
Evaluating the Robustness of
Watermark-based Detection of AI-

generated Content
Neil Gong

Department of Electrical and Computer Engineering
Department of Computer Science (secondary appointment)

Duke University
10/16/2023

1

Ethical Concerns of AI-generated Content

• Harmful content

• Disinformation and propaganda campaigns

• Teaching and education

2

Content Moderation for Generative AI

• Preventing generation of harmful content: safety filters
• Deployed by many GenAI services
• Yang et al. “SneakyPrompt: Evaluating Robustness of Text-to-image

Generative Models' Safety Filters”. Arxiv, 2023.

• Detecting AI-generated content
• Watermark-based detection of AI-generated images is deployed by Google,

Stability AI, OpenAI, etc.
• Jiang et al. "Evading Watermark based Detection of AI-Generated Content". In

ACM Conference on Computer and Communications Security (CCS), 2023.

3

Detecting AI-generated Content

• Passive detection
• Key idea: leverage artifacts in AI-generated content
• High false positives/negatives

• Watermark-based detection
• Multiple companies have deployed such detector
• This talk

• AI-generated images

4

Image Watermarking

• Three components
• Watermark (bitstring)
• Encoder
• Decoder

5

0110101

0110101

Watermark

Decoded watermark

Original image

Watermarked
image

Image

Encoder Decoder

Watermarking Methods

• Non-learning-based
• Encoder and decoder are handcrafted based on heuristics
• Not robust to common post-processing

• JPEG compression, Gaussian noise, Gaussian blur, Brightness/Contrast

• Learning-based
• Encoder and decoder are neural networks
• Believed to be robust due to adversarial training

6

Evading Watermark based Detection of AI-Generated Content CCS’23, November 26–30, 2023, Copenhagen, Denmark

0255075100
Quality Factor Q

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

B
it
w

is
e

A
cc

ur
ac

y Bitwise Accuracy

Perturbation

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

P
er

tu
rb

at
io

n

(a) JPEG

0.50.60.70.80.91.0
Detection Threshold �

0.0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

P
er

tu
rb

at
io

n

JPEG

WEvade-B-Q

(b) Average Perturbation
Figure 16: (a) Average bitwise accuracy and average pertur-
bation of the Stable Di�usion watermarked images post-
processed by JPEGwith di�erent quality factor& . (b) Average
perturbation added by JPEG compression and WEvade-B-Q
to evade the double-tail detector with di�erent threshold g .

(a) Watermarked (b) JPEG (c) WEvade-B-Q
Figure 17: Illustration of a Stable Di�usion watermarked
image and the versions post-processed by JPEG and WEvade-
B-Q to evade watermark-based detection.

as 136 bits. The decoder can decode the exact watermark from each
of the 100 watermarked images. Figure 16a shows the average bit-
wise accuracy and average perturbation of the watermark images
post-processed by JPEG with di�erent quality factor & . When & is
around 80, the bitwise accuracy already reduces to be around 0.5,
which means a watermark-based detector cannot distinguish JPEG
compressed watermarked images with original images. Figure 16b
shows the average perturbation incurred by JPEG compression
and WEvade-B-Q to evade the double-tail detector. Our WEvade-
B-Q incurs much smaller perturbations than JPEG compression.
Figure 17 shows an example Stable Di�usion watermarked image,
its JPEG compressed version, and the version post-processed by
WEvade-B-Q to evade the double-tail detector with g = 0.66 (cor-
responding to FPR=10�4). As we can see, both JPEG compression
and WEvade-B-Q can evade the Stable Di�usion’s detector, which
is based on a non-learning-based watermarking method, without
sacri�cing the image quality.

8 DISCUSSION AND LIMITATIONS
Other metrics to quantify perturbation: Attacker’s goal is to
add small perturbation to evade detection while preserving visual
quality of the image.We use ✓1-norm of the perturbation to quantify
whether it preserves visual quality, which is a popular choice in
adversarial examples [5, 12]. In particular, when ✓1-norm of the
perturbation is small enough, the visual quality is preserved. We
can also use other ✓? -norms, e.g., ✓2-norm, or SSIM [36] between a
watermarked image and its post-processed version, to quantify the
perturbation. For instance, Figure 18 compares the perturbations
added by di�erent post-processingmethods in the white-box setting
when using ✓2-norm or SSIM to quantify the perturbation, while
Figure 28 in Appendix shows the results in the black-box setting,

(a) Standard training (b) Adversarial training
Figure 18: Average perturbation, measured by ✓2-norm (�rst
row) or SSIM (second row), added by each post-processing
method to evade the double-tail detector with di�erent
threshold g in the white-box setting.We set the parameters of
existing post-processing methods such that they achieve the
same evasion rate as our WEvade-W-II. The watermarking
method is HiDDeN and dataset is COCO.

where WEvade uses the default parameter settings described in
Section 7.1. Our results show that WEvade still adds much smaller
perturbations than existing methods when ✓2-norm or SSIM is used
to quantify the perturbation. We acknowledge that ✓? -norms and
SSIM are approximate measures of perturbations’ impact on visual
quality. Previous works [30] on adversarial examples showed that
small ✓? -norms of perturbations may not be su�cient nor necessary
conditions to maintain visual quality. It is an interesting future work
to explore other metrics to quantify the impact of perturbation on
visual quality speci�cally in the generative AI domain.
Provably robust watermarking methods: The fundamental rea-
son that watermarking-based detectors can be evaded by our at-
tack is that existing watermarking methods do not have provable
robustness guarantees. Speci�cally, an attacker can add a small per-
turbation to a watermarked image such that the decoder outputs
a di�erent watermark for the post-processed watermarked image.
To defend against such attacks, one interesting future work is to
build watermarking methods with provable robustness guarantees.
In particular, a provably robust watermarking method is guaran-
teed to output similar watermarks for a watermarked image and
its post-processed version once the added perturbation is bounded,
e.g., its ✓1-norm or ✓2-norm is smaller than a threshold. For in-
stance, if the watermarks decoded from a watermarked image and
its post-processed version are guaranteed to have bitwise accuracy
of 0.85 once the ✓1-norm of the perturbation is bounded by 0.03,
then a detector with threshold g = 0.8 is guaranteed to detect the
post-processed version once the ✓1-norm of the perturbation is
bounded by 0.03. If the perturbation bound is large enough to be
human-perceptible, an attacker has to sacri�ce visual quality of the
watermarked image in order to evade watermarking-based detector,
leading to a dilemma for the attacker, i.e., either being detected or
perturbed images have low quality.

Watermark used by
Stable Diffusion

Standard vs. Adversarial Training

7

Standard training

0110101

0110101

Watermark

Decoded watermark

Original image

Watermarked
image

Watermarked
image

Encoder Decoder

Similar

Standard vs. Adversarial Training

8

Adversarial training

0110101

0110101

Watermark

Decoded watermark

Original image

Watermarked
image

Watermarked
image

Encoder Decoder

Similar

Post-process
layer

Watermark-based Detection

9

Prompt

1010101

1010111

Bitwise accuracy (BA)

AI-generated If BA > !

Non-AI-generated Otherwise

Generation

Detection

1010111

Encoder

Decoder

Ground-truth watermark

How to Set Detection Threshold !?

• Achieve a desired False Positive Rate (FPR)

10

" # $% ~ $'"()'*+ (", 0.5)

FPRFPR < 1034 ! > 0.83
30-bit watermark

1010101

1010111

BADecoder

Non-AI-generated
Uniformly at random

n: watermark length

Double-tail Detector

11

CCS’23, November 26–30, 2023, Copenhagen, Denmark Zhengyuan Jiang⇤ , Jinghuai Zhang⇤ , and Neil Zhenqiang Gong

watermark and an image to produce a watermarked image. In UDH,
the encoder transforms the watermark into a QR code, maps the
QR code to a secret image which has the same size as an original
image, and pixel-wisely adds the secret image to an original image
as a watermarked image. Figure 2 illustrates how the encoder and
decoder are trained, which we discuss next.

