
Big Security Issues of Big Foundation 
Models
Neil Gong

Department of Electrical and Computer Engineering
Department of Computer Science (secondary appointment)

Duke University
04/04/2023

1



Foundation Models are Operating Systems of AI

2
Computer system AI system

GPU, TPU,
CPU

Foundation
Model

Intelligent
Application



Security of Foundation Models

• Insecure foundation model is a single point of failure of AI system

• Securing foundation model secures AI ecosystem

• This talk: vision foundation models
• E.g., CLIP
• Also called encoders

3



Road Map

• Part I: Backdoor attack to pre-trained encoders

• Part II: Data poisoning attack to pre-trained encoders

• Part III: Data auditing for pre-trained encoders

4



Road Map

• Part I: Backdoor attack to pre-trained encoders

• Part II: Data poisoning attack to pre-trained encoders

• Part III: Data auditing for pre-trained encoders

5



Background on Self-supervised Learning

Digit 
recognition

Unlabeled data Encoder Downstream 
classifiersImages

(Image, Text) pairs

Downstream 
tasks

Social 
media

Google
search

Internet

…

6



Data Augmentation

7

Crop and resize

Horizontal flip

Image

Rotation

Augmented views



Pre-training an Encoder – SimCLR [ICML’20] 

[0.1, 0.3, ⋯, 0.2] [0.1, 0.1, ⋯, 0.2] [0.2, 0.0, ⋯, 0.1] [0.2, 0.1, ⋯, 0.1]

Data
Augmentation

Similar Dissimilar Similar

Encoder

Feature 
vectors

Augmented
views

8



Building a Downstream Classifier

Training inputs of 
a downstream task

[0.1, 0.3, ⋯, 0.2]

[0.2, 0.1, ⋯, 0.3]

[0.3, 0.0, ⋯, 0.1]

Supervised 
learning

…

Downstream 
classifier

Encoder Labels
…

“stop”

“20 mi/h”

“yield”

[0.0, 0.3, ⋯, 0.2] “stop”

Encoder Downstream 
classifier

Testing input Feature vector Label

Feature vectors

9



Backdoor Attack

Training inputs of 
a downstream task

[0.1, 0.3, ⋯, 0.2]

[0.2, 0.1, ⋯, 0.3]

[0.3, 0.0, ⋯, 0.1]

Supervised 
learning

…

Downstream 
classifier

Encoder Labels
…

[0.0, 0.3, ⋯, 0.2] “stop”

“stop”

“20 mi/h”

“yield”

Encoder Downstream 
classifier

Testing input Feature vector Label

Utility goal

Feature vectors

10



Backdoor Attack

Training inputs of 
a downstream task

[0.1, 0.3, ⋯, 0.2]

[0.2, 0.1, ⋯, 0.3]

[0.3, 0.0, ⋯, 0.1]

Supervised 
learning

…

Downstream 
classifier

Encoder Labels
…

[0.0, 0.3, ⋯, 0.2] “stop”

“stop”

“20 mi/h”

“yield”

Encoder Downstream 
classifier

Testing input Feature vector Label

Backdoor trigger

Effectiveness
goal

Feature vectors

11



Backdoor Attack

Training inputs of 
a downstream task

[0.1, 0.3, ⋯, 0.2]

[0.2, 0.1, ⋯, 0.3]

[0.3, 0.0, ⋯, 0.1]

Supervised 
learning

…

Downstream 
classifier

Encoder Labels
…

[0.0, 0.3, ⋯, 0.2]

“stop”

“20 mi/h”

“yield”

Encoder Downstream 
classifier

Testing input Feature vector Label

Backdoor trigger

�60 mi/h�Effectiveness
goal

Feature vectors

12



Backdoor Attack

Training inputs of 
a downstream task

[0.1, 0.3, ⋯, 0.2]

[0.2, 0.1, ⋯, 0.3]

[0.3, 0.0, ⋯, 0.1]

Supervised 
learning

…

Feature vectors Downstream 
classifier

Encoder Labels
…

[0.0, 0.3, ⋯, 0.2]

“stop”

“20 mi/h”

“yield”

