ηT (dT supθ,θ̃∈Θ∥θ − θ̃∥2)2

8
= O(T−βT 2δ)

= O(T−2(β/2−δ))

= o(1),

H(
kT
T − 1

) = O

(
H(T γ−1)

)
= O

(
T γ−1 ln(T 1−γ) + o(1)

)
= O

(
T γ−1 ln(T 1−γ)

)
.

Since

ln(r
(n)
T ) =

n∑
j=1

{
ln
(
1− exp(−ηTTdT |Θj |)

)
−

ln
(
ηTTdT |Θj |

)}
and ηTTdT = O(T 1+δ−β) → ∞ as T → ∞, we
have

ln(r
(n)
T ) = −

n∑
j=1

ln(O(T 1+δ−β))

= −o(T 1+δ−β)

as n is a constant. Then we obtain

BT = O

{
T β+γ−1 ln(T 1−γ) + T β+γ−1 ln(T 1−β+δ)

}
+ o(1) = o(1).

since β + γ < 1. Therefore AT =

{
ω ∈ Ω :

1
T

{∑T
t=1 s̄(θ, Yt)−

∑T
t=1 s(θ

∗
t , Yt)

}
≤ o(1)

}
, and

P(AT ) ≥ 1 − bT exp
[
−(dT − a)λ−1

]
. Further-

more, let ĀT be the complement event of AT , we
have

∞∑
T=1

P(ĀT ) ≤
∞∑

T=1

bT exp
[
−(dT − a)λ−1

]
=

∞∑
T=1

O(T exp(−T δ)) <∞.

So by Borel-Cantelli lemma, we have that
P(lim supT→∞ ĀT ) = 0, so P(lim infT→∞AT ) =
1, which means from some time point on,
1
T

{∑T
t=1 s̄(θ, Yt) −

∑T
t=1 s(θ

∗
t , Yt)

}
≤ o(1) will
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be true for all the following T ’s almost surely.
Therefore we can conclude that

lim sup
T→∞

1

T

{ T∑
t=1

s̄(θ, Yt)−
T∑

t=1

s(θ∗t , Yt)

}
≤ 0 a.s.

(iii) If the scoring rule is convex, from Jensen’s inequal-
ity we will have

s(θ̂t, Yt) ≤ s̄(θ, Yt).

Then from the result in part (ii), we obtain

lim sup
T→∞

1

T

{ T∑
t=1

s(θ̂t, Yt)−
T∑

t=1

s(θ∗t , Yt)

}
≤ 0 a.s.

Furthermore from the result in part (i), we have

lim inf
T→∞

1

T

{ T∑
t=1

s(θ̂t, Yt)−
T∑

t=1

s(θ∗t , Yt)

}
≥ 0 a.s.

Because lim sup(·) ≥ lim inf(·), in this case they
must be equal and both equal to the limit. So we
conclude

lim
T→∞

1

T

{ T∑
t=1

s(θ̂t, Yt)−
T∑

t=1

s(θ∗t , Yt)

}
= 0 a.s.

(iv) The proof is similar to that of Theorem 2(iv).
Basically, from Martingale convergence theorem
we obtain

1

T

{ T∑
t=1

s(θ̂t, Yt)−
T∑

t=1

s̄(θ, Yt)

}
−→
T→∞

0 a.s.

which gives the result.

Proofs for Section V

Proof of Theorem 4
Proof:

(i) For notational simplicity, we shall write dΘ(0, ε) =
ε1/u as δ. Let Lm, Dm,m = 1, . . . ,MT denote
the linear functions and segments that achieve the
minimum in (28). We first prove the existence of
fi1 , . . . , fim ∈ F such that

MT∑
m=1

∑
t∈Dm

s(fim(t), Yt) ≤
T∑

t=1

s(θ∗t , Yt) + 2T 2+βε+

T β∆T

holds with high probability. Suppose that the linear
function Lm(t) for t ∈ Dm has slope ζ and starts
with value Lm(tm−1+1) = Lm(tm−1)+ζ. Without

loss of generality, suppose that ζ > 0. There exist
positive integers km, nm ≤ Nε such that

kmδ ≤ ζ < (km + 1)δ, and
Lm(tm−1)− δ ≤ θ(nm+kmtm−1) mod Nε

< Lm(tm−1). (A.61)

We choose im such that fim is the parameter flow
that maps t to (nm + kmt) mod Nε. In particular,
we obtain from (A.61) that

dΘ(kmδ, ζ) < ε,

dΘ(fim(tm−1), Lm(tm−1)) < ε. (A.62)

The inequality (A.62) means that the starting point
(resp. the slope) of the linear trend in Dm can be
approximated by a quantizer (resp. linear flow over
the quantizers), up to ε-error. Since Lm(t) ∈ Θ for
all t ∈ Dm, the inequalities in (A.61) imply

fim(t) = fim(tm−1) + (t− tm−1)kmδ (A.63)

for all t ∈ Dm. Therefore, we have from (A.62)
and (A.63) that

dΘ(fim(t), Lm(t)) < (t− tm−1 + 1)ε (A.64)

for all t ∈ Dm. For illustration, a list of the above
notation is summarized in Table I. The same bound
(A.64) applies for the cases ζ = 0 and ζ < 0.

