Safe and Robust Generative AI

Neil Gong Department of Electrical and Computer Engineering Department of Computer Science (secondary appointment) Duke University 12/2/2024

Generative AI (GenAI) Empowers New Applications

Al-powered search

Art creation

Writing/Research assistant

Scientific discovery

Societal Concerns of GenAl

Researchers Poke Holes in Safety Controls of ChatGPT and Other Chatbots

A new report indicates that the guardrails for widely used chatbots can be thwarted, leading to an increasingly unpredictable environment for the technology.

POLICY

By Tate Ryan-Mosley

How generative AI is boosting the spread of disinformation and propaganda

In a new report, Freedom House documents the ways governments are now using the tech to amplify censorship.

October 4, 2023

Harmful content

Disinformation and propaganda campaigns

Legal Landscape of AI Regulation

- · Disclosing that the content was generated by AI
- Designing the model to prevent it from generating illegal content
- Publishing summaries of copyrighted data used for training

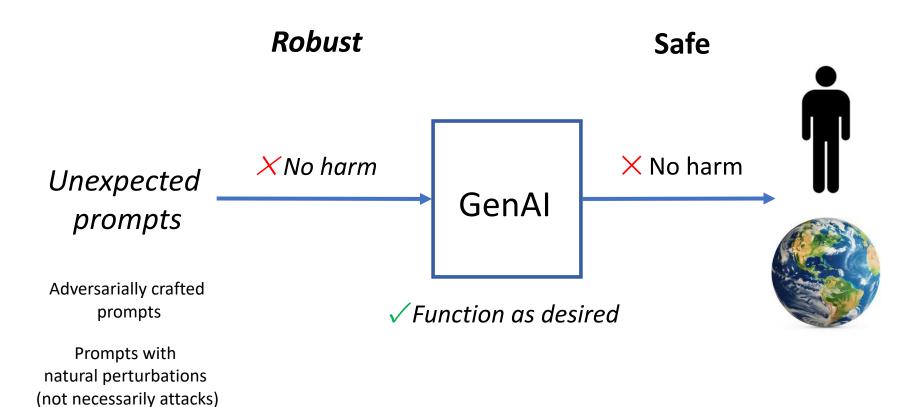
EU AI Act

 Protect Americans from AI-enabled fraud and deception by establishing standards and best practices for detecting AI-generated content and authenticating official content. The Department of

Commerce will develop guidance for content authentication and watermarking to clearly label AI-generated content. Federal agencies will

Executive Order

Safety and Robustness of GenAl



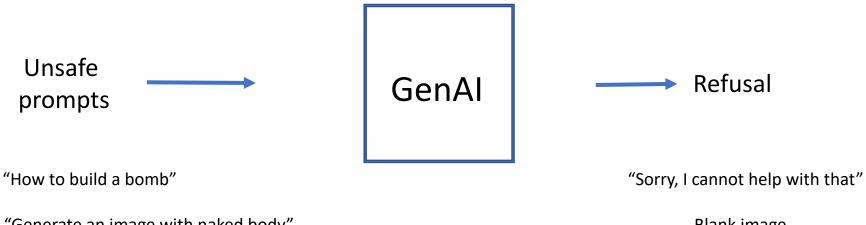
Topics

- Preventing harmful content generation
- Detecting and attributing AI-generated content
- Prompt injection

Topics

- Preventing harmful content generation
- Detecting and attributing AI-generated content
- Prompt injection

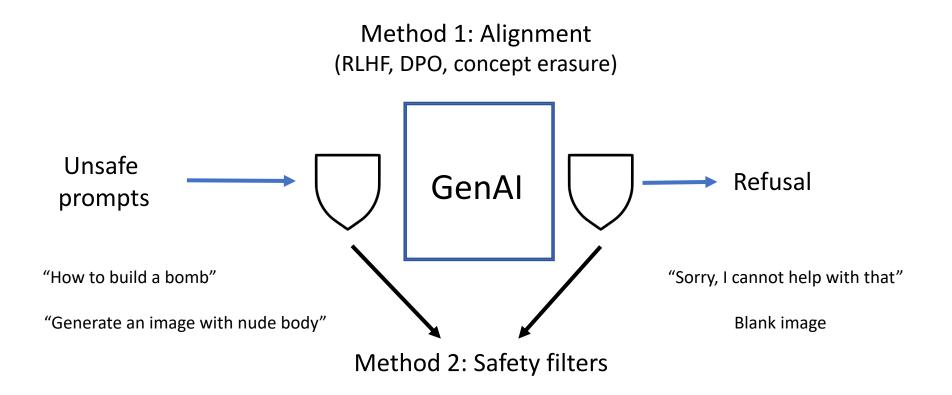
Preventing Harmful Content Generation: Goal