Standard training. The encoder and decoder are iteratively
trained using a set of images and the standard Stochastic Gradi-
ent Descent (SGD) algorithm. In each iteration, a mini-batch of
images are used to update the encoder and decoder. Speci�cally,
for each image � in the mini-batch, a random watermarkF� is sam-
pled. The encoder ⇢ produces a watermarked image ⇢ (� ,F�) for
each image � and the corresponding random watermark F� . The
decoder ⇡ takes each watermarked image ⇢ (� ,F�) as input and
outputs a watermark ⇡ (⇢ (� ,F�)). The encoder and decoder are
learnt such that the decoded watermark ⇡ (⇢ (� ,F�)) is close toF� .
In particular, they are updated via SGD to minimize a loss functionÕ
� ;>BB (⇡ (⇢ (� ,F�)),F�).
Adversarial training. A key advantage of learning-based meth-

ods is that they can leverage adversarial training [12, 17] to enhance
their robustness against post-processing [16, 37]. Speci�cally, as
illustrated in Figure 2, a post-processing layer is added between
the encoder and decoder, which post-processes each watermarked
image before feeding it to the decoder during training. For each
image in a mini-batch during training, a post-processing method is
randomly selected from a given set of ones, e.g., JPEG compression,
Gaussian noise, Gaussian blur, Brightness/Contrast, and our WE-
vade. The encoder and decoder are updated via SGD to minimize a
loss function

Õ
� ;>BB (⇡ (⇢ (� ,F�)+X�),F�), where X� is the perturba-

tion introduced by the post-processing method to the watermarked
image ⇢ (� ,F�). As shown by previous works [16, 37] and con�rmed
by our experiments, adversarial training makes learning-based wa-
termarking robust against popular post-processing methods. How-
ever, it is still vulnerable to our adversarial post-processing method.

We note that some watermarking methods [9, 38, 41] embed
the encoder into a generative AI model, so its generated images
are already embedded with the watermark, but they still rely on
the decoder for detection. For instance, Fernandez et al. [9] trains
encoder/decoder using HiDDeN, embeds the encoder into image
generator via �ne-tuning it, and uses the decoder for detection.
Our attacks are also applicable to such watermarking methods
since they are agnostic to how a watermark is embedded into an
AI-generated image.

3 WATERMARK-BASED DETECTORS
We formally de�ne the detection setup and the standard single-tail
detector. Moreover, we propose a double-tail detector, which can
defend against the evasion attack (discussed in Section 5.1) that
simply extends standard adversarial examples to watermarking.

Detection setup:We use � to denote an image, �> to denote an orig-
inal image without watermark, �F to denote a watermarked image,
and �?F to denote a post-processed watermarked image. Note that,
in our notations, � could be an �> , �F , or �?F . We use ⌫�(F1,F2)
to denote the bitwise accuracy of watermarkF1 compared to wa-
termark F2, i.e., ⌫�(F1,F2) is the fraction of bits that match in
F1 and F2. Suppose a service provider (e.g., OpenAI) deploys a

(a) Single-tail detector (b) Double-tail detector
Figure 3: Illustration of (a) single-tail detector and (b) double-
tail detector with threshold g . The bitwise accuracy of an
original image �> follows a binomial distribution divided
by =, i.e., ⌫�(⇡ (�>),F) ⇠ ⌫(=, 0.5)/=. The area of the shaded
region(s) is the false positive rate (FPR) of a detector.

generative AI model (e.g., a text-to-image generative model) as a
cloud service and has a ground-truth watermarkF . Given a user
query (known as prompt), the cloud service uses the AI model to
generate an image, embeds its watermark F into it using the en-
coder (or the generated image already has watermarkF [9, 38, 41]),
and returns the watermarked image to the user. In such cloud
service, detecting AI-generated images reduces to detecting wa-
termarked images. Speci�cally, given an image � , we can decode a
watermark ⇡ (�) using the decoder. Then, we calculate the bitwise
accuracy ⌫�(⇡ (�),F) of the watermark ⇡ (�) with respect to the
ground-truth watermarkF . A watermark-based detector (shown
in Figure 3) leverages the bitwise accuracy to detect watermarked
images, which we discuss below.

Single-tail detector: In the standard single-tail detector [9, 41], an
image � is predicted as AI-generated if the bitwise accuracy of its
decoded watermark is larger than a threshold g , i.e., ⌫�(⇡ (�),F) >
g , whereF is the ground-truth watermark. A key challenge is how
to set the threshold g such that the false positive rate (FPR), i.e., the
probability that an original image is falsely detected as AI-generated,
is bounded by a small value [, e.g., [= 10�4. This challenge can
be addressed by formally analyzing the relationship between the
threshold g and the FPR of the single-tail detector [9, 41].

Suppose ⌫�(⇡ (�>),F) = <
= for an original image �> , where =

is the length (i.e., number of bits) of the watermark and< is the
number of matched bits between ⇡ (�>) andF . The key idea is that
the service provider should pick the ground-truth watermark F
uniformly at random. Thus, the decoded watermark ⇡ (�>) is not
related to the randomly picked F , and each bit of ⇡ (�>) matches
with the corresponding bit ofF with probability 0.5. As a result,<
is a random variable and follows a binomial distribution ⌫(=, 0.5).
Therefore, the FPR (denoted as �%'B (g)) of the single-tail detector
with threshold g can be calculated as follows [9, 41]:

�%'B (g) = Pr(⌫�(⇡ (�>),F) > g)

= Pr(< > =g) =
=’

:=d=g e

✓
=

:

◆
1
2=

, (1)

where �%'B (g) is de�ned for any original image and the random-
ness in calculating the probability stems from picking the ground-
truth watermarkF uniformly at random. Thus, to make �%'B (g) <
[, g should be at least g⇤ = argming

Õ=
:=d=g e

�=
:

� 1
2= < [. For in-

stance, when = = 256 and [= 10�4, we have g � g⇤ ⇡ 0.613.

AI-generated If BA > ! or BA < 1 - !

Non-AI-generated Otherwise

Detector Deployment Scenarios

• Detection-as-a-service
• Provider of GenAI service also provides detection service

• End-user detection
• Detector as end-user app

• Mobile app
• Browser plugin

• Public detection
• Publicly release decoder and watermark
• Individuals can personalize ! depending on desired FPR

• Third-party detection
• GenAI provider shares decoder and watermark with selected third parties
• E.g., Google à Twitter

12

Threat Model

• White-box setting
• Attacker has access to decoder
• Aim to evade detector with any ! > 0.5

• Black-box setting
• Attacker has access to detector API
• Aim to evade a specific detector with an unknown !

• Focus on watermark removal
• Watermark forging/spoofing is technically the same

13

One Visualization Example

14

Standard training

Adversarial training

Original Watermarked JPEG
Gaussian

noise
Gaussian

blur
Brightness
/Contrast

White
box

Black
box

CCS’23, November 26–30, 2023, Copenhagen, Denmark Zhengyuan Jiang⇤ , Jinghuai Zhang⇤ , and Neil Zhenqiang Gong

(a) Original (b) Watermarked (c) JPEG (d) GN (e) GB (f) B/C (g) WEvade-W-II (h) WEvade-B-Q
Figure 1: Illustration of original image, watermarked image, and watermarked images post-processed by existing and our
methods (last two columns) to evade detection. The watermarking method is HiDDeN. GN: Gaussian noise. GB: Gaussian blur.
B/C: Brightness/Contrast. The encoder/decoder are trained via standard training (�rst row) or adversarial training (second row).

can be removed by popular image post-processing methods (e.g.,
JPEG compression) [9, 46], which we also con�rm in our experi-
ments in Section 7.5. Learning-based watermarking methods were
believed to be robust against post-processing [9, 16, 42, 46]. In
particular, the encoder and decoder can be trained using adver-
sarial training [12] to enhance robustness against post-processing.
In adversarial training, a post-processing layer is added between
the encoder and decoder; it post-processes a watermarked image
outputted by the encoder before feeding it into the decoder; and
the encoder and decoder are adversarially trained such that the
watermark decoded from a post-processed watermarked image is
still similar to the ground-truth one. However, existing studies only
evaluated the robustness of learning-based watermarking meth-
ods against popular image post-processing methods such as JPEG
compression, Gaussian blur, and Brightness/Contrast, leaving their
robustness against adversarial post-processing unexplored.
Our work:We aim to bridge this gap in this work. We propose WE-
vade, an adversarial post-processing method to evade watermark-
based detection of AI-generated images. WEvade adds a small,
human-imperceptible perturbation to a watermarked image such
that the perturbed image is falsely detected as non-AI-generated.
WEvade can be viewed as adversarial examples [33] to watermark-
ing methods. However, as we discuss below, simply extending stan-
dard adversarial examples to watermarking is insu�cient. WE-
vade considers the unique characteristics of watermarking to con-
struct adversarial examples.

White-box setting. In this threat model, we assume the attacker
has access to the decoder used by detectors, but no access to the
ground-truth watermark and encoder. Given a watermarked im-
age generated by an AI model, an attacker aims to post-process
it via adding a small perturbation to it, such that detectors with
any threshold g > 0.5 would falsely detect the post-processed
watermarked image as non-AI-generated. One way (denoted as
WEvade-W-I) to achieve the goal is to simply extend the standard
adversarial examples to the decoder. In particular, an attacker �nds
the perturbation such that each bit of the decoded watermark �ips,
leading to a very small bitwise accuracy and thus evasion. However,
we show that such attack can be mitigated by a double-tail detector,
which we propose to detect an image as AI-generated if the decoded
watermark has either too small or too large bitwise accuracy.