TABLE I
SOME NOTATION USED IN THE PROOF OF (I)

t tm−1 + 1 · · · tm

θn+kt θn+ktm−1
+ kδ · · · θn+ktm−1

+ (tm − tm−1)kδ

Lm(t) Lm(tm−1) + ζ · · · Lm(tm−1) + (tm − tm−1)ζ

θ∗t θ∗tm−1+1 · · · θ∗tm

Using Assumption (2′′) and inequality (A.64), we
obtain
MT∑
m=1

∑
t∈Dm

s(fim(t), Yt)−
T∑

t=1

s(θ∗t , Yt)

=

MT∑
m=1

∑
t∈Dm

{s(fim(t), Yt)− s(θ∗t , Yt)}

≤
MT∑
m=1

∑
t∈Dm

Zt dΘ(fim(t), θ∗t )

≤ Z(T )
∑

t∈Dm

(
dΘ(fim(t), Lm(t)) + dΘ(Lm(t), θ∗t )

)

= Z(T )
MT∑
m=1

∑
t∈Dm

(t− tm−1 + 1)ε+

Z(T )∆T . (A.65)
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where Z1, . . . , ZT ∼ TE(λ; a, b) are independent
random variables, and Z(T ) ∆

= maxt=1,...,T Zt. By
similar arguments as in the proof of Theorem 2(i),
we obtain from (A.65) and elementary inequalities
that

MT∑
m=1

∑
t∈Dm

s(fim(t), Yt)−
T∑

t=1

s(θ∗t , Yt)

< 2T 2+βε+ T β∆T (A.66)

with probability at least 1 − c3T exp(−c4T β) for
some fixed constants c3, c4 > 0.
Finally, we define pF

t by

pF
t,n = (

Nε∑
j=1

wF
t−1,j)

−1wF
t−1,n, n = 1, . . . , N,

which denote the normalized predictive weights
over N parameter flows. By the definitions of pt

and pF
t , we have for each t that

Nε∑
n=1

pt,n s(θ
(ε)
n , Yt) =

N∑
n=1

pF
t,n s(fn(t), Yt).

(A.67)

Combining (A.66) and (A.67), and using an adap-
tation of Lemma 3 (for the flows instead of bases),
we obtain that
Nε∑
n=1

pt,n s(θ
(ε)
n , Yt)−

T∑
t=1

s(θ∗t , Yt)

=

{ N∑
n=1

pF
t,n s(fn(t), Yt)−

MT∑
m=1

∑
t∈Dm

s(fim(t), Yt)

}

+

{MT∑
m=1

∑
t∈Dm

s(fim(t), Yt)−
T∑

t=1

s(θ∗t , Yt)

}
≤ MT

η
logN − 1

η
log{αMT−1(1− α)T−MT }+

η

8
T 1+2β + 2T 2+βε+ T β∆T (A.68)

holds with probability at least

1− c1T exp(−c2T β)− c3T exp(−c4T β)

≥ 1− C1T exp(−C2T
β)

where C1
∆
= c1 + c3, C2

∆
= min{c2, c4}. Choose α

and η as in (14), inequality (A.68) implies (29).

(ii) By inequality (A.50) and some calculations, the
right hand side of inequality (29) is o(T ) as long
as

MT log T ν/u

T 1−2β
+

MT

T 1−4β
+ T 1+β−ν +

∆T

T 1−β
= o(1)

as T → ∞. This can be satisfied by assumptions
in (30). Therefore,

1

T

T∑
t=1

{ Nε∑
n=1

wθ
t,n s(gθn , Yt)− s(gθ∗

t
, Yt)

}
≤ c

holds with probability at least 1 −
C1T exp(−C2T

β), for any fixed constant c > 0.
Finally, from

∑∞
T=1 C1T exp(−C2T

β) < ∞ and
using Borel-Cantelli lemma, we obtain (31).

(iii) & (iv)
The proof is similar to that of Theorem 2(iii)&(iv).
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