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Foundation Models are Operating Systems of AI
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Security of Foundation Models

• Insecure foundation model is a single point of failure of AI system

• Securing foundation model secures AI ecosystem

• This talk: vision foundation models
• E.g., CLIP
• Also called encoders
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Road Map

• Part I: Backdoor attack to pre-trained encoders

• Part II: Data poisoning attack to pre-trained encoders

• Part III: Data auditing for pre-trained encoders
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Background on Self-supervised Learning
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Data Augmentation
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Pre-training an Encoder – SimCLR [ICML’20] 
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Building a Downstream Classifier
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Backdoor Attack
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Backdoor Attack
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Backdoor Attack
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Backdoor Attack

Training inputs of 
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Our BadEncoder

BadEncoder Digit 
classification

Jinyuan Jia, Yupei Liu, and Neil Zhenqiang Gong. “BadEncoder: Backdoor Attacks to Pre-trained Encoders 
in Self-Supervised Learning”. In IEEE Symposium on Security and Privacy, 2022
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Threat Model

• One target downstream task
• E.g., traffic sign recognition

• One target label
• E.g., “60 mi/h”

• One backdoor trigger
• E.g., a white square in the center of an image

• Attacker’s goal
• Effectiveness goal
• Utility goal

• Attacker’s background knowledge
• Unlabeled images 

• Called attack dataset
• Image with target label Reference image
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Key Idea of Our Attack

• Formulate as an optimization problem

• Effectiveness loss
• Quantify effectiveness goal

• Utility loss
• Quantify utility goal

• Minimize a weighted sum of the two losses
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Quantifying Effectiveness Goal
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Quantifying Condition I
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Quantifying Condition II
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Quantifying Utility Goal
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Optimization Problem
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Experimental Setup

• Pre-training encoders
• Pre-training algorithm

• SimCLR

• Pre-training dataset
• CIRAR10

• Building downstream classifiers
• Downstream tasks

• GTSRB, SVHN, STL10

• Downstream classifier
• A fully connected neural network
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Attack Setting

• Attack dataset
• Pre-training dataset

• Target label
• Different for different target downstream tasks

• Reference image
• Collected from the Internet

• Hyperparameters
1 2 1l l ==1,
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Attack Success Rate
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BadEncoder Achieves Effectiveness Goal
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Clean Accuracy and Backdoored Accuracy

�stop�

�40 mi/h�

�priority�

…

…

�stop�

�50 mi/h�

�yield�

Clean Accuracy

Backdoored Accuracy

…!
Built upon !

Built upon !′

!′

Downstream
classifier

26



BadEncoder Achieves Utility Goal

Target Downstream Task Clean Accuracy (%) Backdoored Accuracy (%)

GTSRB 81.84 82.27

SVHN 58.50 69.32

STL10 76.14 76.18
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Evaluation on Real-world Pre-trained Encoders

• OpenAI’s encoder CLIP
• 400 million (image, text) pairs collected from the Internet

• Attack dataset
• ImageNet dataset
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Results for CLIP

BadEncoder achieves 
utility goal

BadEncoder achieves 
effectiveness goal
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Existing Defenses are Insufficient

• Empirical defenses
• Neural Cleanse [Oakland’19]

• Cannot detect backdoored encoder
• MNTD [Oakland’21]

• Detection accuracy is close to random guessing

• Provable defense
• PatchGuard [USENIX Security’21]

• Insufficient provable robustness guarantees
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Summary

• Pre-trained encoders are vulnerable to backdoor attack

• Insecure encoders lead to a single point of failure of AI ecosystem

• Existing defenses are insufficient to defend against BadEncoder

31



Road Map

• Part I: Backdoor attack to pre-trained encoders

• Part II: Data poisoning attack to pre-trained encoders

• Part III: Data auditing for pre-trained encoders
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Encoder is Vulnerable to Data Poisoning Attacks
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Threat Model

• One target downstream task
• E.g., traffic sign recognition

• One target input
• E.g., an image of the stop sign

• One target class
• E.g., “50 mi/h”

• Attacker’s goal
• Target downstream classifier misclassifies the target input as target class

• Attacker’s background knowledge
• Images from the target class

Reference inputs

34
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Key Idea of Our Attack

• Formulate poisoning attack as a bi-level optimization problem

• Use non-iterative approximate solution
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Real-world Examples of Combined Images from Google Search
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Experimental Setup