To address the challenge, we propose WEvade-W-II, which adds
perturbation to a watermarked image such that the decoded water-
mark has a bitwise accuracy close to 0.5, making the post-processed
image indistinguishable with original images without watermarks.
However, since the attacker does not know the ground-truth wa-
termark, it is challenging to measure the bitwise accuracy of the
decoded watermark. Our key observation to address the challenge
is that a watermark selected uniformly at random would have a
bitwise accuracy close to 0.5, no matter what the ground-truth wa-
termark is. Based on this observation, we �nd the perturbation with
which the decoded watermark is close to a random watermark. We
formulate �nding such perturbation as an optimization problem
and propose a solution to solve it.

Black-box setting. In this threat model, we assume the attacker
can only query the detector API, which returns a binary result
("AI-generated" or "non-AI-generated") for any image. One way
(called WEvade-B-S) to evade detection is that the attacker trains a
surrogate encoder and decoder using a watermarking algorithm.
Then, given a watermarked image, the attacker �nds the pertur-
bation based on the surrogate decoder using the white-box attack
WEvade-W-II. However, such attack achieves limited evasion rates
because the surrogate decoder and target decoder output dissimilar
watermarks for an image.

To address the challenge, we propose WEvade-B-Q, which ex-
tends state-of-the-art hard-label based adversarial example tech-
nique called HopSkipJump [6] to watermark-based detector. Given
a watermarked image, HopSkipJump can iteratively �nd a post-
processed version to evade detection via just querying the detec-
tor API. Speci�cally, starting from a random initial image that is
predicted as non-AI-generated by the detector, HopSkipJump itera-
tively moves the image closer to the given watermarked image to
reduce the added perturbation while always guaranteeing that the
image evades detection. Essentially, in each iteration, HopSkipJump
returns 1) a perturbation to update the image and 2) the number of
queries to the detector API used to �nd such perturbation. The iter-
ative process stops when HopSkipJump uses a given query budget.
However, simply applying HopSkipJump to watermarking may end
up with a large perturbation. The reasons include 1) the random
initial image may be far away from the given watermarked image,

CCS’23, November 26–30, 2023, Copenhagen, Denmark Zhengyuan Jiang⇤ , Jinghuai Zhang⇤ , and Neil Zhenqiang Gong

(a) Original (b) Watermarked (c) JPEG (d) GN (e) GB (f) B/C (g) WEvade-W-II (h) WEvade-B-Q
Figure 1: Illustration of original image, watermarked image, and watermarked images post-processed by existing and our
methods (last two columns) to evade detection. The watermarking method is HiDDeN. GN: Gaussian noise. GB: Gaussian blur.
B/C: Brightness/Contrast. The encoder/decoder are trained via standard training (�rst row) or adversarial training (second row).

can be removed by popular image post-processing methods (e.g.,
JPEG compression) [9, 46], which we also con�rm in our experi-
ments in Section 7.5. Learning-based watermarking methods were
believed to be robust against post-processing [9, 16, 42, 46]. In
particular, the encoder and decoder can be trained using adver-
sarial training [12] to enhance robustness against post-processing.
In adversarial training, a post-processing layer is added between
the encoder and decoder; it post-processes a watermarked image
outputted by the encoder before feeding it into the decoder; and
the encoder and decoder are adversarially trained such that the
watermark decoded from a post-processed watermarked image is
still similar to the ground-truth one. However, existing studies only
evaluated the robustness of learning-based watermarking meth-
ods against popular image post-processing methods such as JPEG
compression, Gaussian blur, and Brightness/Contrast, leaving their
robustness against adversarial post-processing unexplored.
Our work:We aim to bridge this gap in this work. We propose WE-
vade, an adversarial post-processing method to evade watermark-
based detection of AI-generated images. WEvade adds a small,
human-imperceptible perturbation to a watermarked image such
that the perturbed image is falsely detected as non-AI-generated.
WEvade can be viewed as adversarial examples [33] to watermark-
ing methods. However, as we discuss below, simply extending stan-
dard adversarial examples to watermarking is insu�cient. WE-
vade considers the unique characteristics of watermarking to con-
struct adversarial examples.

White-box setting. In this threat model, we assume the attacker
has access to the decoder used by detectors, but no access to the
ground-truth watermark and encoder. Given a watermarked im-
age generated by an AI model, an attacker aims to post-process
it via adding a small perturbation to it, such that detectors with
any threshold g > 0.5 would falsely detect the post-processed
watermarked image as non-AI-generated. One way (denoted as
WEvade-W-I) to achieve the goal is to simply extend the standard
adversarial examples to the decoder. In particular, an attacker �nds
the perturbation such that each bit of the decoded watermark �ips,
leading to a very small bitwise accuracy and thus evasion. However,
we show that such attack can be mitigated by a double-tail detector,
which we propose to detect an image as AI-generated if the decoded
watermark has either too small or too large bitwise accuracy.

To address the challenge, we propose WEvade-W-II, which adds
perturbation to a watermarked image such that the decoded water-
mark has a bitwise accuracy close to 0.5, making the post-processed
image indistinguishable with original images without watermarks.
However, since the attacker does not know the ground-truth wa-
termark, it is challenging to measure the bitwise accuracy of the
decoded watermark. Our key observation to address the challenge
is that a watermark selected uniformly at random would have a
bitwise accuracy close to 0.5, no matter what the ground-truth wa-
termark is. Based on this observation, we �nd the perturbation with
which the decoded watermark is close to a random watermark. We
formulate �nding such perturbation as an optimization problem
and propose a solution to solve it.

Black-box setting. In this threat model, we assume the attacker
can only query the detector API, which returns a binary result
("AI-generated" or "non-AI-generated") for any image. One way
(called WEvade-B-S) to evade detection is that the attacker trains a
surrogate encoder and decoder using a watermarking algorithm.
Then, given a watermarked image, the attacker �nds the pertur-
bation based on the surrogate decoder using the white-box attack
WEvade-W-II. However, such attack achieves limited evasion rates
because the surrogate decoder and target decoder output dissimilar
watermarks for an image.

To address the challenge, we propose WEvade-B-Q, which ex-
tends state-of-the-art hard-label based adversarial example tech-
nique called HopSkipJump [6] to watermark-based detector. Given
a watermarked image, HopSkipJump can iteratively �nd a post-
processed version to evade detection via just querying the detec-
tor API. Speci�cally, starting from a random initial image that is
predicted as non-AI-generated by the detector, HopSkipJump itera-
tively moves the image closer to the given watermarked image to
reduce the added perturbation while always guaranteeing that the
image evades detection. Essentially, in each iteration, HopSkipJump
returns 1) a perturbation to update the image and 2) the number of
queries to the detector API used to �nd such perturbation. The iter-
ative process stops when HopSkipJump uses a given query budget.
However, simply applying HopSkipJump to watermarking may end
up with a large perturbation. The reasons include 1) the random
initial image may be far away from the given watermarked image,

White-box Setting

• Given a watermarked image !"
• Add minimal perturbation #
• s.t. each bit of decoded watermark flips

15

CCS’23, November 26–30, 2023, Copenhagen, Denmark Zhengyuan Jiang⇤ , Jinghuai Zhang⇤ , and Neil Zhenqiang Gong

obtain the detection result for any image. Moreover, we assume the
attacker can query the target detector multiple times. For instance,
the attacker can easily send multiple query images to detection-as-
a-service or end-user detection and obtain detection results. We
acknowledge that it may take a longer time for the attacker to
query a target detector in third-party detection. For instance, when
the third-party is Twitter, the attacker uploads a query image to
Twitter and may have to wait for some time before obtaining the
detection result, i.e., Twitter blocks or does not block the query
image. However, as our experiments will show, an attacker only
needs dozens of queries to evade a target detector while adding a
small perturbation to a watermarked image.

5 OURWEVADE
5.1 White-box Setting
Suppose we are given a watermarked image �F and a decoder⇡ . An
attacker’s goal is to add a small, human-imperceptible perturbation
X to �F such that the post-processed watermarked image �?F =
�F + X evades detectors with any g > 0.5. We �rst extend standard
adversarial examples to watermarking to �nd the perturbation X ,
which, however, can be defended by the double-tail detector. Then,
to address the limitation, we propose a new optimization problem to
formulate �nding the perturbation X to evade detection and design
an algorithm to solve the optimization problem.

