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Security of Foundation Models

* Insecure foundation model is a single point of failure of Al system
* Securing foundation model secures Al ecosystem

* This talk: vision foundation models
* E.g., CLIP
e Also called encoders



Road Map

* Part |: Backdoor attack to pre-trained encoders
* Part Il: Data poisoning attack to pre-trained encoders

* Part lll: Data auditing for pre-trained encoders
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Background on Self-supervised Learning
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Data Augmentation
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Pre-training an Encoder — SimCLR [ICML 20]
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Building a Downstream Classifier
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Backdoor Attack
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Backdoor Attack
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Backdoor Attack
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Backdoor Attack
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Our BadEncoder
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Jinyuan Jia, Yupei Liu, and Neil Zhenqgiang Gong. “BadEncoder: Backdoor Attacks to Pre-trained Encoders
in Self-Supervised Learning”. In IEEE Symposium on Security and Privacy, 2022



Threat Model

* One target downstream task
 E.g., traffic sign recognition
* One target label
e E.g., “60 mi/h”

* One backdoor trigger
* E.g., a white square in the center of an image

 Attacker’s goal
* Effectiveness goal
* Utility goal

» Attacker’s background knowledge
* Unlabeled images
* Called attack dataset

* Image with target label S Reference image
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Key ldea of Our Attack

* Formulate as an optimization problem

 Effectiveness loss
* Quantify effectiveness goal

 Utility loss
* Quantify utility goal

* Minimize a weighted sum of the two losses



Quantifying Effectiveness Goal
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Quantifying Condition |
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Quantifying Condition |
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Quantifying Utility Goal

Classification of an image without backdoor trigger is unaffected
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Optimization Problem

Quantifying effectiveness goal Quantifying utility goal
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Experimental Setup

* Pre-training encoders
* Pre-training algorithm
* SimCLR

* Pre-training dataset
 CIRAR10

* Building downstream classifiers

* Downstream tasks
e GTSRB, SVHN, STL10

e Downstream classifier
* A fully connected neural network



Attack Setting

» Attack dataset
* Pre-training dataset

 Target label
 Different for different target downstream tasks

* Reference image
* Collected from the Internet

* Hyperparameters
A=l 4, =1



Attack Success Rate

[0.1,0.3, -, 0.2] “60 mi/h”
Downstream
classifier

m—p “40 mi/h”

Built upon f’

[0.3,0.0, -, 0.1] “60 mi/h’

Fraction of “60 mi/h”
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BadEncoder Achieves Effectiveness Goal

Target Downstream Task | Attack Success Rate (%)
GTSRB 98.64
SVHN 99.14
STL10 99.73




Clean Accuracy and Backdoored Accuracy

Downstream
classifier “stop”
5 ,
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“stop”
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BadEncoder Achieves

Utility Goal

Target Downstream Task

Clean Accuracy (%)

Backdoored Accuracy (%)

GTSRB 81.84 82.27
SVHN 58.50 69.32
STL10 76.14 76.18
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Evaluation on Real-world Pre-trained Encoders

* OpenAl’s encoder CLIP
* 400 million (image, text) pairs collected from the Internet

» Attack dataset
* ImageNet dataset



Results for CLIP

BadEncoder achieves
effectiveness goal

BadEncoder achieves
utility goal

Target Downstream Task | Attack Success Rate (%)

Clean Accuracy (%)

Backdoored Accuracy (%)

GTSRB 99.33 82.36 82.14
STL10 99.81 97.09 96.69
SVHN 99.99 70.60 70.27
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Existing Defenses are Insufficient

* Empirical defenses

* Neural Cleanse [Oakland’19]
* Cannot detect backdoored encoder

* MINTD [Oakland’21]
* Detection accuracy is close to random guessing

* Provable defense

e PatchGuard [USENIX Security’21]
* Insufficient provable robustness guarantees



Summary

* Pre-trained encoders are vulnerable to backdoor attack
* Insecure encoders lead to a single point of failure of Al ecosystem

