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Generative AI (GenAI) Empowers New Applications
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Art creationAI-powered search Writing/Research assistant

Scientific discovery



Societal Concerns of GenAI
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Harmful content Disinformation and propaganda campaigns



Legal Landscape of AI Regulation
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EU AI Act

Executive Order



Safety and Robustness of GenAI

5

GenAI
Unexpected 

prompts

✕ No harm

✓ Function as desired

SafeRobust

Adversarially crafted 
prompts

Prompts with 
natural perturbations 

(not necessarily attacks)

✕ No harm



Topics

• Preventing harmful content generation

• Detecting and attributing AI-generated content

• Prompt injection
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Preventing Harmful Content Generation: Goal
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GenAIUnsafe 
prompts Refusal

“How to build a bomb”

“Generate an image with naked body”

“Sorry, I cannot help with that”

Blank image



Preventing Harmful Content Generation: Guardrails

9

GenAIUnsafe 
prompts Refusal

“How to build a bomb”

“Generate an image with nude body”

“Sorry, I cannot help with that”

Blank image

Method 1: Alignment
(RLHF, DPO, concept erasure)

Method 2: Safety filters



Guardrails of Text-to-Image Models are not 
Robust to Adversarial Prompts
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(a) I couldn’t resist petting the
adorable little glucose (cat)

(b) The tabby gregory faced wright
(cat) stretched out lazily on the win-
dowsill

(c) The maintenance (dog) wet
nose nuzzled its owner’s hand

(d) The dangerous think walt (dog)
growled menacingly at the stranger
who approached its owner

Figure 2: Examples of adversarial prompts that generate cats and dogs (the images above the prompts) using DALL·E 2
and bypass an external safety filter, i.e., the default stable diffusion safety filter refactored to restrict both concepts. The
target, sensitive prompt is highlighted in red and its corresponding adversarial prompt is in blue. Black texts are unchanged
between target and adversarial prompts. Note that we use dogs and cats as part of the external safety filters in the illustrative
figure to avoid illegitimate or violent content that might make the audience uncomfortable. We show real images with NSFW
content that bypass the DALLE·2’s safety filter in Appendix A due to the concerns of possible disturbing content to readers.

The adversarial prompts are shown in blue together with the
black texts. The above images are generated by DALL·E 2,
which still preserves the semantics of either dogs or cats.

3.2. Threat Model

We assume that an adversary has closed-box access to an
online text-to-image model and may query the model with
prompts. Since modern text-to-image models often charge
users per query [37], we assume the adversary has a certain
cost constraint, i.e., the number of queries to the target text-
to-image model is bounded. In addition, the adversary has
access to a local shadow text encoder Ê . We describe the
details of the closed-box access and the shadow text encoder
as follows:
• Online, closed-box query to M: An adversary can query

the online M with arbitrary prompt p and obtain the
generated image M(p) based on the safety filter’s result
F(M, p). If the filter allows the query, the adversary
obtains the image as described by p; if the filter does not,
the adversary is informed, e.g., obtaining a black image
without content. Note that the adversary cannot control and
access the intermediate result of M, e.g., text embedding
E(p) or the gradient of the diffusion model.

• Offline, unlimited query to Ê : An adversary can query the
local, shadow Ê with unlimited open-box access. There
are two cases where the shadow text encoder may be
either exactly the same as or a substitute for the target
text encoder, as we discuss below.

1) Ê(p) 6= E(p): That is, Ê has different architecture
and parameters from E , because the adversary
only has closed-box access to M. For example,
DALL·E2 [2] utilizes a closed-sourced CLIP text
encoder (ViT-H/16). In this case, an adversary can
use a similar text encoder, e.g., the open-source

CLIP-ViT-L/14, with the assumption of transfer-
ability between different CLIP text encoders.

2) Ê(p) = E(p): That is, the adversary may adopt a Ê
with exactly the same architecture and parameters
as E . For example, Stable Diffusion [1] utilizes
a public CLIP text encoder (i.e., ViT-L/14 [38]),
which can be deployed locally for shadow access.