5.1.1 Extending Standard Adversarial Examples to Watermarking
(WEvade-W-I). We denote this variant as WEvade-W-I, where W
indicates the white-box threat model. The decoder ⇡ outputs a
watermark, each bit of which can be viewed as a binary class. There-
fore, given a watermarked image �F , one way is to add perturbation
X to it such that ⇡ outputs a di�erent binary value for each bit
of the watermark. Formally, inspired by the standard adversarial
examples [33], we formulate the following optimization problem:

min
X

| |X | |1
B .C . ⇡ (�F + X) = ¬⇡ (�F), (3)

where | |X | |1 is the ✓1-norm of the perturbation X and ¬means �ip-
ping each bit of the watermark ⇡ (�F). This optimization problem
is hard to solve due to the highly nonlinear constraint. To address
the challenge, we reformulate the optimization problem as follows:

min
X

; (⇡ (�F + X),¬⇡ (�F)) (4)

B .C . | |X | |1  A ,

⇡ (�F + X) = ¬⇡ (�F), (5)

where ; is a loss function to measure the distance between two
watermarks and A is a perturbation bound. We discuss more details
on solving this reformulated optimization problem in Section 5.1.3.

The loss function should be small when ⇡ (�F + X) is close to
¬⇡ (�F). For instance, the loss function could be ✓2 distance, ✓1
distance, negative cosine similarity, or average cross-entropy loss.
In de�ning the loss function, we treat ¬⇡ (�F) as desired "labels".
Formally, for ✓2 distance, we have ; (⇡ (�F+X),¬⇡ (�F)) =

Õ
8 (� (�F+

X)8 �¬⇡ (�F)8)2, where � (�F +X) is the second-to-last layer outputs
of the decoder neural network ⇡ and the subscript 8 is the index in
a vector/bitstring; for ✓1 distance, we have ; (⇡ (�F + X),¬⇡ (�F)) =

Õ
8 |� (�F + X)8 � ¬⇡ (�F)8 |; and for negative cosine similarity, we

have ; (⇡ (�F + X),¬⇡ (�F)) = 1 � 2>B (� (�F + X),¬⇡ (�F)), where
we treat � (�F +X) andFC as vectors and 2>B is the cosine similarity
between them. For cross-entropy loss, we can treat � (�F +X)8 as the
possibility that the 8th bit is predicted as 1. Then we have ; (⇡ (�F +
X),¬⇡ (�F)) = �Õ

8 (¬⇡ (�F)8 log � (�F +X)8 + (1�¬⇡ (�F)8) log(1�
� (�F + X)8)). We use the second-to-last layer continuous-value
outputs instead of the �nal binary outputs, because the binary
outputs are obtained by thresholding the continuous-value outputs
(see details in Section 2.2) and thus contain no useful gradient
information for updating the perturbation X .

5.1.2 Formulating a New Optimization Problem (WEvade-W-II).
Given a watermarked image �F , the perturbation X found by solving
the above optimization problem can evade the single-tail detectors
with any threshold g > 0.5. However, our double-tail detector can
still detect such post-processed watermarked images because their
watermarks have too small bitwise accuracy, as we formally show
in our theoretical analysis in Section 6. To address the limitation,
we propose a new optimization problem to formulate �nding the
perturbation X . Speci�cally, we aim to �nd a small perturbation X
such that the decoded watermark ⇡ (�F + X) has a bitwise accuracy
close to 0.5, compared to the ground-truth watermarkF . As a re-
sult, the post-processed watermarked image is indistinguishable
with original images with respect to bitwise accuracy, evading both
single-tail and double-tail detectors. Formally, we formulate �nding
the perturbation X as the following optimization problem:

min
X

| |X | |1 (6)

B .C . |⌫�(⇡ (�F + X),F) � 0.5|  n, (7)

where ⌫�(⇡ (�F + X),F) measures the bitwise accuracy of the wa-
termark ⇡ (�F +X) compared to the ground-truth oneF , n is a small
value characterizing the di�erence between ⌫�(⇡ (�F + X),F) and
0.5, and we call the constraint of the optimization problem bitwise-
accuracy constraint. However, solving the above optimization prob-
lem faces two challenges: 1) the attacker does not have access to the
ground-truth watermarkF , and 2) the constraint is highly nonlin-
ear, making standard optimizationmethod like gradient descent (GD)
hard to apply. Next, we discuss how to address the two challenges.

Addressing the �rst challenge: One way to address the �rst chal-
lenge is to replace the ground-truth watermarkF as the watermark
⇡ (�F) decoded from the watermarked image �F in the optimiza-
tion problem. However, when the decoded watermark ⇡ (�F) is
quite di�erent from F , even if the found perturbation X satis�es
|⌫�(⇡ (�F + X),⇡ (�F)) � 0.5|  n , there is no formal guarantee
that the bitwise-accuracy constraint in Equation 7 is satis�ed. To
address the challenge, we replace the ground-truth watermarkF
as a watermark FC picked uniformly at random, where we call
FC target watermark. Moreover, we reformulate the optimization
problem such that when the watermark ⇡ (�F + X) decoded from
the post-processed watermarked image is very close to FC , it is
guaranteed to satisfy the bitwise-accuracy constraint in Equation 7
with high probability. Intuitively, sinceFC is picked uniformly at
random, it has a bitwise accuracy close to 0.5 compared to any
ground-truth watermarkF . Therefore, when ⇡ (�F + X) is close to
FC , it is likely to have a bitwise accuracy close to 0.5 as well.

Decoder Flip each bit

Guaranteed to evade single-tail detector

Can be detected by double-tail detector

White-box Setting

• Intuition: non-watermarked images have bitwise accuracy≈ 0.5
• Add minimal perturbation to make bitwise accuracy ≈ 0.5
• Perturbed watermarked image indistinguishable with non-watermarked ones

16

CCS’23, November 26–30, 2023, Copenhagen, Denmark Zhengyuan Jiang⇤ , Jinghuai Zhang⇤ , and Neil Zhenqiang Gong

obtain the detection result for any image. Moreover, we assume the
attacker can query the target detector multiple times. For instance,
the attacker can easily send multiple query images to detection-as-
a-service or end-user detection and obtain detection results. We
acknowledge that it may take a longer time for the attacker to
query a target detector in third-party detection. For instance, when
the third-party is Twitter, the attacker uploads a query image to
Twitter and may have to wait for some time before obtaining the
detection result, i.e., Twitter blocks or does not block the query
image. However, as our experiments will show, an attacker only
needs dozens of queries to evade a target detector while adding a
small perturbation to a watermarked image.

5 OURWEVADE
5.1 White-box Setting
Suppose we are given a watermarked image �F and a decoder⇡ . An
attacker’s goal is to add a small, human-imperceptible perturbation
X to �F such that the post-processed watermarked image �?F =
�F + X evades detectors with any g > 0.5. We �rst extend standard
adversarial examples to watermarking to �nd the perturbation X ,
which, however, can be defended by the double-tail detector. Then,
to address the limitation, we propose a new optimization problem to
formulate �nding the perturbation X to evade detection and design
an algorithm to solve the optimization problem.

5.1.1 Extending Standard Adversarial Examples to Watermarking
(WEvade-W-I). We denote this variant as WEvade-W-I, where W
indicates the white-box threat model. The decoder ⇡ outputs a
watermark, each bit of which can be viewed as a binary class. There-
fore, given a watermarked image �F , one way is to add perturbation
X to it such that ⇡ outputs a di�erent binary value for each bit
of the watermark. Formally, inspired by the standard adversarial
examples [33], we formulate the following optimization problem:

min
X

| |X | |1
B .C . ⇡ (�F + X) = ¬⇡ (�F), (3)

where | |X | |1 is the ✓1-norm of the perturbation X and ¬means �ip-
ping each bit of the watermark ⇡ (�F). This optimization problem
is hard to solve due to the highly nonlinear constraint. To address
the challenge, we reformulate the optimization problem as follows:

min
X

; (⇡ (�F + X),¬⇡ (�F)) (4)

B .C . | |X | |1  A ,

⇡ (�F + X) = ¬⇡ (�F), (5)

where ; is a loss function to measure the distance between two
watermarks and A is a perturbation bound. We discuss more details
on solving this reformulated optimization problem in Section 5.1.3.

The loss function should be small when ⇡ (�F + X) is close to
¬⇡ (�F). For instance, the loss function could be ✓2 distance, ✓1
distance, negative cosine similarity, or average cross-entropy loss.
In de�ning the loss function, we treat ¬⇡ (�F) as desired "labels".
Formally, for ✓2 distance, we have ; (⇡ (�F+X),¬⇡ (�F)) =

Õ
8 (� (�F+

X)8 �¬⇡ (�F)8)2, where � (�F +X) is the second-to-last layer outputs
of the decoder neural network ⇡ and the subscript 8 is the index in
a vector/bitstring; for ✓1 distance, we have ; (⇡ (�F + X),¬⇡ (�F)) =

Õ
8 |� (�F + X)8 � ¬⇡ (�F)8 |; and for negative cosine similarity, we

have ; (⇡ (�F + X),¬⇡ (�F)) = 1 � 2>B (� (�F + X),¬⇡ (�F)), where
we treat � (�F +X) andFC as vectors and 2>B is the cosine similarity
between them. For cross-entropy loss, we can treat � (�F +X)8 as the
possibility that the 8th bit is predicted as 1. Then we have ; (⇡ (�F +
X),¬⇡ (�F)) = �Õ

8 (¬⇡ (�F)8 log � (�F +X)8 + (1�¬⇡ (�F)8) log(1�
� (�F + X)8)). We use the second-to-last layer continuous-value
outputs instead of the �nal binary outputs, because the binary
outputs are obtained by thresholding the continuous-value outputs
(see details in Section 2.2) and thus contain no useful gradient
information for updating the perturbation X .