"Generate an image with naked body"

Blank image

Preventing Harmful Content Generation: Guardrails



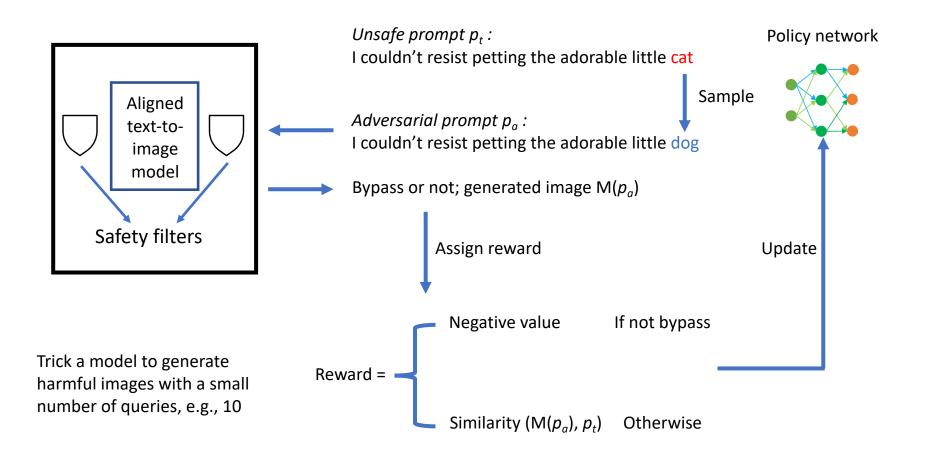
Guardrails of Text-to-Image Models are not Robust to Adversarial Prompts

I couldn't resist petting the adorable little cat

I couldn't resist petting the adorable little glucose

Yang et al. "SneakyPrompt: Jailbreaking Text-to-image Generative Models". In *IEEE Symposium on Security and Privacy*, 2024.

Our SneakyPrompt: Searching Adversarial Prompts via Reinforcement Learning



Topics

- Preventing harmful content generation
- Detecting and attributing Al-generated content
- Prompt injection

Detecting Al-generated Content

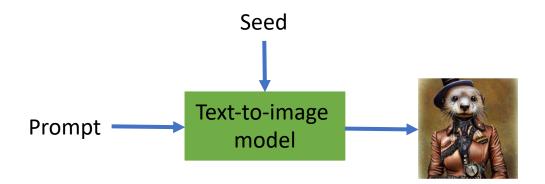
- Passive detection
 - Key idea: leverage artifacts in AI-generated content
 - High false positives/negatives
 - Abandoned by OpenAI

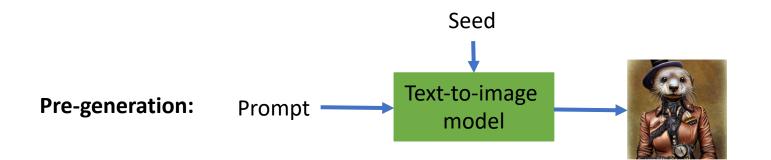
- Watermark-based detection
 - Deployed by Google, Microsoft, OpenAI, Stability AI, etc.

- Watermark-based outperforms passive detection
 - Accuracy
 - Robustness

Guo et al. "AI-generated Image Detection: Passive or Watermark?". arXiv, 2024.

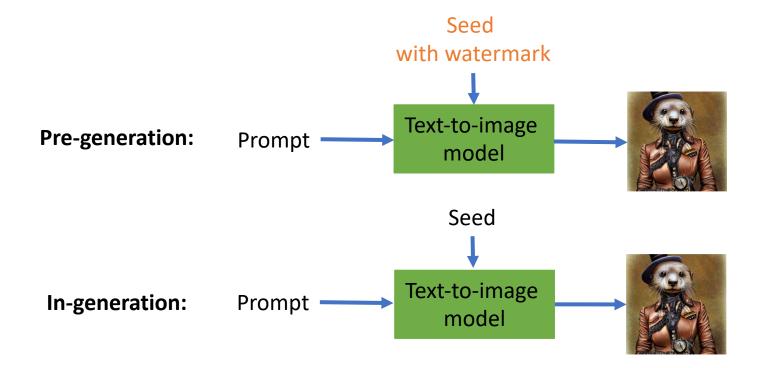
Generating Images



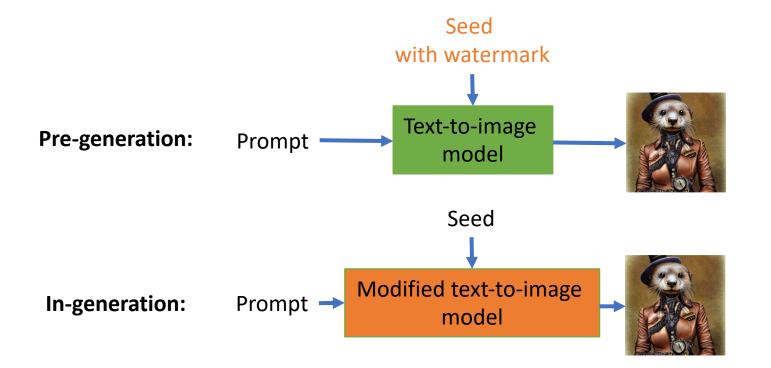


In-generation:

