Big Security Issues of Big Foundation Models

Neil Gong

Department of Electrical and Computer Engineering Department of Computer Science (secondary appointment) Duke University 04/04/2023

Foundation Models are Operating Systems of Al

Computer system

Al system

Security of Foundation Models

- Insecure foundation model is a single point of failure of AI system
- Securing foundation model secures AI ecosystem
- This talk: vision foundation models
 - E.g., CLIP
 - Also called encoders

Road Map

- Part I: Backdoor attack to pre-trained encoders
- Part II: Data poisoning attack to pre-trained encoders
- Part III: Data auditing for pre-trained encoders

Road Map

- Part I: Backdoor attack to pre-trained encoders
- Part II: Data poisoning attack to pre-trained encoders
- Part III: Data auditing for pre-trained encoders

Background on Self-supervised Learning

Data Augmentation

Augmented views

Crop and resize

Image

Horizontal flip

Rotation

Pre-training an Encoder – SimCLR [ICML'20]

Building a Downstream Classifier

Our BadEncoder

Jinyuan Jia, Yupei Liu, and Neil Zhenqiang Gong. "BadEncoder: Backdoor Attacks to Pre-trained Encoders in Self-Supervised Learning". In *IEEE Symposium on Security and Privacy*, 2022

Threat Model

- One target downstream task
 - E.g., traffic sign recognition
- One target label
 - E.g., "60 mi/h"
- One backdoor trigger
 - E.g., a white square in the center of an image
- Attacker's goal
 - Effectiveness goal
 - Utility goal
- Attacker's background knowledge
 - Unlabeled images
 - Called attack dataset
 - Image with target label

Reference image

Key Idea of Our Attack

- Formulate as an optimization problem
 - Effectiveness loss
 - Quantify effectiveness goal
 - Utility loss
 - Quantify utility goal
 - Minimize a weighted sum of the two losses

Quantifying Effectiveness Goal

f'(x): feature vector for x

Quantifying Condition I

Quantifying Condition II

Quantifying effectiveness goal:

 $L_0 + \lambda_1 \cdot L_1$

Hyperparameter

Quantifying Utility Goal

Classification of an image without backdoor trigger is unaffected $f'(x) \approx f(x)$ $L_2 = -\frac{1}{|D_a|} \cdot \sum_{x \in D_a} s(f'(x), f(x))$ Cosine similarity Attack dataset

Optimization Problem

Experimental Setup

- Pre-training encoders
 - Pre-training algorithm
 - SimCLR
 - Pre-training dataset
 - CIRAR10
- Building downstream classifiers
 - Downstream tasks
 - GTSRB, SVHN, STL10
 - Downstream classifier
 - A fully connected neural network

Attack Setting

- Attack dataset
 - Pre-training dataset
- Target label
 - Different for different target downstream tasks
- Reference image
 - Collected from the Internet
- Hyperparameters

$$\lambda_1 = 1, \lambda_2 = 1$$

Attack Success Rate

BadEncoder Achieves Effectiveness Goal

Target Downstream Task	Attack Success Rate (%)
GTSRB	98.64
SVHN	99.14
STL10	99.73

Clean Accuracy and Backdoored Accuracy

BadEncoder Achieves Utility Goal

Target Downstream Task	Clean Accuracy (%)	Backdoored Accuracy (%)
GTSRB	81.84	82.27
SVHN	58.50	69.32
STL10	76.14	76.18

Evaluation on Real-world Pre-trained Encoders

- OpenAl's encoder CLIP
 - 400 million (image, text) pairs collected from the Internet
- Attack dataset
 - ImageNet dataset

Results for CLIP

Existing Defenses are Insufficient

• Empirical defenses

- Neural Cleanse [Oakland'19]
 - Cannot detect backdoored encoder
- MNTD [Oakland'21]
 - Detection accuracy is close to random guessing
- Provable defense
 - PatchGuard [USENIX Security'21]
 - Insufficient provable robustness guarantees

Summary

- Pre-trained encoders are vulnerable to backdoor attack
- Insecure encoders lead to a single point of failure of AI ecosystem
- Existing defenses are insufficient to defend against BadEncoder

Road Map

- Part I: Backdoor attack to pre-trained encoders
- Part II: Data poisoning attack to pre-trained encoders
- Part III: Data auditing for pre-trained encoders

Encoder is Vulnerable to Data Poisoning Attacks

Hongbin Liu, Jinyuan Jia, and Neil Zhenqiang Gong. "PoisonedEncoder: Poisoning the Unlabeled Pre-training Data in Contrastive Learning". In USENIX Security Symposium, 2022.

33

Threat Model

- One target downstream task
 - E.g., traffic sign recognition
- One target input
 - E.g., an image of the stop sign
- One target class
 - E.g., "50 mi/h"
- Attacker's goal
 - Target downstream classifier misclassifies the target input as target class
- Attacker's background knowledge
 - Images from the target class

Reference inputs

Key Idea of Our Attack

- Formulate poisoning attack as a bi-level optimization problem
- Use non-iterative approximate solution

Poisoning Attack as a Bi-level Optimization Problem

Our PoisonedEncoder

Real-world Examples of Combined Images from Google Search

Experimental Setup

- Pre-training encoders
 - Pre-training algorithm
 - SimCLR
 - Pre-training dataset
 - CIFAR10
- Building downstream classifiers
 - Downstream tasks
 - STL10, Facemask, EuroSAT
 - Downstream classifier
 - A fully connected neural network

Attack Setting

- Target input and target class
 - Different for different target downstream tasks
- Reference inputs
 - From each target class in target downstream task's testing data
- Parameter settings
 - # reference inputs = 50
 - Poisoning rate = 1%
 - # random experimental trails = 10