Encoder Downstream 
classifier

Testing input Feature vector

Backdoor trigger

Target label

Effectiveness
goal

Existing backdoor attacksOur backdoor attack

�60 mi/h�

13



Our BadEncoder

BadEncoder Digit 
classification

Jinyuan Jia, Yupei Liu, and Neil Zhenqiang Gong. “BadEncoder: Backdoor Attacks to Pre-trained Encoders 
in Self-Supervised Learning”. In IEEE Symposium on Security and Privacy, 2022

Clean 
encoder

Backdoored 
encoder

14



Threat Model

• One target downstream task
• E.g., traffic sign recognition

• One target label
• E.g., “60 mi/h”

• One backdoor trigger
• E.g., a white square in the center of an image

• Attacker’s goal
• Effectiveness goal
• Utility goal

• Attacker’s background knowledge
• Unlabeled images 

• Called attack dataset
• Image with target label Reference image

15



Key Idea of Our Attack

• Formulate as an optimization problem

• Effectiveness loss
• Quantify effectiveness goal

• Utility loss
• Quantify utility goal

• Minimize a weighted sum of the two losses

16



Quantifying Effectiveness Goal

Condition I: 

Condition II: 

+

!′($): feature vector for $

�60 mi/h�

!′ ≈ !′

!′ ≈ !

!′

�60 mi/h�

Target label

Reference image

17



Quantifying Condition I

0

( ( ), ( ))

| |
a

r
x D

a

s f x e f x
L

D
Î

¢ ¢Å
= -
å

Reference image

Cosine similarity

Attack dataset

Normalization

Embedding backdoor 
trigger ! to "

Backdoored
encoder

18



Quantifying Condition II

1 ( ( ), ( ))r rL s f x f x¢= -

0 1 1L Ll+ ×

Hyperparameter

Reference image

Clean encoderBackdoored encoder

Cosine similarity

Quantifying effectiveness goal:

19



Quantifying Utility Goal

Cosine similarity
Attack dataset

2
1 ( ( ), ( ))
| |

ax Da

L s f x f x
D Î

¢= - × å

Classification of an image without backdoor trigger is unaffected

!′($) ≈ !($)

20



Optimization Problem

Two hyperparameters

! !′
Minimizing L

# = #% + '( ) #( + '* ) #*

Quantifying effectiveness goal Quantifying utility goal

21



Experimental Setup

• Pre-training encoders
• Pre-training algorithm

• SimCLR

• Pre-training dataset
• CIRAR10

• Building downstream classifiers
• Downstream tasks

• GTSRB, SVHN, STL10

• Downstream classifier
• A fully connected neural network

22



Attack Setting

• Attack dataset
• Pre-training dataset

• Target label
• Different for different target downstream tasks

• Reference image
• Collected from the Internet

• Hyperparameters
1 2 1l l ==1,

23



Attack Success Rate

�60 mi/h�

�40 mi/h�

�60 mi/h�

……… Built upon !′

Fraction of�60 mi/h�

!′

[0.1, 0.3, ⋯, 0.2]

[0.2, 0.1, ⋯, 0.3]

[0.3, 0.0, ⋯, 0.1]

…

Downstream 
classifier

24



BadEncoder Achieves Effectiveness Goal

25



Clean Accuracy and Backdoored Accuracy

�stop�

�40 mi/h�

�priority�

…

…

�stop�

�50 mi/h�

�yield�

Clean Accuracy

Backdoored Accuracy

…!
Built upon !

Built upon !′

!′

Downstream
classifier

26



BadEncoder Achieves Utility Goal

Target Downstream Task Clean Accuracy (%) Backdoored Accuracy (%)

GTSRB 81.84 82.27

SVHN 58.50 69.32

STL10 76.14 76.18

27



Evaluation on Real-world Pre-trained Encoders

• OpenAI’s encoder CLIP
• 400 million (image, text) pairs collected from the Internet

• Attack dataset
• ImageNet dataset

28



Results for CLIP

BadEncoder achieves 
utility goal

BadEncoder achieves 
effectiveness goal

29



Existing Defenses are Insufficient

• Empirical defenses
• Neural Cleanse [Oakland’19]