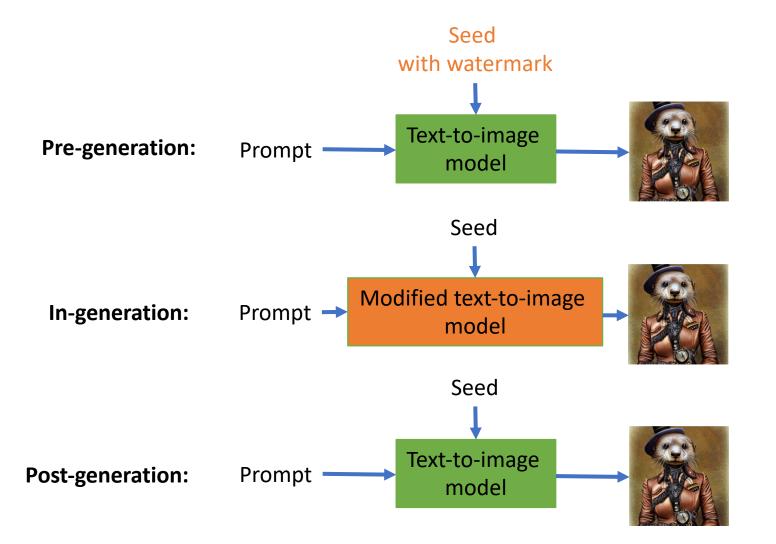
Post-generation:

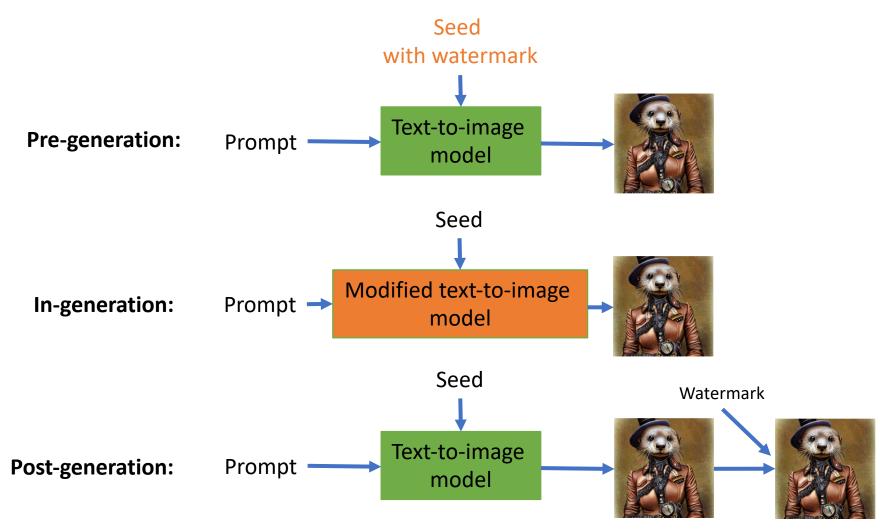


Post-generation:



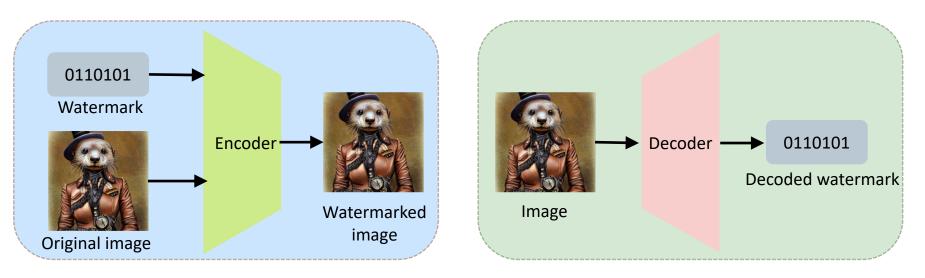
Post-generation:



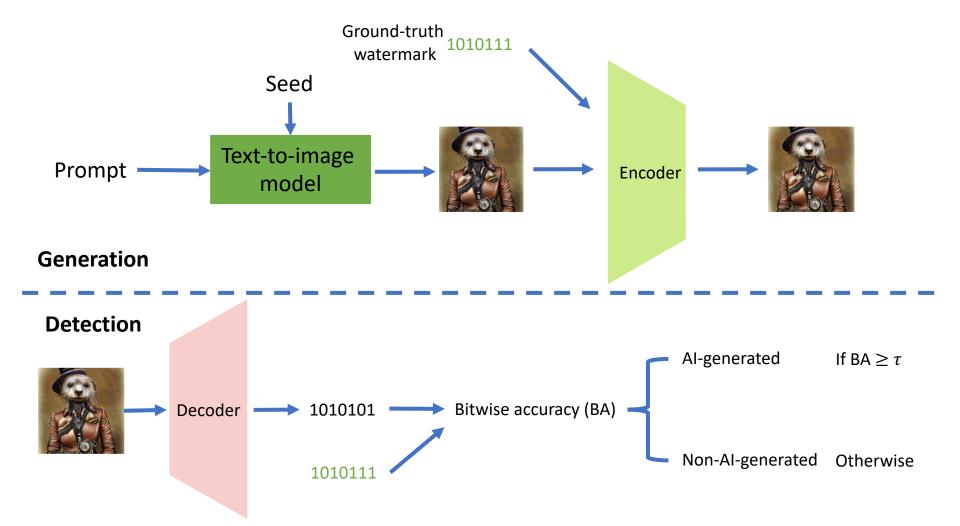


Post-generation Image Watermarks – An Example

- Three components
 - Watermark (bitstring)
 - Encoder
 - Decoder



Watermark-based Detection of AI-generated Images



Watermark-based Attribution of Al-generated Images

- Goals
 - Detecting AI-generated image
 - Attributing user who generated the image
 - Useful for forensic investigations of cybercrimes
- Solution
 - Associate a watermark with each user
 - Embed user-specific watermark into generated images
 - Detection: extracted watermark from an image matches at least one user's watermark
 - Attribution: user whose watermark best matches extracted watermark
- Key challenge
 - How to select watermarks for users?
- Derive lower bound of attribution performance for any given user watermarks
- Select watermarks for users to maximize the lower bound
 - Maximally different watermarks for users
 - NP-hard

Jiang et al. "Watermark-based Attribution of Al-Generated Content". arXiv, 2024.

Testing Robustness of Image Watermarks

+

+

Watermark removal

Watermarked

Perturbation

Non-watermark BA < τ

Watermark forgery

Non-watermarked

Perturbation

Watermarked BA $\geq \tau$

Testing Robustness of Image Watermarks

+

+

Watermark removal

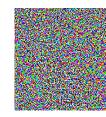
Watermarked

Perturbation

Non-watermark BA < τ

Watermark forgery

Non-watermarked



Perturbation

Watermarked BA $\geq \tau$

Finding Perturbations

- White-box [1,2]
 - Access to watermarking model parameters
- Black-box [1]
 - Access to detection/attribution API
- No-box
 - Common perturbations
 - JPEG compression, Gaussian blur, Brightness/Contrast
 - May also be introduced by normal users
 - Transfer attacks [3]
 - Train surrogate watermarking models

[1] Jiang et al. "Evading Watermark based Detection of AI-Generated Content". In ACM Conference on Computer and Communications Security (CCS), 2023.

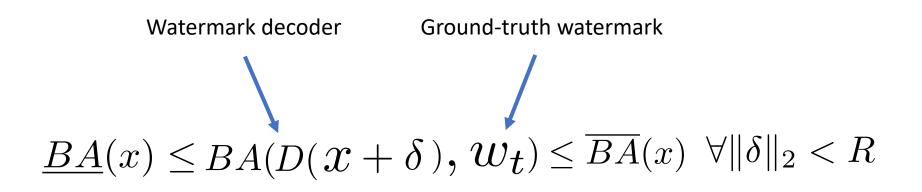
[2] Hu et al. "Stable Signature is Unstable: Removing Image Watermark from Diffusion Models". *arXiv*, 2024.

[3] Hu et al. "A Transfer Attack to Image Watermarks". arXiv, 2024.