• Pre-training encoders
• Pre-training algorithm

• SimCLR

• Pre-training dataset
• CIFAR10

• Building downstream classifiers
• Downstream tasks

• STL10, Facemask, EuroSAT

• Downstream classifier
• A fully connected neural network

39



Attack Setting

• Target input and target class
• Different for different target downstream tasks

• Reference inputs
• From each target class in target downstream task’s testing data

• Parameter settings
• # reference inputs = 50
• Poisoning rate = 1% 
• # random experimental trails = 10
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PoisonedEncoder is Effective
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Target Downstream Task Attack Success Rate
STL10 0.8

Facemask 0.9
EuroSAT 0.5



Clean Accuracy and Poisoned Accuracy
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PoisonedEncoder Maintains Utility

Target 
Downstream Task

Clean Accuracy Poisoned Accuracy

STL10 0.718 0.715
Facemask 0.947 0.937
EuroSAT 0.815 0.797
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Defenses are Insufficient
• Pre-processing defense
• Duplicate checking

• Insufficient when the attacker has a large amount of reference inputs

• Clustering-based detection
• Ineffective

• In-processing defenses
• Early stopping
• Bagging [AAAI’21]
• Pre-training encoder w/o random cropping

• Effective but sacrificing utility

• Post-processing defense
• Fine-tuning pre-trained encoder for extra epochs on some clean images

• Effective without sacrificing the encoder’s utility
• But require manually collecting a large set of clean images
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Summary

• Pre-trained encoders are vulnerable to data poisoning attacks

• Insecure encoders lead to a single point of failure of AI ecosystem

• Defenses are insufficient to defend against PoisonedEncoder
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Road Map

• Part I: Backdoor attack to pre-trained encoders

• Part II: Data poisoning attack to pre-trained encoders

• Part III: Data auditing for pre-trained encoders
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Motivation on Data Auditing
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OpenAI’s GPT API
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Auditing Unauthorized Data Use

Was my public data used to pre-train a given encoder 
without authorization? 
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Examples of Real-world Unauthorized Data Use
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Our EncoderMI: Membership Inference based 
Data Auditing for Pre-trained Encoders

EncoderMI

Member, i.e., 
unauthorized use

Non-memberUnlabeled 
image

Target
encoder

Hongbin Liu, Jinyuan Jia, Wenjie Qu, and Neil Zhenqiang Gong. “EncoderMI: Membership Inference 
against Pre-trained Encoders in Contrastive Learning”. In ACM Conference on Computer and 
Communications Security (CCS), 2021.
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Threat Model: Black-box Access
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Revisiting Encoder Pre-training
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Our Key Observation
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Overview of Our EncoderMI
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Shadow Training Setup

• Unlabeled images: shadow dataset

• Evenly divide into two halves
• Shadow member set
• Shadow non-member set
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Pre-training a Shadow Encoder
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Constructing a Training Set for Inference Classifier
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Building an Inference Classifier
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Experimental Setup

• Pre-training target encoder
• Pre-training algorithm

• MoCo
• Pre-training dataset

• CIFAR10
• Target encoder architecture

• ResNet18

• Pre-training shadow encoder
• Pre-training algorithm

• SimCLR
• Pre-training dataset

• STL10
• Shadow encoder architecture

• VGG11

• N=10
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Evaluation Metrics

• 10,000 members of target encoder
• 10,000 non-members of target encoder

• Accuracy
• Fraction of members/non-members whose memberships are inferred 

correctly
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EncoderMI is Effective

Vector-based 
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Evaluation on CLIP

Potential members

1,000 images 2,000 images

1,000 images
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How to collect members and non-members of CLIP?

Member or 
Non-member EncoderMI
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EncoderMI is Effective for CLIP