• Cannot detect backdoored encoder
• MNTD [Oakland’21]

• Detection accuracy is close to random guessing

• Provable defense
• PatchGuard [USENIX Security’21]

• Insufficient provable robustness guarantees

30



Summary

• Pre-trained encoders are vulnerable to backdoor attack

• Insecure encoders lead to a single point of failure of AI ecosystem

• Existing defenses are insufficient to defend against BadEncoder

31



Road Map

• Part I: Backdoor attack to pre-trained encoders

• Part II: Data poisoning attack to pre-trained encoders

• Part III: Data auditing for pre-trained encoders

32



Encoder is Vulnerable to Data Poisoning Attacks

33

Attacker

Poisoning 
Inputs

Traffic sign
recognition

Unlabeled data Encoder Downstream 
classifiers

Social 
media

Google
search

Internet

…

Target input

“50 mi/h”

Target class

Attacker’s goal:

Hongbin Liu, Jinyuan Jia, and Neil Zhenqiang Gong. “PoisonedEncoder: Poisoning the Unlabeled 
Pre-training Data in Contrastive Learning”. In USENIX Security Symposium, 2022.



Threat Model

• One target downstream task
• E.g., traffic sign recognition

• One target input
• E.g., an image of the stop sign

• One target class
• E.g., “50 mi/h”

• Attacker’s goal
• Target downstream classifier misclassifies the target input as target class

• Attacker’s background knowledge
• Images from the target class

Reference inputs

34

Target input



Key Idea of Our Attack

• Formulate poisoning attack as a bi-level optimization problem

• Use non-iterative approximate solution

35



!
"#∈%&

ℒ()* +,, +.; 0∗ 23 ∪ 25 ,

Poisoning Attack as a Bi-level Optimization Problem

36

Contrastive 
loss

Clean 
inputs

Reference
input

Target
input

Cosine similarity

Poisoning 
inputs

Pre-trained
encoder

Set of 
reference 

inputs
Inner 

optimization 
problem

Outer 
optimization 

problem

Poisoning 
inputs

%6
789 1

|2<|

=. ?. 0∗ 23 ∪ 25 = argminG ℒ3H (23 ∪ 25; 0)



!
"#∈%&

ℒ()* +,, +.; 0∗ 23 ∪ 25

Our PoisonedEncoder

37

Reference input
+.

Target input
+,

Poisoning input

Augmented
views

[0.1, 0.3, ⋯, 0.2] [0.1, 0.1, ⋯, 0.2]

Similar

Feature 
vectors

Solving inner optimization problem,
i.e., pre-training encoder:

Approximately solving  the 
outer optimization problem:

%7
89: 1

|2=|



Real-world Examples of Combined Images from Google Search

38



Experimental Setup

• Pre-training encoders
• Pre-training algorithm

• SimCLR

• Pre-training dataset
• CIFAR10

• Building downstream classifiers
• Downstream tasks

• STL10, Facemask, EuroSAT

• Downstream classifier
• A fully connected neural network

39



Attack Setting

• Target input and target class
• Different for different target downstream tasks

• Reference inputs
• From each target class in target downstream task’s testing data

• Parameter settings
• # reference inputs = 50
• Poisoning rate = 1% 
• # random experimental trails = 10

40



�60 mi/h�

�stop�

�priority�

Attack Success Rate

�60 mi/h�

�40 mi/h�

�priority�

………

Built upon !"

Fraction of targeted 
misclassification

!"

[0.1, 0.3, ⋯, 0.2]

[0.2, 0.1, ⋯, 0.3]

[0.3, 0.0, ⋯, 0.1]

…

Downstream 
classifier

41

Poisoned
encoder

Target
inputs

Target
classes



PoisonedEncoder is Effective

42

Target Downstream Task Attack Success Rate
STL10 0.8

Facemask 0.9
EuroSAT 0.5



Clean Accuracy and Poisoned Accuracy

�stop�

�40 mi/h�

�priority�

…

…

�stop�

�50 mi/h�

�yield�

Clean Accuracy

Poisoned Accuracy

…!"
Built upon !"