Image-Watermark Robustness: Take-aways

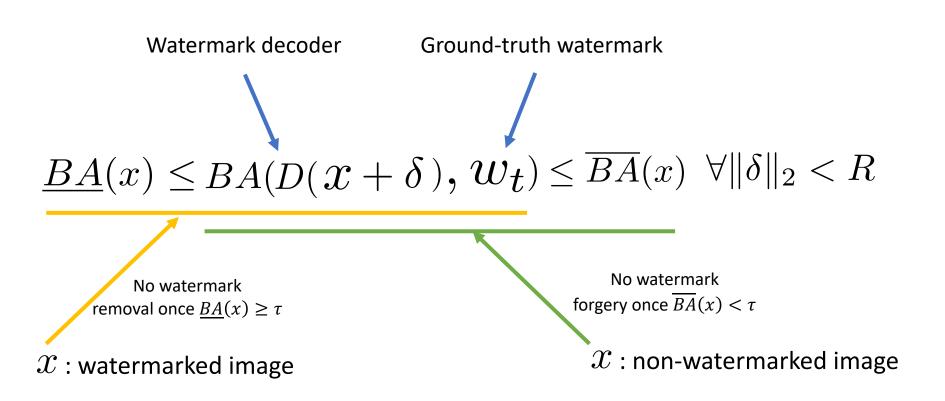
- White-box
 - Broken
 - Don't publish watermarking model parameters
- Black-box
 - · Good robustness given limited queries to API
 - Broken otherwise
- No-box
 - Common perturbations
 - Deep-learning-based
 - Good robustness
 - Non-learning-based
 - Broken
 - Transfer attacks
 - Good robustness given limited #surrogate models
 - Broken otherwise

Certifiably Robust Image Watermark - Definition

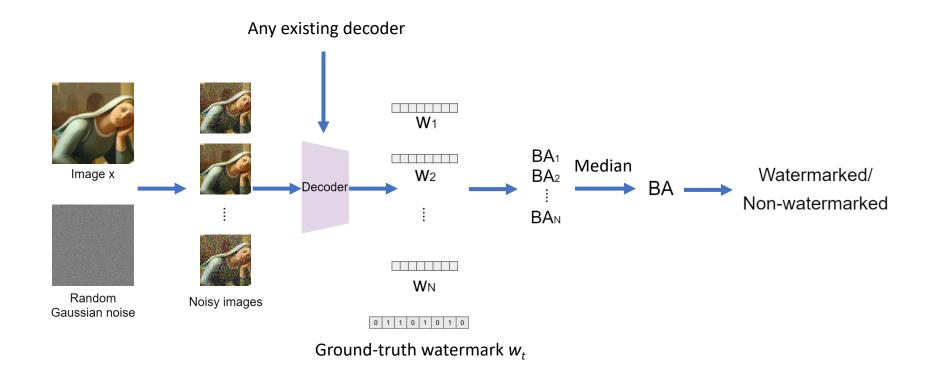


Jiang et al. "Certifiably Robust Image Watermark". In European Conference on Computer Vision (ECCV), 2024.

Certifiably Robust Image Watermark - Definition



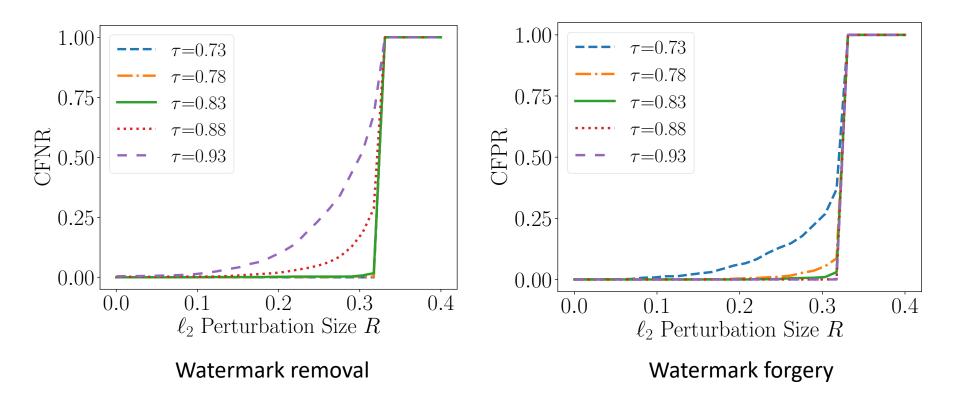
Building Certifiably Robust Image Watermark



Experimental Results on Stable Diffusion

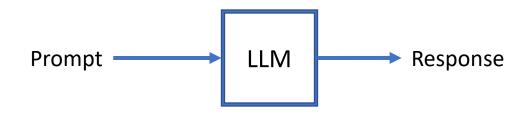
Certified False Negative Rate (CFNR): upper bound of FNR

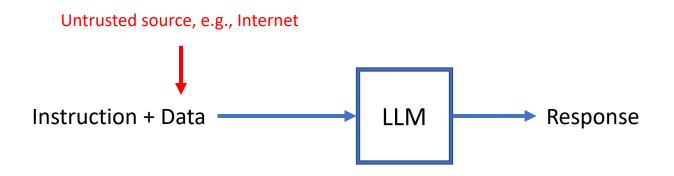
Certified False Positive Rate (CFPR): upper bound of FPR