Attack Success Rate

PoisonedEncoder is Effective

Target Downstream Task	Attack Success Rate
STL10	0.8
Facemask	0.9
EuroSAT	0.5

Clean Accuracy and Poisoned Accuracy

Clean testing inputs

PoisonedEncoder Maintains Utility

Target Downstream Task	Clean Accuracy	Poisoned Accuracy
STL10	0.718	0.715
Facemask	0.947	0.937
EuroSAT	0.815	0.797

Defenses are Insufficient

- Pre-processing defense
 - Duplicate checking
 - Insufficient when the attacker has a large amount of reference inputs
 - Clustering-based detection
 - Ineffective
- In-processing defenses
 - Early stopping
 - Bagging [AAAI'21]
 - Pre-training encoder w/o random cropping
 - Effective but sacrificing utility
- Post-processing defense
 - Fine-tuning pre-trained encoder for extra epochs on some clean images
 - Effective without sacrificing the encoder's utility
 - But require manually collecting a large set of clean images

Summary

- Pre-trained encoders are vulnerable to data poisoning attacks
- Insecure encoders lead to a single point of failure of AI ecosystem
- Defenses are insufficient to defend against PoisonedEncoder

Road Map

- Part I: Backdoor attack to pre-trained encoders
- Part II: Data poisoning attack to pre-trained encoders
- Part III: Data auditing for pre-trained encoders

Motivation on Data Auditing

OpenAl's GPT API

Embedding models

Build advanced search, clustering, topic modeling, and classification functionality with our <u>embeddings</u> offering.

MODEL	USAGE
Ada	\$0.0080 / 1K tokens
Babbage	\$0.0120 / 1K tokens
Curie	\$0.0600 / 1K tokens
Davinci	\$0.6000 / 1K tokens

ChatGPT Plus: \$20/month

Auditing Unauthorized Data Use

Was my public data used to pre-train a given encoder without authorization?

Examples of Real-world Unauthorized Data Use

B B C Sign in Home News Sport Reel Worklife Travel

Tech

Twitter demands AI company stops 'collecting faces'

() 23 January 2020

Twitter has demanded an AI company stop taking images from its website.

FTC settlement with Ever orders data and Als deleted after facial recognition pivot

Natasha Lomas @riptari / 8:43 AM EST • January 12, 2021

Image Credits: Design Cells / Getty Images

The maker of a defunct cloud photo storage app that pivoted to selling facial recognition services has been ordered to delete user data and any algorithms trained on it, under the terms of an FTC settlement.

(X)

Comment

Our EncoderMI: Membership Inference based Data Auditing for Pre-trained Encoders

Hongbin Liu, Jinyuan Jia, Wenjie Qu, and Neil Zhenqiang Gong. "EncoderMI: Membership Inference against Pre-trained Encoders in Contrastive Learning". In ACM Conference on Computer and Communications Security (CCS), 2021.

Threat Model: Black-box Access

Revisiting Encoder Pre-training

Our Key Observation

Overview of Our EncoderMI

Shadow Training Setup

- Unlabeled images: *shadow dataset*
- Evenly divide into two halves
 - Shadow member set
 - Shadow non-member set

Pre-training a Shadow Encoder

Shadow member set Shadow encoder

Constructing a Training Set for Inference Classifier

Building an Inference Classifier

Experimental Setup

- Pre-training target encoder
 - Pre-training algorithm
 - MoCo
 - Pre-training dataset
 - CIFAR10
 - Target encoder architecture
 - ResNet18
- Pre-training shadow encoder
 - Pre-training algorithm
 - SimCLR
 - Pre-training dataset
 - STL10
 - Shadow encoder architecture
 - VGG11
- N=10

Evaluation Metrics

- 10,000 members of target encoder
- 10,000 non-members of target encoder
- Accuracy
 - Fraction of members/non-members whose memberships are inferred correctly

EncoderMI is Effective

Vector-based classifier	Set-based classifier	Threshold-based classifier
86.2%	78.1%	82.1%

Evaluation on CLIP

How to collect members and non-members of CLIP?

Ground truth non-members

EncoderMI is Effective for CLIP

Vector-based classifier	Set-based classifier	Threshold-based classifier
73.5%	72.7%	74.5%

Summary

- Data auditing is an emerging problem for pre-trained encoders
- Feature similarity between augmented views can be used to audit unauthorized data use in pre-trained encoders

StolenEncoder

Similar utility

Less data & computation resource

Yupei Liu, Jinyuan Jia, Hongbin Liu, and Neil Zhenqiang Gong. "StolenEncoder: Stealing Pre-trained Encoders in Self-supervised Learning". In ACM CCS, 2022.

Robust Encoder as a Service

Robust encoder as a service

Wenjie Qu, Jinyuan Jia, and Neil Zhenqiang Gong. "REaaS: Enabling Adversarially Robust Downstream Classifiers via Robust Encoder as a Service". In *ISOC Network and Distributed System Security Symposium (NDSS)*, 2023. 68

Conclusion

- Part I: Backdoor attack to pre-trained encoders
 - "BadEncoder: Backdoor Attacks to Pre-trained Encoders in Self-Supervised Learning". In *IEEE Symposium on Security and Privacy*, 2022.
- Part II: Data poisoning attack to pre-trained encoders
 - "PoisonedEncoder: Poisoning the Unlabeled Pre-training Data in Contrastive Learning". In USENIX Security Symposium, 2022.
- Part III: Data auditing for pre-trained encoders
 - "EncoderMI: Membership Inference against Pre-trained Encoders in Contrastive Learning". In ACM CCS, 2021.

Acknowledgements

Jinyuan Jia	Yupei Liu
Hongbin Liu	Wenjie Qu