* Existing defenses are insufficient to defend against BadEncoder



Road Map

* Part |: Backdoor attack to pre-trained encoders
* Part Il: Data poisoning attack to pre-trained encoders

* Part lll: Data auditing for pre-trained encoders



Encoder is Vulnerable to Data Poisoning Attacks
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Hongbin Liu, Jinyuan Jia, and Neil Zhengiang Gong. “PoisonedEncoder: Poisoning the Unlabeled classifiers

Pre-training Data in Contrastive Learning”. In USENIX Security Symposium, 2022.
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Threat Model

* One target downstream task
* E.g., traffic sign recognition

* One target input
* E.g., an image of the stop sign

* One target class
* E.g., “50 mi/h”

E@I Target input
* Attacker’s goal

* Target downstream classifier misclassifies the target input as target class

* Attacker’s background knowledge

* Images from the target class
Reference inputs
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Key ldea of Our Attack

* Formulate poisoning attack as a bi-level optimization problem

* Use non-iterative approximate solution



Poisoning Attack as a Bi-level Optimization Problem
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Our PoisonedEncoder
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Real-world Examples of Combined Images from Google Search
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Experimental Setup

* Pre-training encoders
* Pre-training algorithm
* SimCLR

* Pre-training dataset
* CIFAR10

* Building downstream classifiers

e Downstream tasks
e STL10, Facemask, EuroSAT

* Downstream classifier
A fully connected neural network



Attack Setting

* Target input and target class
 Different for different target downstream tasks

* Reference inputs
* From each target class in target downstream task’s testing data

* Parameter settings
* # reference inputs =50
* Poisoning rate = 1%
* # random experimental trails = 10



Attack Success Rate
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PoisonedEncoder is Effective

Target Downstream Task

Attack Success Rate

STL10 0.8
Facemask 0.9
EuroSAT 0.5
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Clean Accuracy and Poisoned Accuracy
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PoisonedEncoder Maintains Utility

Target Clean Accuracy | Poisoned Accuracy
Downstream Task
STL10 0.718 0.715
Facemask 0.947 0.937
EuroSAT 0.815 0.797
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Defenses are Insufficient

* Pre-processing defense
e Duplicate checking
* Insufficient when the attacker has a large amount of reference inputs
* Clustering-based detection
* Ineffective

* In-processing defenses
 Early stopping
e Bagging [AAAI'21]
* Pre-training encoder w/o random cropping
» Effective but sacrificing utility

* Post-processing defense

* Fine-tuning pre-trained encoder for extra epochs on some clean images
» Effective without sacrificing the encoder’s utility
* But require manually collecting a large set of clean images



Summary

* Pre-trained encoders are vulnerable to data poisoning attacks
* Insecure encoders lead to a single point of failure of Al ecosystem

* Defenses are insufficient to defend against PoisonedEncoder



Road Map

* Part |: Backdoor attack to pre-trained encoders
* Part Il: Data poisoning attack to pre-trained encoders

 Part lll: Data auditing for pre-trained encoders



Internet
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OpenAl’s GPT AP

Embedding models

Build advanced search, clustering, topic modeling, and
classification functionality with our embeddings offering.

MODEL
Ada
Babbage
Curie

Davinci

ChatGPT Plus: $20/month

USAGE

$0.0080
$0.0120
$0.0600

$0.6000
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Auditing Unauthorized Data Use

Was my public data used to pre-train a given encoder
without authorization?