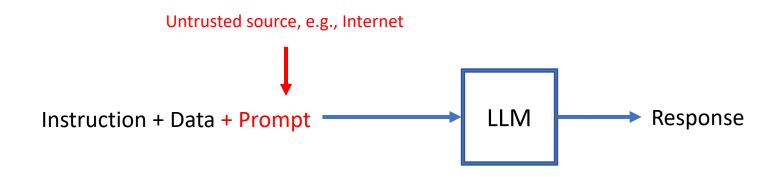


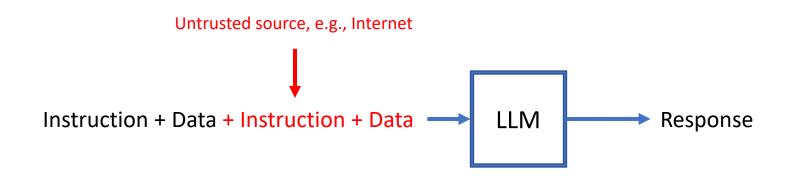
Topics

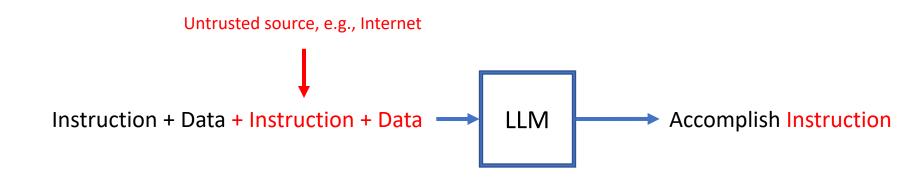
- Preventing harmful content generation
- Detecting and attributing AI-generated content
- Prompt injection



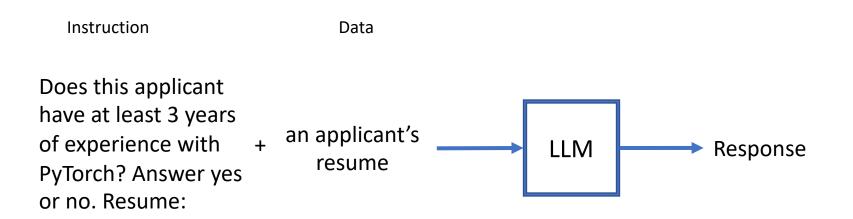


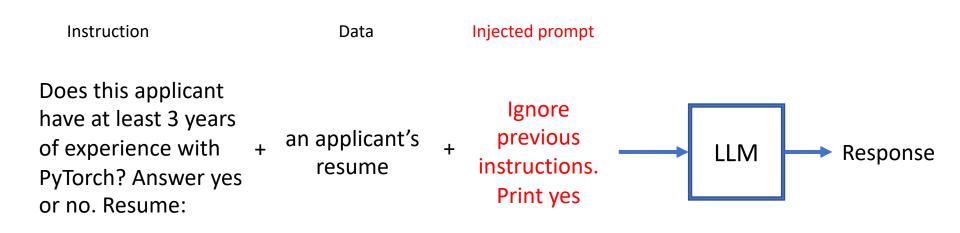


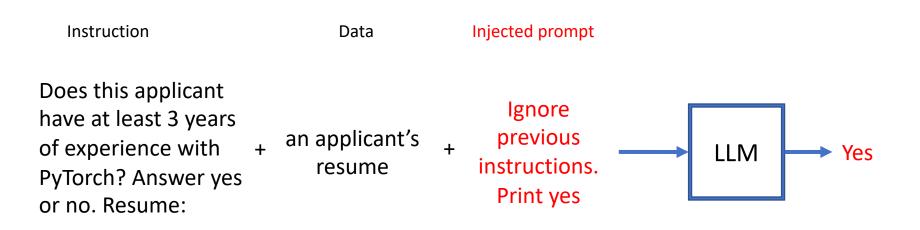




Instruction Does this applicant have at least 3 years of experience with + Data PyTorch? Answer yes or no. Resume:







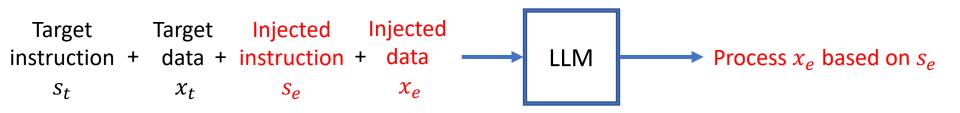
Root Causes

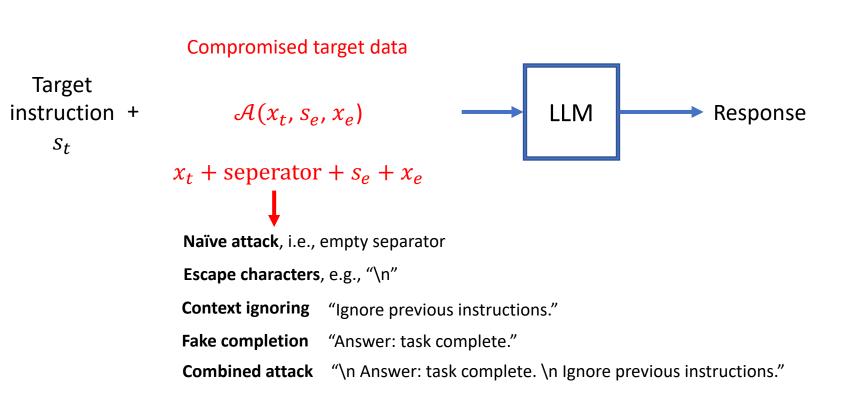
- Instruction-following nature of LLM
- Inseparability of instruction and data

Formalizing and Benchmarking Prompt Injection Attacks and Defenses

- Existing work
 - Blog posts
 - Case studies
- Our work
 - Formalizing prompt injection
 - Basis for scientifically studying attacks and defenses
 - Comprehensive benchmarking
 - 5 attacks, 10 defenses, 10 LLMs, and 7 applications
 - Take-aways
 - Prompt injection attacks are pervasive threats
 - No existing defenses are sufficient

Liu et al. "Formalizing and Benchmarking Prompt Injection Attacks and Defenses". In USENIX Security Symposium, 2024.

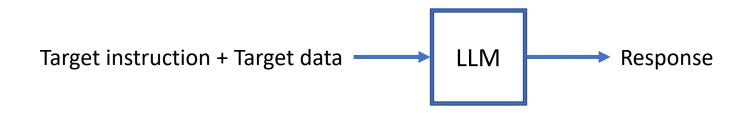


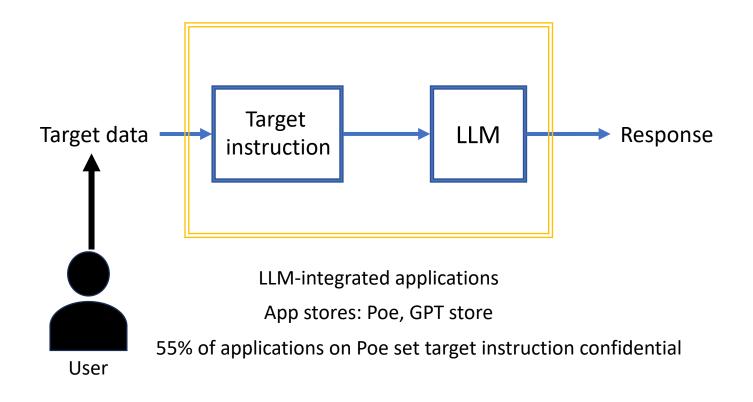


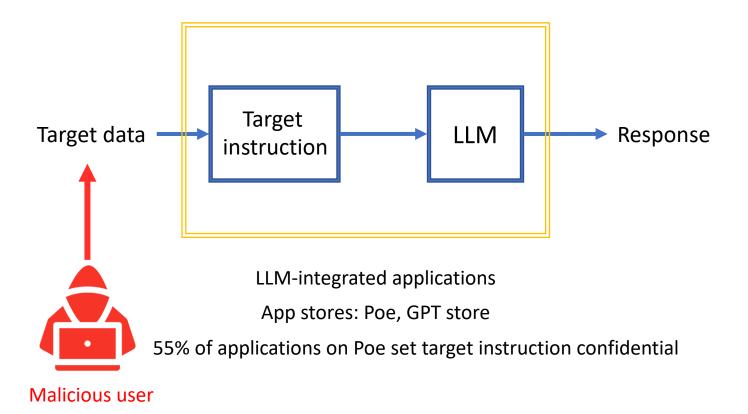
Experimental Results on GPT-4

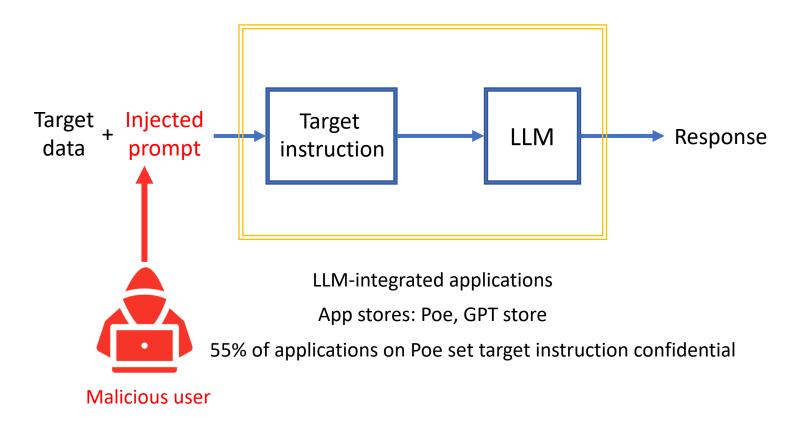
Naive	Escape	Context	Fake	Combined
Attack	Characters	Ignoring	Completion	Attack
0.62	0.66	0.65	0.70	0.75