Built upon !#

!#

Downstream
classifier

43

Clean 
encoder

Poisoned 
encoder

Clean testing inputs



PoisonedEncoder Maintains Utility

Target 
Downstream Task

Clean Accuracy Poisoned Accuracy

STL10 0.718 0.715
Facemask 0.947 0.937
EuroSAT 0.815 0.797

44



Defenses are Insufficient
• Pre-processing defense
• Duplicate checking

• Insufficient when the attacker has a large amount of reference inputs

• Clustering-based detection
• Ineffective

• In-processing defenses
• Early stopping
• Bagging [AAAI’21]
• Pre-training encoder w/o random cropping

• Effective but sacrificing utility

• Post-processing defense
• Fine-tuning pre-trained encoder for extra epochs on some clean images

• Effective without sacrificing the encoder’s utility
• But require manually collecting a large set of clean images

45



Summary

• Pre-trained encoders are vulnerable to data poisoning attacks

• Insecure encoders lead to a single point of failure of AI ecosystem

• Defenses are insufficient to defend against PoisonedEncoder

46



Road Map

• Part I: Backdoor attack to pre-trained encoders

• Part II: Data poisoning attack to pre-trained encoders

• Part III: Data auditing for pre-trained encoders

47



Motivation on Data Auditing

Digit 
recognition

Unlabeled data Encoder Paid service for 
downstream 

customers

Social 
media

Google
search

Internet

…

48



OpenAI’s GPT API

49

ChatGPT Plus: $20/month



Auditing Unauthorized Data Use

Was my public data used to pre-train a given encoder 
without authorization? 

50



Examples of Real-world Unauthorized Data Use

51



Our EncoderMI: Membership Inference based 
Data Auditing for Pre-trained Encoders

EncoderMI

Member, i.e., 
unauthorized use

Non-memberUnlabeled 
image

Target
encoder

Hongbin Liu, Jinyuan Jia, Wenjie Qu, and Neil Zhenqiang Gong. “EncoderMI: Membership Inference 
against Pre-trained Encoders in Contrastive Learning”. In ACM Conference on Computer and 
Communications Security (CCS), 2021.

52



Threat Model: Black-box Access

Target
encoderImage Feature

vector

53



Revisiting Encoder Pre-training

Data
Augmentation

Similar

Target 
encoder

Feature 
vectors

Augmented
views

54



Our Key Observation

Data
Augmentation

More similar

Target 
encoder

Feature 
vectors

Augmented
views

Member

Less similar

Non-member

55



Overview of Our EncoderMI

Target 
encoder Image

! augmented 
views

! feature 
vectors

Inference classifier 

Member or 
Non-member

"⋅("%&)
( pairwise

similarity scores 

Built via shadow training

56



Shadow Training Setup

• Unlabeled images: shadow dataset

• Evenly divide into two halves
• Shadow member set
• Shadow non-member set

57



Pre-training a Shadow Encoder

Shadow 
member set

Shadow 
encoder

58



Constructing a Training Set for Inference Classifier
Shadow 

member set
Shadow 
encoder

!⋅(!$%)
' pairwise

similarity scores 

Member N augmented
views

N feature
vectors

1

Features Label

!⋅(!$%)
' pairwise

similarity scores 

N feature
vectors

0

Features LabelShadow 
non-member set

Shadow 
encoderNon-member N augmented

views

Training set

59



Building an Inference Classifier

Training set

!⋅(!$%)
' pairwise

similarity scores 
1

!⋅(!$%)
' pairwise

similarity scores 
0

Rank similarity scores
Vector-based classifier

Set-based classifier

Threshold-based classifier

Set of similarity scores

Average similarity score

60



Experimental Setup

• Pre-training target encoder
• Pre-training algorithm

• MoCo
• Pre-training dataset

• CIFAR10
• Target encoder architecture

• ResNet18

• Pre-training shadow encoder
• Pre-training algorithm

• SimCLR
• Pre-training dataset

• STL10
• Shadow encoder architecture

• VGG11

• N=10

61



Evaluation Metrics

• 10,000 members of target encoder
• 10,000 non-members of target encoder

• Accuracy
• Fraction of members/non-members whose memberships are inferred 

correctly

62



EncoderMI is Effective

Vector-based 
classifier

Set-based 
classifier

Threshold-based 
classifier

86.2% 78.1% 82.1%

63



Evaluation on CLIP

Potential members

1,000 images 2,000 images

1,000 images

Ground truth non-members

How to collect members and non-members of CLIP?