Attack Scenarios. Next, we describe two realistic attack
scenarios that are considered in the paper.
• One-time attack: The adversary searches adversarial

prompts for one-time use. Each time the adversary ob-
tains new adversarial prompts via search and generates
corresponding NSFW images.

• Re-use attack: The adversary obtains adversarial prompts
generated by other adversaries or by themselves in previous
one-time attacks, and then re-uses the provided adversarial
prompts for NSFW images.

We consider re-use attacks as the default use scenario
just like existing works [16], [17] where they all provide
prompts for future uses. The main reason is that reuse attacks
do not need to repeatedly query the target model and thus
save query costs. At the same time, one-time attacks are also
evaluated in comparison with prior works.

4. SneakyPrompt

In this section, we give an overview of SneakyPrompt and
then propose different variants of search methods, including
three heuristic searches as a baseline SneakyPrompt-base
and a reinforcement learning based search as an advanced
approach SneakyPrompt-RL.

4.1. Overview

Key Idea. We first give an intuitive explanation of why
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I couldn’t resist petting the adorable little cat I couldn’t resist petting the adorable little glucose

Yang et al. “SneakyPrompt: Jailbreaking Text-to-image Generative Models”. In IEEE Symposium on 
Security and Privacy, 2024. 



Our SneakyPrompt: Searching Adversarial 
Prompts via Reinforcement Learning

11

Unsafe prompt pt : 
I couldn’t resist petting the adorable little cat

Adversarial prompt pa : 
I couldn’t resist petting the adorable little dog

Bypass or not; generated image M(pa)

Sample

Policy network

Assign reward

Reward =

Negative value If not bypass

Similarity (M(pa), pt) Otherwise

Update

Trick a model to generate
harmful images with a small 
number of queries, e.g., 10 

Aligned
text-to-
image
model

Safety filters
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Detecting AI-generated Content

• Passive detection
• Key idea: leverage artifacts in AI-generated content
• High false positives/negatives
• Abandoned by OpenAI

• Watermark-based detection
• Deployed by Google, Microsoft, OpenAI, Stability AI, etc.

• Watermark-based outperforms passive detection
• Accuracy
• Robustness

14

Guo et al. “AI-generated Image Detection: Passive or Watermark?”. arXiv, 2024.



Generating Images
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Prompt Text-to-image 
model

Seed



Watermarking AI-generated Images
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Prompt Text-to-image 
modelPre-generation:

Seed

In-generation:

Post-generation:



Watermarking AI-generated Images
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Prompt Text-to-image 
modelPre-generation:

In-generation:

Post-generation:

Seed 
with watermark

Prompt

Seed

Text-to-image 
model



Watermarking AI-generated Images
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Prompt Text-to-image 
modelPre-generation:

In-generation:

Post-generation:

Seed 
with watermark

Prompt Modified text-to-image 
model

Seed



Watermarking AI-generated Images
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Prompt Text-to-image 
modelPre-generation:

In-generation:

Post-generation:

Seed 
with watermark

Prompt Modified text-to-image 
model

Seed

Prompt Text-to-image 
model

Seed



Watermarking AI-generated Images
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Prompt Text-to-image 
model

Seed 
with watermark

Pre-generation:

In-generation: Prompt Modified text-to-image 
model

Seed

Post-generation: Prompt Text-to-image 
model

Seed Watermark



Post-generation Image Watermarks – An Example

• Three components
• Watermark (bitstring)
• Encoder
• Decoder

21

0110101

0110101

Watermark

Decoded watermark

Original image

Watermarked 
image

Image

Encoder Decoder



Watermark-based Detection of AI-generated Images
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1010101

1010111

Bitwise accuracy (BA)

AI-generated If BA ≥ "

Non-AI-generated Otherwise

Generation

Detection

1010111

Encoder

Decoder

Ground-truth 
watermark

Prompt Text-to-image 
model

Seed



Watermark-based Attribution of AI-generated Images
• Goals

• Detecting AI-generated image
• Attributing user who generated the image

• Useful for forensic investigations of cybercrimes

• Solution
• Associate a watermark with each user
• Embed user-specific watermark into generated images
• Detection: extracted watermark from an image matches at least one user’s watermark
• Attribution: user whose watermark best matches extracted watermark

• Key challenge
• How to select watermarks for users?