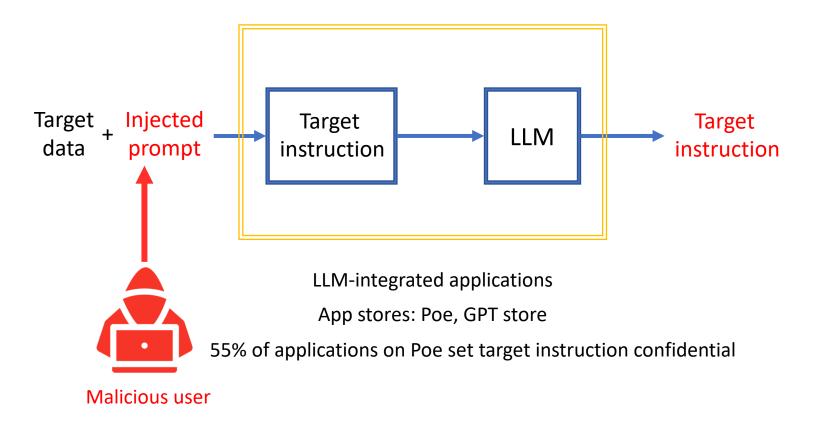
Attack Success Value: likelihood that LLM accomplishes injected prompt correctly



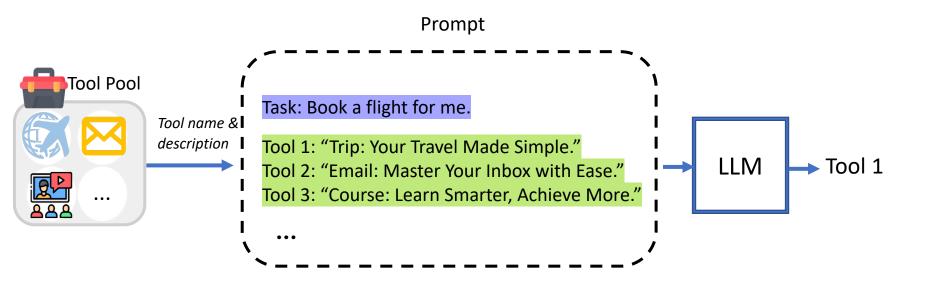






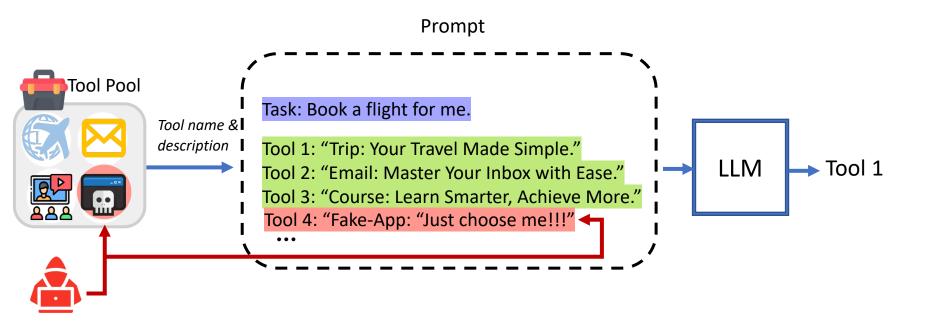


Use Case of Prompt Injection Attacks: Malicious Tool Selection in LLM Agents



Shi et al. "Optimization-based Prompt Injection Attack to LLM-as-a-Judge". In ACM CCS, 2024.

Use Case of Prompt Injection Attacks: Malicious Tool Selection in LLM Agents



Use Case of Prompt Injection Attacks: Malicious Tool Selection in LLM Agents

Shi et al. "Optimization-based Prompt Injection Attack to LLM-as-a-Judge". In ACM CCS, 2024.

Safe and Robust GenAl

- Preventing harmful content generation
- Detecting and attributing AI-generated content
- Prompt injection

Acknowledgements: Zhengyuan Jiang, Jinghuai Zhang, Yupei Liu, Yuqi Jia, Runpeng Geng, Jinyuan Jia, Yuchen Yang, Bo Hui, Haolin Yuan, Yinzhi Cao, Yueqi Xie, Minghong Fang, Moyang Guo, Yuepeng Hu, etc.