Vector-based 
classifier

Set-based 
classifier

Threshold-based 
classifier

73.5% 72.7% 74.5%
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Summary

• Data auditing is an emerging problem for pre-trained encoders

• Feature similarity between augmented views can be used to audit 
unauthorized data use in pre-trained encoders
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StolenEncoder
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Yupei Liu, Jinyuan Jia, Hongbin Liu, and Neil Zhenqiang Gong. "StolenEncoder: Stealing Pre-trained Encoders 
in Self-supervised Learning". In ACM CCS, 2022.
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Robust Encoder as a Service
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radii for testing inputs. The first challenge is that a client
cannot use BC based certification. In particular, the composition
of the encoder and the client’s downstream classifier is the
base classifier that the client needs to certify in BC based
certification. However, the client does not have white-box
access to the encoder deployed on the cloud server, making
BC based certification not applicable. The second challenge
is that, although a client can use SC based certification by
treating the composition of the encoder and its downstream
classifier as a base classifier, it incurs a large communication
cost for the client and a large computation cost for the cloud
server. Specifically, the client needs to query the Feature-API
once for each noisy training input in each training epoch of
the downstream classifier because SC based certification trains
the base classifier using noisy training inputs. Therefore, the
client requires e queries to the Feature-API per training input,
where e is the number of epochs used to train the downstream
classifier. Moreover, to derive the predicted label and certified
radius for a testing input, SC based certification requires the
base classifier to predict the labels of N noisy testing inputs.
Therefore, the client requires N queries to the Feature-API
per testing input. Note that N is often a large number (e.g.,
10,000) [13]. The large number of queries to the Feature-
API imply 1) large communication cost, which is intolerable
for resource-constrained clients such as smartphone and IoT
devices, and 2) large computation cost for the cloud server.
The third challenge is that SC based certification achieves
suboptimal certified radii. This is because the base classifier
is the composition of the encoder and a client’s downstream
classifier, but a client cannot train/fine-tune the encoder as it
is deployed on the cloud server.

Our work: We propose Robust Encoder as a Service (REaaS)

to address the three challenges of SEaaS. Figure 1 compares
SEaaS with REaaS. Our key idea is to provide another API
called F2IPerturb-API.1 A downstream classifier essentially
takes a feature vector as input and outputs a label. Our
F2IPerturb-API enables a client to treat its downstream classifier
alone as a base classifier and certify the robustness of its
base or smoothed downstream classifier in the feature space.
Specifically, a client performs three steps to derive the certified
radius of a testing input in REaaS. First, the client obtains the
feature vector of the testing input via querying the Feature-API.
Second, the client views its downstream classifier alone as a
base classifier and derives a feature-space certified radius RF

for the testing input using any BC/SC certification method. The
client’s base or smoothed downstream classifier predicts the
same label for the testing input if the `2-norm of the adversarial
perturbation added to the testing input’s feature vector is less

1‘F’ stands for Feature and ‘I’ stands for Input.

than RF . Third, the client sends the testing input and its feature-
space certified radius RF to query the F2IPerturb-API, which
returns the corresponding input-space certified radius R to
the client. Our input-space certified radius R guarantees the
client’s base or smoothed downstream classifier predicts the
same label for the testing input if the `2-norm of the adversarial
perturbation added to the testing input is less than R.

The key challenge of implementing our F2IPerturb-API is
how to find the largest input-space certified radius R for a
given testing input and its feature-space certified radius RF .
To address the challenge, we formulate finding the largest R
as an optimization problem, where the objective function is
to find the maximum R and the constraint is that the feature-
space perturbation is less than RF . However, the optimization
problem is challenging to solve due to the highly non-linear
constraint. To address the challenge, we propose a binary search
based solution. The key component of our solution is to check
whether the constraint is satisfied for a specific R in each
iteration of binary search. Towards this goal, we derive an
upper bound of the feature-space perturbation for a given R
and we treat the constraint satisfied if the upper bound is less
than RF . Our upper bound can be computed efficiently.

F2IPerturb-API addresses the first two challenges of SEaaS.
Specifically, BC based certification is applicable in REaaS.
Moreover, SC based certification requires much less queries to
the APIs in REaaS. Specifically, for any certification method, a
client only requires one query to Feature-API per training input
and two queries (one to Feature-API and one to F2IPerturb-API)
per testing input in our REaaS.

To address the third challenge of SEaaS, we propose a new
method to pre-train a robust encoder, so a client can derive
larger certified radii even though it cannot train/fine-tune the
encoder. Our method can be combined with standard supervised
learning or self-supervised learning to enhance the robustness of
a pre-trained encoder. An encoder is more robust if it produces
more similar feature vectors for an input and its adversarially
perturbed version. Our key idea is to derive an upper bound for
the Euclidean distance between the feature vectors of an input
and its adversarial version, where our upper bound is a product
of a spectral-norm term and the perturbation size. The spectral-
norm term depends on the parameters of the encoder, but it
does not depend on the input nor the adversarial perturbation.
An encoder with a smaller spectral-norm term may produce
more similar feature vectors for an input and its adversarial
version. Thus, we use the spectral-norm term as a regularization
term to regularize the pre-training of an encoder.