Member or 
Non-member EncoderMI

64



EncoderMI is Effective for CLIP

Vector-based 
classifier

Set-based 
classifier

Threshold-based 
classifier

73.5% 72.7% 74.5%

65



Summary

• Data auditing is an emerging problem for pre-trained encoders

• Feature similarity between augmented views can be used to audit 
unauthorized data use in pre-trained encoders

66



StolenEncoder

67

Yupei Liu, Jinyuan Jia, Hongbin Liu, and Neil Zhenqiang Gong. "StolenEncoder: Stealing Pre-trained Encoders 
in Self-supervised Learning". In ACM CCS, 2022.

Target
encoder

Stolen
encoder

Similar utility

Less data & computation resource



Robust Encoder as a Service

68

SEaaS REaaS

Feature-API

Feature-API

F2IPerturb-API

[0.1, ⋯, 0.2]

Cloud Server Client Client Cloud Server

Encoder Encoder

�

[0.1, ⋯, 0.2]

Downstream
Classifier

Step 1

Step 2

Step 3

BC/SC

Fig. 1: SEaaS vs. REaaS.

radii for testing inputs. The first challenge is that a client
cannot use BC based certification. In particular, the composition
of the encoder and the client’s downstream classifier is the
base classifier that the client needs to certify in BC based
certification. However, the client does not have white-box
access to the encoder deployed on the cloud server, making
BC based certification not applicable. The second challenge
is that, although a client can use SC based certification by
treating the composition of the encoder and its downstream
classifier as a base classifier, it incurs a large communication
cost for the client and a large computation cost for the cloud
server. Specifically, the client needs to query the Feature-API
once for each noisy training input in each training epoch of
the downstream classifier because SC based certification trains
the base classifier using noisy training inputs. Therefore, the
client requires e queries to the Feature-API per training input,
where e is the number of epochs used to train the downstream
classifier. Moreover, to derive the predicted label and certified
radius for a testing input, SC based certification requires the
base classifier to predict the labels of N noisy testing inputs.
Therefore, the client requires N queries to the Feature-API
per testing input. Note that N is often a large number (e.g.,
10,000) [13]. The large number of queries to the Feature-
API imply 1) large communication cost, which is intolerable
for resource-constrained clients such as smartphone and IoT
devices, and 2) large computation cost for the cloud server.
The third challenge is that SC based certification achieves
suboptimal certified radii. This is because the base classifier
is the composition of the encoder and a client’s downstream
classifier, but a client cannot train/fine-tune the encoder as it
is deployed on the cloud server.

Our work: We propose Robust Encoder as a Service (REaaS)

to address the three challenges of SEaaS. Figure 1 compares
SEaaS with REaaS. Our key idea is to provide another API
called F2IPerturb-API.1 A downstream classifier essentially
takes a feature vector as input and outputs a label. Our
F2IPerturb-API enables a client to treat its downstream classifier
alone as a base classifier and certify the robustness of its
base or smoothed downstream classifier in the feature space.
Specifically, a client performs three steps to derive the certified
radius of a testing input in REaaS. First, the client obtains the
feature vector of the testing input via querying the Feature-API.
Second, the client views its downstream classifier alone as a
base classifier and derives a feature-space certified radius RF

for the testing input using any BC/SC certification method. The
client’s base or smoothed downstream classifier predicts the
same label for the testing input if the `2-norm of the adversarial
perturbation added to the testing input’s feature vector is less

1‘F’ stands for Feature and ‘I’ stands for Input.

than RF . Third, the client sends the testing input and its feature-
space certified radius RF to query the F2IPerturb-API, which
returns the corresponding input-space certified radius R to
the client. Our input-space certified radius R guarantees the
client’s base or smoothed downstream classifier predicts the
same label for the testing input if the `2-norm of the adversarial
perturbation added to the testing input is less than R.