5.1.2 Formulating a New Optimization Problem (WEvade-W-II).
Given a watermarked image �F , the perturbation X found by solving
the above optimization problem can evade the single-tail detectors
with any threshold g > 0.5. However, our double-tail detector can
still detect such post-processed watermarked images because their
watermarks have too small bitwise accuracy, as we formally show
in our theoretical analysis in Section 6. To address the limitation,
we propose a new optimization problem to formulate �nding the
perturbation X . Speci�cally, we aim to �nd a small perturbation X
such that the decoded watermark ⇡ (�F + X) has a bitwise accuracy
close to 0.5, compared to the ground-truth watermarkF . As a re-
sult, the post-processed watermarked image is indistinguishable
with original images with respect to bitwise accuracy, evading both
single-tail and double-tail detectors. Formally, we formulate �nding
the perturbation X as the following optimization problem:

min
X

| |X | |1 (6)

B .C . |⌫�(⇡ (�F + X),F) � 0.5|  n, (7)

where ⌫�(⇡ (�F + X),F) measures the bitwise accuracy of the wa-
termark ⇡ (�F +X) compared to the ground-truth oneF , n is a small
value characterizing the di�erence between ⌫�(⇡ (�F + X),F) and
0.5, and we call the constraint of the optimization problem bitwise-
accuracy constraint. However, solving the above optimization prob-
lem faces two challenges: 1) the attacker does not have access to the
ground-truth watermarkF , and 2) the constraint is highly nonlin-
ear, making standard optimizationmethod like gradient descent (GD)
hard to apply. Next, we discuss how to address the two challenges.

Addressing the �rst challenge: One way to address the �rst chal-
lenge is to replace the ground-truth watermarkF as the watermark
⇡ (�F) decoded from the watermarked image �F in the optimiza-
tion problem. However, when the decoded watermark ⇡ (�F) is
quite di�erent from F , even if the found perturbation X satis�es
|⌫�(⇡ (�F + X),⇡ (�F)) � 0.5|  n , there is no formal guarantee
that the bitwise-accuracy constraint in Equation 7 is satis�ed. To
address the challenge, we replace the ground-truth watermarkF
as a watermark FC picked uniformly at random, where we call
FC target watermark. Moreover, we reformulate the optimization
problem such that when the watermark ⇡ (�F + X) decoded from
the post-processed watermarked image is very close to FC , it is
guaranteed to satisfy the bitwise-accuracy constraint in Equation 7
with high probability. Intuitively, sinceFC is picked uniformly at
random, it has a bitwise accuracy close to 0.5 compared to any
ground-truth watermarkF . Therefore, when ⇡ (�F + X) is close to
FC , it is likely to have a bitwise accuracy close to 0.5 as well.

Ground-truth watermark

White-box Setting

• Intuition: non-watermarked images have bitwise accuracy≈ 0.5
• Add minimal perturbation to make bitwise accuracy ≈ 0.5
• Perturbed watermarked image indistinguishable with non-watermarked ones

17

CCS’23, November 26–30, 2023, Copenhagen, Denmark Zhengyuan Jiang⇤ , Jinghuai Zhang⇤ , and Neil Zhenqiang Gong

obtain the detection result for any image. Moreover, we assume the
attacker can query the target detector multiple times. For instance,
the attacker can easily send multiple query images to detection-as-
a-service or end-user detection and obtain detection results. We
acknowledge that it may take a longer time for the attacker to
query a target detector in third-party detection. For instance, when
the third-party is Twitter, the attacker uploads a query image to
Twitter and may have to wait for some time before obtaining the
detection result, i.e., Twitter blocks or does not block the query
image. However, as our experiments will show, an attacker only
needs dozens of queries to evade a target detector while adding a
small perturbation to a watermarked image.

5 OURWEVADE
5.1 White-box Setting
Suppose we are given a watermarked image �F and a decoder⇡ . An
attacker’s goal is to add a small, human-imperceptible perturbation
X to �F such that the post-processed watermarked image �?F =
�F + X evades detectors with any g > 0.5. We �rst extend standard
adversarial examples to watermarking to �nd the perturbation X ,
which, however, can be defended by the double-tail detector. Then,
to address the limitation, we propose a new optimization problem to
formulate �nding the perturbation X to evade detection and design
an algorithm to solve the optimization problem.

5.1.1 Extending Standard Adversarial Examples to Watermarking
(WEvade-W-I). We denote this variant as WEvade-W-I, where W
indicates the white-box threat model. The decoder ⇡ outputs a
watermark, each bit of which can be viewed as a binary class. There-
fore, given a watermarked image �F , one way is to add perturbation
X to it such that ⇡ outputs a di�erent binary value for each bit
of the watermark. Formally, inspired by the standard adversarial
examples [33], we formulate the following optimization problem:

min
X

| |X | |1
B .C . ⇡ (�F + X) = ¬⇡ (�F), (3)

where | |X | |1 is the ✓1-norm of the perturbation X and ¬means �ip-
ping each bit of the watermark ⇡ (�F). This optimization problem
is hard to solve due to the highly nonlinear constraint. To address
the challenge, we reformulate the optimization problem as follows:

min
X

; (⇡ (�F + X),¬⇡ (�F)) (4)

B .C . | |X | |1  A ,

⇡ (�F + X) = ¬⇡ (�F), (5)

where ; is a loss function to measure the distance between two
watermarks and A is a perturbation bound. We discuss more details
on solving this reformulated optimization problem in Section 5.1.3.

The loss function should be small when ⇡ (�F + X) is close to
¬⇡ (�F). For instance, the loss function could be ✓2 distance, ✓1
distance, negative cosine similarity, or average cross-entropy loss.
In de�ning the loss function, we treat ¬⇡ (�F) as desired "labels".
Formally, for ✓2 distance, we have ; (⇡ (�F+X),¬⇡ (�F)) =

Õ
8 (� (�F+

X)8 �¬⇡ (�F)8)2, where � (�F +X) is the second-to-last layer outputs
of the decoder neural network ⇡ and the subscript 8 is the index in
a vector/bitstring; for ✓1 distance, we have ; (⇡ (�F + X),¬⇡ (�F)) =

Õ
8 |� (�F + X)8 � ¬⇡ (�F)8 |; and for negative cosine similarity, we

have ; (⇡ (�F + X),¬⇡ (�F)) = 1 � 2>B (� (�F + X),¬⇡ (�F)), where
we treat � (�F +X) andFC as vectors and 2>B is the cosine similarity
between them. For cross-entropy loss, we can treat � (�F +X)8 as the
possibility that the 8th bit is predicted as 1. Then we have ; (⇡ (�F +
X),¬⇡ (�F)) = �Õ

8 (¬⇡ (�F)8 log � (�F +X)8 + (1�¬⇡ (�F)8) log(1�
� (�F + X)8)). We use the second-to-last layer continuous-value
outputs instead of the �nal binary outputs, because the binary
outputs are obtained by thresholding the continuous-value outputs
(see details in Section 2.2) and thus contain no useful gradient
information for updating the perturbation X .

5.1.2 Formulating a New Optimization Problem (WEvade-W-II).
Given a watermarked image �F , the perturbation X found by solving
the above optimization problem can evade the single-tail detectors
with any threshold g > 0.5. However, our double-tail detector can
still detect such post-processed watermarked images because their
watermarks have too small bitwise accuracy, as we formally show
in our theoretical analysis in Section 6. To address the limitation,
we propose a new optimization problem to formulate �nding the
perturbation X . Speci�cally, we aim to �nd a small perturbation X
such that the decoded watermark ⇡ (�F + X) has a bitwise accuracy
close to 0.5, compared to the ground-truth watermarkF . As a re-
sult, the post-processed watermarked image is indistinguishable
with original images with respect to bitwise accuracy, evading both
single-tail and double-tail detectors. Formally, we formulate �nding
the perturbation X as the following optimization problem:

min
X

| |X | |1 (6)

B .C . |⌫�(⇡ (�F + X),F) � 0.5|  n, (7)

where ⌫�(⇡ (�F + X),F) measures the bitwise accuracy of the wa-
termark ⇡ (�F +X) compared to the ground-truth oneF , n is a small
value characterizing the di�erence between ⌫�(⇡ (�F + X),F) and
0.5, and we call the constraint of the optimization problem bitwise-
accuracy constraint. However, solving the above optimization prob-
lem faces two challenges: 1) the attacker does not have access to the
ground-truth watermarkF , and 2) the constraint is highly nonlin-
ear, making standard optimizationmethod like gradient descent (GD)
hard to apply. Next, we discuss how to address the two challenges.