Examples of Real-world Unauthorized Data Use

(B8] 0 signin Home News Sport Reel Worklife Travel

FTC settlement with Ever orders data and Als deleted
NEWS after facial recognition pivot

Home | Coronavirus | Climate | Video | World | US & Canada | UK | Business | Tech | Science | Stories

Tech Natasha Lomas ] comment

Twitter demands AI company stops
‘collecting faces'

D 23 January 2020

] Image Credits: Design Cells / Getty Images

Twitter has d ded an Al top taking i fi it: bsite. . . ) .
MIESETAS SSMNGsc Sl AL Eompany STop SANG IMAQEs ram i Websts: The maker of a defunct cloud photo storage app that pivoted to selling facial recognition services has been ordered to delete

user data and any algorithms trained on it, under the terms of an FTC settlement.
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Our EncoderMI: Membership Inference based
Data Auditing for Pre-trained Encoders

Target

encoder Member, l.e.,
unauthorized use
- EncoderMl

Unlabeled Non-member
image

Hongbin Liu, Jinyuan Jia, Wenjie Qu, and Neil Zhengiang Gong. “EncoderMI: Membership Inference
against Pre-trained Encoders in Contrastive Learning”. In ACM Conference on Computer and
Communications Security (CCS), 2021.
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Threat Model: Black-box Access

A

Target Feature
encoder vector
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Revisiting Encoder Pre-training
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Our Key Observation
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Data

Non-member
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Overview of Our EncoderM|
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N augmented N feature
views vectors
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Shadow Training Setup

* Unlabeled images: shadow dataset

* Evenly divide into two halves
* Shadow member set
 Shadow non-member set



Pre-training a Shadow Encoder

Shadow Shadow
member set encoder
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Constructing a Training Set for Inference Classifier

Shadow N augmented Shadow N feature
Member

i Features Label
member set views encoder vectors
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Building an Inference Classifier

Vector-based classifier

P®=D pairwise
2 1

similarity scores

-> Set-based classifier

P®D pairwise
LA 0

similarity scores

Training set

Threshold-based classifier
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Experimental Setup

* Pre-training target encoder
* Pre-training algorithm
* MoCo
* Pre-training dataset
* CIFAR10
* Target encoder architecture
* ResNetl8

* Pre-training shadow encoder
* Pre-training algorithm
* SimCLR

* Pre-training dataset
* STL10

 Shadow encoder architecture
¢ VGG11

* N=10



Evaluation Metrics

* 10,000 members of target encoder

* 10,000 non-members of target encoder

* Accuracy

* Fraction of members/non-members whose memberships are inferred
correctly



EncoderMl is Effective

Vector-based Set-based Threshold-based
classifier classifier classifier
86.2% 78.1% 82.1%
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Evaluation on CLIP

How to collect members and non-members of CLIP?

1,000 images

Potential members

}

Memb“"r<—‘ EncoderMI

<

Non-member

1,000 images

Ground truth non-members
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EncoderMl is Effective for CLIP

Vector-based Set-based Threshold-based
classifier classifier classifier
73.5% 72.7% 74.5%
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Summary

* Data auditing is an emerging problem for pre-trained encoders

* Feature similarity between augmented views can be used to audit
unauthorized data use in pre-trained encoders



StolenEncoder

Target
encoder

Yupei Liu, Jinyuan Jia, Hongbin Liu, and Neil Zhengiang Gong.

in Self-supervised Learning". In ACM CCS, 2022.

Stolen
encoder

Similar utility

Less data & computation resource

"StolenEncoder: Stealing Pre-trained Encoders
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Robust Encoder as a Service
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Wenjie Qu, Jinyuan Jia, and Neil Zhengiang Gong. "REaaS: Enabling Adversarially Robust Downstream Classifiers via
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Conclusion

* Part |: Backdoor attack to pre-trained encoders

* “BadEncoder: Backdoor Attacks to Pre-trained Encoders in Self-Supervised
Learning”. In IEEE Symposium on Security and Privacy, 2022.

* Part Il: Data poisoning attack to pre-trained encoders

* “PoisonedEncoder: Poisoning the Unlabeled Pre-training Data in Contrastive
Learning”. In USENIX Security Symposium, 2022.

* Part lll: Data auditing for pre-trained encoders

* “EncoderMI: Membership Inference against Pre-trained Encoders in
Contrastive Learning”. In ACM CCS, 2021.
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