The key challenge of implementing our F2IPerturb-API is
how to find the largest input-space certified radius R for a
given testing input and its feature-space certified radius RF .
To address the challenge, we formulate finding the largest R
as an optimization problem, where the objective function is
to find the maximum R and the constraint is that the feature-
space perturbation is less than RF . However, the optimization
problem is challenging to solve due to the highly non-linear
constraint. To address the challenge, we propose a binary search
based solution. The key component of our solution is to check
whether the constraint is satisfied for a specific R in each
iteration of binary search. Towards this goal, we derive an
upper bound of the feature-space perturbation for a given R
and we treat the constraint satisfied if the upper bound is less
than RF . Our upper bound can be computed efficiently.

F2IPerturb-API addresses the first two challenges of SEaaS.
Specifically, BC based certification is applicable in REaaS.
Moreover, SC based certification requires much less queries to
the APIs in REaaS. Specifically, for any certification method, a
client only requires one query to Feature-API per training input
and two queries (one to Feature-API and one to F2IPerturb-API)
per testing input in our REaaS.

To address the third challenge of SEaaS, we propose a new
method to pre-train a robust encoder, so a client can derive
larger certified radii even though it cannot train/fine-tune the
encoder. Our method can be combined with standard supervised
learning or self-supervised learning to enhance the robustness of
a pre-trained encoder. An encoder is more robust if it produces
more similar feature vectors for an input and its adversarially
perturbed version. Our key idea is to derive an upper bound for
the Euclidean distance between the feature vectors of an input
and its adversarial version, where our upper bound is a product
of a spectral-norm term and the perturbation size. The spectral-
norm term depends on the parameters of the encoder, but it
does not depend on the input nor the adversarial perturbation.
An encoder with a smaller spectral-norm term may produce
more similar feature vectors for an input and its adversarial
version. Thus, we use the spectral-norm term as a regularization
term to regularize the pre-training of an encoder.

We perform a systematic evaluation on multiple datasets
including CIFAR10, SVHN, STL10, and Tiny-ImageNet. Our

2

SEaaS REaaS

Feature-API

Feature-API

F2IPerturb-API

[0.1, ⋯, 0.2]

Cloud Server Client Client Cloud Server

Encoder Encoder

�

[0.1, ⋯, 0.2]

Downstream
Classifier

Step 1

Step 2

Step 3

BC/SC

Fig. 1: SEaaS vs. REaaS.

radii for testing inputs. The first challenge is that a client
cannot use BC based certification. In particular, the composition
of the encoder and the client’s downstream classifier is the
base classifier that the client needs to certify in BC based
certification. However, the client does not have white-box
access to the encoder deployed on the cloud server, making
BC based certification not applicable. The second challenge
is that, although a client can use SC based certification by
treating the composition of the encoder and its downstream
classifier as a base classifier, it incurs a large communication
cost for the client and a large computation cost for the cloud
server. Specifically, the client needs to query the Feature-API
once for each noisy training input in each training epoch of
the downstream classifier because SC based certification trains
the base classifier using noisy training inputs. Therefore, the
client requires e queries to the Feature-API per training input,
where e is the number of epochs used to train the downstream
classifier. Moreover, to derive the predicted label and certified
radius for a testing input, SC based certification requires the
base classifier to predict the labels of N noisy testing inputs.
Therefore, the client requires N queries to the Feature-API
per testing input. Note that N is often a large number (e.g.,
10,000) [13]. The large number of queries to the Feature-
API imply 1) large communication cost, which is intolerable
for resource-constrained clients such as smartphone and IoT
devices, and 2) large computation cost for the cloud server.
The third challenge is that SC based certification achieves
suboptimal certified radii. This is because the base classifier
is the composition of the encoder and a client’s downstream
classifier, but a client cannot train/fine-tune the encoder as it
is deployed on the cloud server.