Addressing the �rst challenge: One way to address the �rst chal-
lenge is to replace the ground-truth watermarkF as the watermark
⇡ (�F) decoded from the watermarked image �F in the optimiza-
tion problem. However, when the decoded watermark ⇡ (�F) is
quite di�erent from F , even if the found perturbation X satis�es
|⌫�(⇡ (�F + X),⇡ (�F)) � 0.5|  n , there is no formal guarantee
that the bitwise-accuracy constraint in Equation 7 is satis�ed. To
address the challenge, we replace the ground-truth watermarkF
as a watermark FC picked uniformly at random, where we call
FC target watermark. Moreover, we reformulate the optimization
problem such that when the watermark ⇡ (�F + X) decoded from
the post-processed watermarked image is very close to FC , it is
guaranteed to satisfy the bitwise-accuracy constraint in Equation 7
with high probability. Intuitively, sinceFC is picked uniformly at
random, it has a bitwise accuracy close to 0.5 compared to any
ground-truth watermarkF . Therefore, when ⇡ (�F + X) is close to
FC , it is likely to have a bitwise accuracy close to 0.5 as well.

Ground-truth watermark

Evading Watermark based Detection of AI-Generated Content CCS’23, November 26–30, 2023, Copenhagen, Denmark

Addressing the second challenge: Due to the bitwise-accuracy
constraint, it is hard to apply an iterative method like GD. This is
because it is hard to �nd the gradient of X , moving X along which
can make the bitwise-accuracy constraint more likely to be satis�ed.
To address this challenge, we reformulate the optimization problem
such that it is easier to �nd a gradient along which X should be
moved. Combining our strategies to address the two challenges, we
reformulate the optimization problem as follows:

min
X

; (⇡ (�F + X),FC) (8)

B .C . | |X | |1  A ,

⌫�(⇡ (�F + X),FC) � 1 � n, (9)

where ; is a loss function to measure the distance between⇡ (�F +X)
and FC , A is a perturbation bound, and n is a small number. Our
reformulated optimization problem means that we aim to �nd a
perturbation bounded by A to minimize the loss between ⇡ (�F + X)
andFC such that the bitwise accuracy ⌫�(⇡ (�F +X),FC) is close to
1. Note that a small A may not be able to generate a perturbation X
that satis�es the constraint in Equation 9. Therefore, as detailed in
our method to solve the optimization problem, we perform a binary
search to �nd the smallest A such that the found perturbation X
satis�es the constraint in Equation 9.

5.1.3 Solving the Optimization Problems. We propose a uni�ed
framework to solve the reformulated optimization problems in
WEvade-W-I and WEvade-W-II. Our key idea of solving the refor-
mulated optimization problems is that we use the popular projected
gradient descent (PGD) [17] to iteratively �nd the perturbation X
that satis�es the constraints (if possible) for a given A . Then, we
perform binary search over A to �nd the smallest perturbation X
that satis�es the constraints. Speci�cally, the binary search inter-
val [A0, A1] is initialized such that A0 = 0 and A1 is a large value
(e.g., 2). Then, we pick A = (A0 + A1)/2 and solve a reformulated
optimization problem for the given A . If the found perturbation X
satis�es the constraint in the reformulated optimization problem,
then we update A1 = A , otherwise we update A0 = A . We repeat
the process until the binary search interval size is smaller than a
threshold, e.g., A1 � A0  0.001 in our experiments. Algorithm 1
in Appendix shows our binary search process, where the target
watermark FC = ¬⇡ (�F) in WEvade-W-I and FC is a randomly
picked watermark in WEvade-W-II. The function FindPerturbation
solves a reformulated optimization problem to �nd X for a given A .

Next, we discuss the function FindPerturbation, which is illus-
trated in Algorithm 2 in Appendix. We solve the optimization prob-
lem for a given A using PGD. The perturbation X is initialized to be
0. In each iteration, we compute the gradient of the loss function
; (⇡ (�F + X),FC) with respect to X and move X towards the inverse
of the gradient by a small step U , which is known as learning rate.
If the ✓1-norm of X is larger than the perturbation bound A , we
project it so its ✓1-norm is A . We repeat the process for max_iter
iterations and stop the iterative process early if the constraint in the
reformulated optimization problem (i.e., Equation 5 in WEvade-W-I
or Equation 9 in WEvade-W-II) is already satis�ed.

5.2 Black-box Setting
Surrogate-model-based (WEvade-B-S): The �rst direction is that
the attacker trains a surrogate encoder/decoder, and then performs

white-box attacks based on its surrogate decoder. The key hypothe-
sis of such method is that the surrogate detector outputs a similar
watermark with the target decoder for a post-processed water-
marked image, and thus the post-processed watermarked image
constructed to evade the surrogate decoder based detector may also
evade the target detector. Speci�cally, the attacker collects some
images and trains an encoder/decoder using the watermarking al-
gorithm on its own images. The attacker’s images and the service
provider’s images used to train encoders/decoders may be from dif-
ferent distributions. After training a surrogate encoder and decoder,
the attacker can turn a watermarked image �F into a post-processed
one �?F using the surrogate decoder and the white-box attack, e.g.,
WEvade-W-II in our experiments. Note that WEvade-B-S does not
rely on information of the target detector (e.g., target decoder and
g), and thus the same �?F could be used for all detectors.

Query-based (WEvade-B-Q): WEvade-B-S does not directly take
information about the target detector into consideration. As a re-
sult, the surrogate decoder may be quite di�erent from the target
decoder, leading to low evasion rates as shown in our experiments.
To address the challenge, WEvade-B-Q �nds the post-processed
watermarked image �?F by directly querying the target detector.
Note that in this setting, we post-process a watermarked image
to evade a target detector with a particular threshold g , unlike the
white-box setting where we aim to evade detectors with any thresh-
old g > 0.5. Finding �?F in such scenario can be viewed as �nding
adversarial example to the target detector (i.e., a binary classi�er)
which returns a hard label for a query image. Therefore, we ex-
tend state-of-the-art hard-label query-based adversarial example
technique called HopSkipJump [6] to �nd �?F in our problem.

Speci�cally, HopSkipJump �rst generates a random initial �?F
that evades the target detector by blending the given watermarked
image �F with uniform random noise. Then, HopSkipJump itera-
tively moves �?F towards �F to reduce perturbation while always
guaranteeing that �?F evades detection. In each iteration, Hop-
SkipJump returns a new �?F and the number of queries to the
target detector API used to �nd such �?F . HopSkipJump stops the
iterative process when reaching a given query budget. We found
that simply applying HopSkipJump to watermark-based detector
leads to large perturbations. This is because 1) the random initial
�?F may be far away from �F , and 2) the perturbation may increase
after some iterations before reaching the query budget.

Our WEvade-B-S extends HopSkipJump by addressing the two
limitations. First, instead of using a random initial �?F , WEvade-B-S
uses a post-processed version of �F as the initial �?F . For instance,
we can use JPEG compression to post-process �F as the initial �?F .
In particular, we decrease the quality factor & of JPEG in the list
[99, 90, 70, 50, 30, 10, 1] until �nding a post-processed version
of �F that evades detection, which is our initial �?F . When none
of the quality factor can generate a post-processed version of �F
that evades the target detector, we revert to the random initial
�?F adopted by HopSkipJump. Second, we early stop the iterative
process when the perturbation in �?F increases in multiple (denoted
as ⇢() consecutive iterations. Algorithm 3 in Appendix shows our
WEvade-B-S, where the function HopSkipJump(�?F) returns a new
�?F and the number of queries to the API used to �nd it.