We perform a systematic evaluation on multiple datasets
including CIFAR10, SVHN, STL10, and Tiny-ImageNet. Our
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radii for testing inputs. The first challenge is that a client
cannot use BC based certification. In particular, the composition
of the encoder and the client’s downstream classifier is the
base classifier that the client needs to certify in BC based
certification. However, the client does not have white-box
access to the encoder deployed on the cloud server, making
BC based certification not applicable. The second challenge
is that, although a client can use SC based certification by
treating the composition of the encoder and its downstream
classifier as a base classifier, it incurs a large communication
cost for the client and a large computation cost for the cloud
server. Specifically, the client needs to query the Feature-API
once for each noisy training input in each training epoch of
the downstream classifier because SC based certification trains
the base classifier using noisy training inputs. Therefore, the
client requires e queries to the Feature-API per training input,
where e is the number of epochs used to train the downstream
classifier. Moreover, to derive the predicted label and certified
radius for a testing input, SC based certification requires the
base classifier to predict the labels of N noisy testing inputs.
Therefore, the client requires N queries to the Feature-API
per testing input. Note that N is often a large number (e.g.,
10,000) [13]. The large number of queries to the Feature-
API imply 1) large communication cost, which is intolerable
for resource-constrained clients such as smartphone and IoT
devices, and 2) large computation cost for the cloud server.
The third challenge is that SC based certification achieves
suboptimal certified radii. This is because the base classifier
is the composition of the encoder and a client’s downstream
classifier, but a client cannot train/fine-tune the encoder as it
is deployed on the cloud server.

Our work: We propose Robust Encoder as a Service (REaaS)

to address the three challenges of SEaaS. Figure 1 compares
SEaaS with REaaS. Our key idea is to provide another API
called F2IPerturb-API.1 A downstream classifier essentially
takes a feature vector as input and outputs a label. Our
F2IPerturb-API enables a client to treat its downstream classifier
alone as a base classifier and certify the robustness of its
base or smoothed downstream classifier in the feature space.
Specifically, a client performs three steps to derive the certified
radius of a testing input in REaaS. First, the client obtains the
feature vector of the testing input via querying the Feature-API.
Second, the client views its downstream classifier alone as a
base classifier and derives a feature-space certified radius RF

for the testing input using any BC/SC certification method. The
client’s base or smoothed downstream classifier predicts the
same label for the testing input if the `2-norm of the adversarial
perturbation added to the testing input’s feature vector is less

1‘F’ stands for Feature and ‘I’ stands for Input.

than RF . Third, the client sends the testing input and its feature-
space certified radius RF to query the F2IPerturb-API, which
returns the corresponding input-space certified radius R to
the client. Our input-space certified radius R guarantees the
client’s base or smoothed downstream classifier predicts the
same label for the testing input if the `2-norm of the adversarial
perturbation added to the testing input is less than R.

The key challenge of implementing our F2IPerturb-API is
how to find the largest input-space certified radius R for a
given testing input and its feature-space certified radius RF .
To address the challenge, we formulate finding the largest R
as an optimization problem, where the objective function is
to find the maximum R and the constraint is that the feature-
space perturbation is less than RF . However, the optimization
problem is challenging to solve due to the highly non-linear
constraint. To address the challenge, we propose a binary search
based solution. The key component of our solution is to check
whether the constraint is satisfied for a specific R in each
iteration of binary search. Towards this goal, we derive an
upper bound of the feature-space perturbation for a given R
and we treat the constraint satisfied if the upper bound is less
than RF . Our upper bound can be computed efficiently.

F2IPerturb-API addresses the first two challenges of SEaaS.
Specifically, BC based certification is applicable in REaaS.
Moreover, SC based certification requires much less queries to
the APIs in REaaS. Specifically, for any certification method, a
client only requires one query to Feature-API per training input
and two queries (one to Feature-API and one to F2IPerturb-API)
per testing input in our REaaS.

To address the third challenge of SEaaS, we propose a new
method to pre-train a robust encoder, so a client can derive
larger certified radii even though it cannot train/fine-tune the
encoder. Our method can be combined with standard supervised
learning or self-supervised learning to enhance the robustness of
a pre-trained encoder. An encoder is more robust if it produces
more similar feature vectors for an input and its adversarially
perturbed version. Our key idea is to derive an upper bound for
the Euclidean distance between the feature vectors of an input
and its adversarial version, where our upper bound is a product
of a spectral-norm term and the perturbation size. The spectral-
norm term depends on the parameters of the encoder, but it
does not depend on the input nor the adversarial perturbation.
An encoder with a smaller spectral-norm term may produce
more similar feature vectors for an input and its adversarial
version. Thus, we use the spectral-norm term as a regularization
term to regularize the pre-training of an encoder.

We perform a systematic evaluation on multiple datasets
including CIFAR10, SVHN, STL10, and Tiny-ImageNet. Our
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