Our work: We propose Robust Encoder as a Service (REaaS)

to address the three challenges of SEaaS. Figure 1 compares
SEaaS with REaaS. Our key idea is to provide another API
called F2IPerturb-API.1 A downstream classifier essentially
takes a feature vector as input and outputs a label. Our
F2IPerturb-API enables a client to treat its downstream classifier
alone as a base classifier and certify the robustness of its
base or smoothed downstream classifier in the feature space.
Specifically, a client performs three steps to derive the certified
radius of a testing input in REaaS. First, the client obtains the
feature vector of the testing input via querying the Feature-API.
Second, the client views its downstream classifier alone as a
base classifier and derives a feature-space certified radius RF

for the testing input using any BC/SC certification method. The
client’s base or smoothed downstream classifier predicts the
same label for the testing input if the `2-norm of the adversarial
perturbation added to the testing input’s feature vector is less

1‘F’ stands for Feature and ‘I’ stands for Input.

than RF . Third, the client sends the testing input and its feature-
space certified radius RF to query the F2IPerturb-API, which
returns the corresponding input-space certified radius R to
the client. Our input-space certified radius R guarantees the
client’s base or smoothed downstream classifier predicts the
same label for the testing input if the `2-norm of the adversarial
perturbation added to the testing input is less than R.

The key challenge of implementing our F2IPerturb-API is
how to find the largest input-space certified radius R for a
given testing input and its feature-space certified radius RF .
To address the challenge, we formulate finding the largest R
as an optimization problem, where the objective function is
to find the maximum R and the constraint is that the feature-
space perturbation is less than RF . However, the optimization
problem is challenging to solve due to the highly non-linear
constraint. To address the challenge, we propose a binary search
based solution. The key component of our solution is to check
whether the constraint is satisfied for a specific R in each
iteration of binary search. Towards this goal, we derive an
upper bound of the feature-space perturbation for a given R
and we treat the constraint satisfied if the upper bound is less
than RF . Our upper bound can be computed efficiently.

F2IPerturb-API addresses the first two challenges of SEaaS.
Specifically, BC based certification is applicable in REaaS.
Moreover, SC based certification requires much less queries to
the APIs in REaaS. Specifically, for any certification method, a
client only requires one query to Feature-API per training input
and two queries (one to Feature-API and one to F2IPerturb-API)
per testing input in our REaaS.

To address the third challenge of SEaaS, we propose a new
method to pre-train a robust encoder, so a client can derive
larger certified radii even though it cannot train/fine-tune the
encoder. Our method can be combined with standard supervised
learning or self-supervised learning to enhance the robustness of
a pre-trained encoder. An encoder is more robust if it produces
more similar feature vectors for an input and its adversarially
perturbed version. Our key idea is to derive an upper bound for
the Euclidean distance between the feature vectors of an input
and its adversarial version, where our upper bound is a product
of a spectral-norm term and the perturbation size. The spectral-
norm term depends on the parameters of the encoder, but it
does not depend on the input nor the adversarial perturbation.
An encoder with a smaller spectral-norm term may produce
more similar feature vectors for an input and its adversarial
version. Thus, we use the spectral-norm term as a regularization
term to regularize the pre-training of an encoder.

We perform a systematic evaluation on multiple datasets
including CIFAR10, SVHN, STL10, and Tiny-ImageNet. Our

2

Wenjie Qu, Jinyuan Jia, and Neil Zhenqiang Gong. "REaaS: Enabling Adversarially Robust Downstream Classifiers via 
Robust Encoder as a Service". In ISOC Network and Distributed System Security Symposium (NDSS), 2023.

Standard encoder as a service

Robust encoder as a service



Conclusion

• Part I: Backdoor attack to pre-trained encoders
• “BadEncoder: Backdoor Attacks to Pre-trained Encoders in Self-Supervised 

Learning”. In IEEE Symposium on Security and Privacy, 2022.

• Part II: Data poisoning attack to pre-trained encoders
• “PoisonedEncoder: Poisoning the Unlabeled Pre-training Data in Contrastive 

Learning”. In USENIX Security Symposium, 2022. 

• Part III: Data auditing for pre-trained encoders
• “EncoderMI: Membership Inference against Pre-trained Encoders in 

Contrastive Learning”. In ACM CCS, 2021. 

Jinyuan Jia
Hongbin Liu 

Yupei Liu
Wenjie Qu

Acknowledgements

69