Random watermark
target watermark

Theoretical Evaluation

18

Lower bound for single-tail detector: Pr($ ≤ & − ())

Evasion rate: probability that a perturbed watermarked image
is detected as non-AI-generated

$~,-).$-/0(), 0.5)

Lower bound for double-tail detector: 2Pr $ ≤ & − () − 1

Empirical Evaluation Results

19

30-bit watermark, standard training

Double-tail detector

0.50.60.70.80.91.0
Detection Threshold ⌧

0.00

0.25

0.50

0.75

1.00
E

va
si

on
R

at
e

COCO

ImageNet

CC

Theoretical

Our Adversarial Post-processing Adds Smaller
Perturbations than Existing Ones

20

CCS’23, November 26–30, 2023, Copenhagen, Denmark Zhengyuan Jiang⇤ , Jinghuai Zhang⇤ , and Neil Zhenqiang Gong

0.50.60.70.80.91.0
Detection Threshold �

�2.5

�2.0

�1.5

�1.0

�0.5

0.0
lo

g 1
0(

A
ve

ra
ge

P
er

tu
rb

at
io

n)

JPEG

Gaussian noise

Gaussian blur

Brightness/Contrast

WEvade-W-II

(a) COCO

0.50.60.70.80.91.0
Detection Threshold �

�2.5

�2.0

�1.5

�1.0

�0.5

0.0

lo
g 1

0(
A

ve
ra

ge
P
er

tu
rb

at
io

n)

JPEG

Gaussian noise

Gaussian blur

Brightness/Contrast

WEvade-W-II

(b) ImageNet

0.50.60.70.80.91.0
Detection Threshold �

�2.5

�2.0

�1.5

�1.0

�0.5

0.0

lo
g 1

0(
A

ve
ra

ge
P
er

tu
rb

at
io

n)

JPEG

Gaussian noise

Gaussian blur

Brightness/Contrast

WEvade-W-II

(c) CC
Figure 7: Average perturbation added by each post-processing method to evade the double-tail detector with di�erent threshold
g in the white-box setting. We set the parameters of existing post-processing methods such that they achieve the same evasion
rate as our WEvade-W-II. The watermarking method is HiDDeN and the results for UDH are shown in Figure 24 in Appendix.

of the 100 trials in which the original image is falsely detected as
watermarked. The empirical FPR shown in Figure 4 can be viewed as
estimating the theoretical FPR of each original testing image using
one randomly picked ground-truth watermark and then averaging
the estimated theoretical FPRs among the original testing images.

We have three observations. First, under no attacks, both single-
tail and double-tail detectors are accurate when the threshold g is
set properly. In particular, for HiDDeN (or UDH), both FPR and FNR
of both detectors are consistently close to 0 on the three datasets
when g varies from 0.7 to 0.95 (or from 0.6 to 0.99). The range
of such g is wider for UDH than for HiDDeN, i.e., [0.6, 0.99] vs.
[0.7, 0.95]. This is because UDH uses a longer watermark than
HiDDeN, i.e., 256 vs. 30 bits. Second, the theoretical FPR is close to
the empirical FPRs, i.e., the "Theoretical" curve is close to the other
three FPR curves in a graph. They do not exactly match because
the empirical FPRs are estimated using only one randomly picked
ground-truth watermark. Third, given the same threshold g , the
double-tail detector has a higher FPR than the single-tail detector,
which is more noticeable when g is small (e.g., 0.55). This is because
the double-tail detector considers both the left and right tails of the
bitwise-accuracy distribution (see illustration in Figure 3).

7.3 Attack Results in the White-box Setting

WEvade outperforms existing post-processing methods: Each
existing post-processing method has a parameter (discussed in Sec-
tion 7.1), which controls how much perturbation is added to a wa-
termarked image. Figure 5 shows the average bitwise accuracy and
average perturbation of the watermarked images post-processed by
Gaussian blur with di�erent parameter values, where HiDDeN and
COCO dataset are used. Figure 22 and Figure 23 in Appendix show
the results on other post-processing methods and datasets. Based on
these results, we compare WEvade with existing post-processing
methods with respect to evasion rate and average perturbation
added to the watermarked images. Note that there exists a trade-o�
between evasion rate and average perturbation. Therefore, for a
given threshold g , we tune the parameters of the existing methods
such that they achieve similar evasion rates (within 1% di�erence)
with WEvade and we compare the average perturbation.

Figure 6 shows the evasion rates of WEvade-W-II when the
double-tail detector uses di�erent threshold g , while Figure 7 shows

0.50.60.70.80.91.0
Detection Threshold �

0.00

0.25

0.50

0.75

1.00

E
va

si
on

R
at

e

�1 distance

Cross-entropy

Negative cosine similarity

�2 distance

0.50.60.70.80.91.0
Detection Threshold �

0.000

0.005

0.010

0.015

0.020

A
ve

ra
ge

P
er

tu
rb

at
io

n

�1 distance

Cross-entropy

Negative cosine similarity

�2 distance

Figure 8: Comparing di�erent loss functions.

the average perturbations that each method requires to achieve
such evasion rates. The "Theoretical" curves in Figure 6 correspond
to the theoretical lower bounds of evasion rates of WEvade-W-
II in Theorem 3, i.e., 2% (b(g � n)=c) � 1. Speci�cally, n = 0.01
and = = 30 in our experiments and we use 2% (b(g � n)=c) � 1 to
calculate the lower bound of evasion rate for any g . The average
perturbation of WEvade-W-II is a straight line in Figure 7 because
the perturbation added by WEvade-W-II does not depend on g .
Note that, in our experiments, we give advantages to existing post-
processing methods, i.e., we assume they can tune their parameters
for a given threshold g , while our WEvade-W-II does not assume
the knowledge of g .

First, the empirical evasion rates are close to the "Theoretical"
lower bounds in Figure 6, which validates our theoretical analy-
sis. The empirical evasion rates are sometimes slightly lower than
the theoretical lower bounds because the empirical evasion rates
are calculated using a small number (100 in our experiments) of
watermarked images. Second, our results show that WEvade-W-
II substantially outperforms existing post-processing methods. In
particular, WEvade-W-II requires much smaller perturbations to
achieve high evasion rates. We also found that when existing meth-
ods use parameter values to achieve average perturbations no more
than WEvade-W-II, their evasion rates are all 0.
ComparingWEvade-W-I andWEvade-W-II: Figure 21 inAppen-
dix shows the evasion rates and average perturbations of WEvade-
W-I and WEvade-W-II as the single-tail detector or double-tail de-
tector uses di�erent threshold g , where the dataset is COCO and
watermarking method is HiDDeN. First, we observe that WEvade-
W-I achieves evasion rate of 1 for the single-tail detector while 0 for
the double-tail detector, which is consistent with our Theorem 1.
Second, for the single-tail detector, WEvade-W-I achieves higher

COCO dataset

Adversarial Training Improves Robustness

21

Evading Watermark based Detection of AI-Generated Content CCS’23, November 26–30, 2023, Copenhagen, Denmark

0.50.60.70.80.91.0
Detection Threshold �

0.00

0.25

0.50

0.75

1.00

E
va

si
on

R
at

e

� = 0.2

� = 0.1

� = 0.05

� = 0.01

0.50.60.70.80.91.0
Detection Threshold �

0.000

0.005

0.010

0.015

0.020

A
ve

ra
ge

P
er

tu
rb

at
io

n

� = 0.2

� = 0.1

� = 0.05

� = 0.01

Figure 9: Comparing di�erent n values.

Figure 10: Impact of watermark length =.

evasion rates than WEvade-W-II when g is small (e.g., 0.6) but in-
curs larger average perturbation thanWEvade-W-II. This is because
WEvade-W-I adds (larger) perturbation to �ip each bit of the wa-
termark of the watermarked image. However, we stress that their
average perturbations are both very small. Third, for the double-tail
detector, WEvade-W-II achieves higher evasion rates and incurs
smaller average perturbations than WEvade-W-I. Note that the per-
turbations added by both WEvade-W-I and WEvade-W-II do not
depend on the detector, and thus the average-perturbation curves
for WEvade-W-I (or WEvade-W-II) are the same for the single-tail
detector and double-tail detector in Figure 21.

Impact of loss function: Figure 8 compares di�erent loss func-
tions with respect to evasion rate and average perturbation of
WEvade-W-II. We observe that these loss functions achieve com-
parable results, though ✓2-distance and negative cosine similarity
achieve slightly smaller average perturbations. The reason is that,
in our Algorithm 1, we �nd the smallest perturbation that satis�es
the constraint in Equation 9 no matter what loss function is used;
and in Algorithm 2, we early stop as long as the constraint in Equa-
tion 9 is satis�ed. Moreover, our Theorem 3 shows that the evasion
rate of WEvade-W-II does not depend on the loss function once the
found perturbation satis�es the constraint in Equation 9.

Impact of n: Figure 9 compares di�erent n values with respect to
evasion rate and average perturbation of WEvade-W-II. We observe
that n achieves a trade-o� between evasion rate and average pertur-
bation. As n increases, perturbation decreases because Equation 9
is easier to be satis�ed; but evasion rate also decreases because the
decoded watermark is less similar to the target watermarkFC .

Impact of watermark length =: Figure 10 shows the theoretical
lower bound of evasion rate of WEvade-W-II to double-tail detector
(i.e., 2% (b(g � n)=c) � 1) as a function of the watermark length =,
where n = 0.01 and g varies from 0.6 to 0.9. We observe that the
lower bound increases as = increases. This is because the randomly

0.50.60.70.80.91.0
Detection Threshold �

0.00

0.25

0.50

0.75

1.00

E
va

si
on

R
at

e

Standard training

Adversarial training

0.50.60.70.80.91.0
Detection Threshold �

0.00

0.02

0.04

0.06

0.08

0.10

A
ve

ra
ge

P
er

tu
rb

at
io

n

Standard training

Adversarial training

Figure 11: Standard vs. adversarial training forWEvade-W-II.

(a) COCO (b) ImageNet (c) CC
Figure 12: Comparing evasion rates (�rst row) and average
perturbations (second row) of WEvade-B-S and WEvade-B-
Q in the black-box setting. The watermarking method is
HiDDeN and Figure 26 in Appendix shows results for UDH.

picked target watermarkFC is more likely to have a bitwise accuracy
0.5 compared to the ground-truth watermark as = increases.
Adversarial training improves robustness but is still insu�-
cient: Figure 11 compares standard training and adversarial train-
ing with respect to the evasion rates and average perturbations
of WEvade-W-II. We have three observations. First, adversarial
training improves robustness of the detector. In particular, WEvade-
W-II achieves the same evasion rates for standard and adversarial
training. This is because evasion rates of WEvade-W-II do not
depend on how the encoder and decoder are trained. However,
WEvade-W-II needs to add larger perturbations on average when
adversarial training is used. Second, adversarial training is still in-
su�cient. Speci�cally, the perturbations added by WEvade-W-II
are still small, which maintain visual quality of the images well
(Figure 1 shows some example images). Third, WEvade-W-II still
outperforms existing post-processing methods when adversarial
training is used. In particular, Figure 25 in Appendix shows that
WEvade-W-II still adds much smaller perturbations than existing
methods when they tune parameters to achieve similar evasion
rates with WEvade-W-II.

7.4 Attack Results in the Black-box Setting
WEvade-B-S vs. WEvade-B-Q: Figure 12 shows the evasion rate
and average perturbation of WEvade-B-S and WEvade-B-Q on the
three datasets. Note that, for target detectors with di�erent g , we ap-
ply WEvade-B-Q separately to �nd the (di�erent) perturbations for
a watermarked image, while WEvade-B-S adds g-agnostic perturba-
tion to a watermarked image. First, WEvade-B-Q always achieves
evasion rate of 1 while the evasion rate of WEvade-B-S decreases
to 0 as the threshold g decreases. This is because the surrogate

Evading Watermark based Detection of AI-Generated Content CCS’23, November 26–30, 2023, Copenhagen, Denmark

0.50.60.70.80.91.0
Detection Threshold �

0.00

0.25

0.50

0.75

1.00

E
va

si
on

R
at

e

� = 0.2

� = 0.1

� = 0.05

� = 0.01

0.50.60.70.80.91.0
Detection Threshold �

0.000

0.005

0.010

0.015

0.020

A
ve

ra
ge

P
er

tu
rb

at
io

n

� = 0.2

� = 0.1

� = 0.05

� = 0.01

Figure 9: Comparing di�erent n values.

Figure 10: Impact of watermark length =.

evasion rates than WEvade-W-II when g is small (e.g., 0.6) but in-
curs larger average perturbation thanWEvade-W-II. This is because
WEvade-W-I adds (larger) perturbation to �ip each bit of the wa-
termark of the watermarked image. However, we stress that their
average perturbations are both very small. Third, for the double-tail
detector, WEvade-W-II achieves higher evasion rates and incurs
smaller average perturbations than WEvade-W-I. Note that the per-
turbations added by both WEvade-W-I and WEvade-W-II do not
depend on the detector, and thus the average-perturbation curves
for WEvade-W-I (or WEvade-W-II) are the same for the single-tail
detector and double-tail detector in Figure 21.

Impact of loss function: Figure 8 compares di�erent loss func-
tions with respect to evasion rate and average perturbation of
WEvade-W-II. We observe that these loss functions achieve com-
parable results, though ✓2-distance and negative cosine similarity
achieve slightly smaller average perturbations. The reason is that,
in our Algorithm 1, we �nd the smallest perturbation that satis�es
the constraint in Equation 9 no matter what loss function is used;
and in Algorithm 2, we early stop as long as the constraint in Equa-
tion 9 is satis�ed. Moreover, our Theorem 3 shows that the evasion
rate of WEvade-W-II does not depend on the loss function once the
found perturbation satis�es the constraint in Equation 9.

Impact of n: Figure 9 compares di�erent n values with respect to
evasion rate and average perturbation of WEvade-W-II. We observe
that n achieves a trade-o� between evasion rate and average pertur-
bation. As n increases, perturbation decreases because Equation 9
is easier to be satis�ed; but evasion rate also decreases because the
decoded watermark is less similar to the target watermarkFC .

Impact of watermark length =: Figure 10 shows the theoretical
lower bound of evasion rate of WEvade-W-II to double-tail detector
(i.e., 2% (b(g � n)=c) � 1) as a function of the watermark length =,
where n = 0.01 and g varies from 0.6 to 0.9. We observe that the
lower bound increases as = increases. This is because the randomly

0.50.60.70.80.91.0
Detection Threshold �

0.00

0.25

0.50

0.75

1.00

E
va

si
on

R
at

e

Standard training

Adversarial training

0.50.60.70.80.91.0
Detection Threshold �

0.00

0.02

0.04

0.06

0.08

0.10

A
ve

ra
ge

P
er

tu
rb

at
io

n

Standard training

Adversarial training

Figure 11: Standard vs. adversarial training forWEvade-W-II.

(a) COCO (b) ImageNet (c) CC
Figure 12: Comparing evasion rates (�rst row) and average
perturbations (second row) of WEvade-B-S and WEvade-B-
Q in the black-box setting. The watermarking method is
HiDDeN and Figure 26 in Appendix shows results for UDH.

picked target watermarkFC is more likely to have a bitwise accuracy
0.5 compared to the ground-truth watermark as = increases.
Adversarial training improves robustness but is still insu�-
cient: Figure 11 compares standard training and adversarial train-
ing with respect to the evasion rates and average perturbations
of WEvade-W-II. We have three observations. First, adversarial
training improves robustness of the detector. In particular, WEvade-
W-II achieves the same evasion rates for standard and adversarial
training. This is because evasion rates of WEvade-W-II do not
depend on how the encoder and decoder are trained. However,
WEvade-W-II needs to add larger perturbations on average when
adversarial training is used. Second, adversarial training is still in-
su�cient. Speci�cally, the perturbations added by WEvade-W-II
are still small, which maintain visual quality of the images well
(Figure 1 shows some example images). Third, WEvade-W-II still
outperforms existing post-processing methods when adversarial
training is used. In particular, Figure 25 in Appendix shows that
WEvade-W-II still adds much smaller perturbations than existing
methods when they tune parameters to achieve similar evasion
rates with WEvade-W-II.

7.4 Attack Results in the Black-box Setting
WEvade-B-S vs. WEvade-B-Q: Figure 12 shows the evasion rate
and average perturbation of WEvade-B-S and WEvade-B-Q on the
three datasets. Note that, for target detectors with di�erent g , we ap-
ply WEvade-B-Q separately to �nd the (di�erent) perturbations for
a watermarked image, while WEvade-B-S adds g-agnostic perturba-
tion to a watermarked image. First, WEvade-B-Q always achieves
evasion rate of 1 while the evasion rate of WEvade-B-S decreases
to 0 as the threshold g decreases. This is because the surrogate

Take-away Messages

• Learning-based-watermark based detection has good robustness to
common post-processing in non-adversarial settings

• Broken in the white-box setting in adversarial settings

• Adversarial training improves robustness but still insufficient

22

Black-box Setting

Initial perturbed image

Watermarked image

AI-generated

Non-AI-generated

Repeat until query budget

Theoretical Evaluation

24

Evasion rate is guaranteed to be 1

Empirical Evaluation Results

25

0.50.60.70.80.91.0
Detection Threshold ⌧

0.00

0.01

0.02

0.03
A

ve
ra

ge
P
er

tu
rb

at
io

n

30-bit watermark, standard training, query budget 2,000

COCO dataset

Adversarial Training Improves Robustness

26

30 100 1000 2000
Query Budget (log scale)

0.00

0.02

0.04

0.06

0.08
A

ve
ra

ge
P
er

tu
rb

at
io

n
Standard Training

Adversarial Training

Summary and Discussion

• Don’t publicly release decoder
• No white-box attack

• Adversarial training can improve robustness

• But probably still insufficient
• Dozens-hundreds of queries to evade a black-box detector
• While maintaining image quality

• Stronger adversarial training?

• Restricted access to detector API?
• Attacker cannot access detector API
• Transfer attack

27

Acknowledgements

Zhengyuan Jiang Jinghuai Zhang