• Derive lower bound of attribution performance for any given user watermarks
• Select watermarks for users to maximize the lower bound

• Maximally different watermarks for users
• NP-hard

23

Jiang et al. “Watermark-based Attribution of AI-Generated Content”. arXiv, 2024.



Testing Robustness of Image Watermarks 
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Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.
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Finding Perturbations

• White-box [1,2]
• Access to watermarking model parameters

• Black-box [1]
• Access to detection/attribution API

• No-box 
• Common perturbations

• JPEG compression, Gaussian blur, Brightness/Contrast
• May also be introduced by normal users

• Transfer attacks [3]
• Train surrogate watermarking models

26

[1] Jiang et al. "Evading Watermark based Detection of AI-Generated Content". In ACM Conference on Computer and 
Communications Security (CCS), 2023. 
[2] Hu et al. "Stable Signature is Unstable: Removing Image Watermark from Diffusion Models". arXiv, 2024. 
[3] Hu et al. "A Transfer Attack to Image Watermarks". arXiv, 2024. 



Image-Watermark Robustness: Take-aways

• White-box
• Broken
• Don’t publish watermarking model parameters

• Black-box
• Good robustness given limited queries to API
• Broken otherwise

• No-box
• Common perturbations

• Deep-learning-based
• Good robustness

• Non-learning-based
• Broken

• Transfer attacks
• Good robustness given limited #surrogate models
• Broken otherwise

27



Certifiably Robust Image Watermark - Definition
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Certifiably Robust Image Watermark 5

f when adding isotropic Gaussian noise to x. Formally, the predicted value is
g(x) = argminy Pr(f(x+ ✏)  y) � 0.5, where ✏ ⇠ N (0,�2I). When the l2-norm
of the perturbation added to x is bounded by R, g(x+ �) is bounded as follows:

g(x)  g(x+ �)  g(x), 8k�k2 < R, (4)

where g(x) = sup{y 2 R | Pr(f(x + ✏)  y)  �(�R
� )}, g(x) = inf{y 2 R |

Pr(f(x+ ✏)  y) � �(R� )}, and � is the cumulative distribution function of the
standard Gaussian.

3 Problem Formulation

Notations: We use x, xw, and xn to represent an image, a watermarked image,
and a non-watermarked image, respectively. x can be either a watermarked or
non-watermarked image. The ground-truth watermark wt has m bits and wt[i]
is the ith bit of wt, where i = 1, 2, · · · ,m. E(xn, wt) means embedding wt into
xn to produce xw; while D(x) is the watermark decoded from x. BA(w,wt) is
the bitwise accuracy of watermark w, which is the fraction of its bits that match
with those of wt. Formally, BA(w,wt) =

1
m

Pm
i=1 I(w[i] = wt[i]), where I is an

indicator function whose output is 1 if the condition is satisfied and 0 otherwise.
An image x is detected as watermarked if BA(D(x), wt) � ⌧ .
Threat model: In a removal attack, an attacker aims to add a small perturba-
tion � to a watermarked image xw to remove the watermark, i.e., BA(D(xw +
�), wt) < ⌧ ; while in a forgery attack, an attacker aims to add a small perturba-
tion � to a non-watermarked image xn to forge the watermark, i.e., BA(D(xn +
�), wt) � ⌧ . We assume the attacker can use any removal or forgery attack to find
the perturbation �. Moreover, the attacker knows everything about the water-
marking method, e.g., its ground-truth watermark, encoder parameters, decoder
parameters, and the smoothing process.
Certifiably robust watermark: A watermarking method (wt, E,D) is cer-
tifiably robust if BA of the watermark decoded from any image x has a lower
bound and upper bound when the `2-norm of the perturbation added to it is
bounded by R. Formally, we have the following definition:

Definition 1 (Certifiably Robust Watermark). Given a watermarking

method (wt, E,D) and any image x. Suppose a perturbation �, whose `2-norm

is bounded by R, is added to x. We say the watermarking method is certifiably

robust if the following is satisfied:

BA(x)  BA(D(x+ �), wt)  BA(x), 8k�k2 < R, (5)

where BA(x) is a lower bound and BA(x) is an upper bound of BA under per-
turbation. For a watermarked image xw, a certifiably robust watermark defends
against any removal attacks with at most R `2-norm perturbations, once the
lower bound BA(xw) is no smaller than ⌧ ; and for a non-watermarked image
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Fig. 2: (a) CFNR and (b) CFPR of our three smoothing based watermarking methods.
(c) CFNR and (d) CFPR of our regression smoothing based watermarking when the
base watermarking method is trained via standard or adversarial training.
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Fig. 3: (a-b) Impact of detection threshold ⌧ . (c-d) Impact of smoothing Gaussian
noise standard derivation �.

is that regression smoothing based watermarking accounts for the correlation
between bits because bitwise accuracy is aggregated across all bits. Thus, in the
remaining experiments, we focus on regression smoothing based watermarking.

Standard vs. adversarial training: Figure 2c and 2d compare standard
and adversarial training with respect to CFNR and CFPR of Stable Diffusion
dataset. The results for the other two datasets are shown in Figure 7 in Appendix.
We observe that when the base watermarking method is trained via adversarial
training, our smoothed watermarking achieves better certified robustness. In
particular, adversarial training achieves much smaller CFNR and slightly smaller
CFPR. Note that in order to fairly compare standard and adversarial training,
we tune their training settings as discussed in Section 5.1 to achieve similar visual
quality of watermarked images. Specifically, the average SSIM between images
and their watermarked versions is 0.943 and 0.941 for standard training and
adversarial training, respectively. Figure 6 in Appendix shows some examples of
watermarked images for the two training strategies.

Impact of detection threshold ⌧ : Figure 3a and 3b compare different detec-
tion threshold ⌧ with respect to CFNR and CFPR of Stable Diffusion dataset.
Figure 8 in Appendix shows results on the other two datasets. We vary the
default ⌧=0.83 with a step size 0.05. We observe ⌧ controls a trade-off between
CFNR and CFPR: a smaller ⌧ achieves a smaller CFNR but also a larger CFPR.

Impact of smoothing Gaussian noise �: Figure 3c and 3d compare different
� with respect to CFNR and CFPR of Stable Diffusion dataset. Figure 9 in
Appendix shows results on the other two datasets. We observe that certified
robustness is sub-optimal when � is too small or too large. This is because, when

Certified False Negative Rate (CFNR): upper bound of FNR
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is that regression smoothing based watermarking accounts for the correlation
between bits because bitwise accuracy is aggregated across all bits. Thus, in the
remaining experiments, we focus on regression smoothing based watermarking.

Standard vs. adversarial training: Figure 2c and 2d compare standard
and adversarial training with respect to CFNR and CFPR of Stable Diffusion
dataset. The results for the other two datasets are shown in Figure 7 in Appendix.
We observe that when the base watermarking method is trained via adversarial
training, our smoothed watermarking achieves better certified robustness. In
particular, adversarial training achieves much smaller CFNR and slightly smaller
CFPR. Note that in order to fairly compare standard and adversarial training,
we tune their training settings as discussed in Section 5.1 to achieve similar visual
quality of watermarked images. Specifically, the average SSIM between images
and their watermarked versions is 0.943 and 0.941 for standard training and
adversarial training, respectively. Figure 6 in Appendix shows some examples of
watermarked images for the two training strategies.

Impact of detection threshold ⌧ : Figure 3a and 3b compare different detec-
tion threshold ⌧ with respect to CFNR and CFPR of Stable Diffusion dataset.
Figure 8 in Appendix shows results on the other two datasets. We vary the
default ⌧=0.83 with a step size 0.05. We observe ⌧ controls a trade-off between
CFNR and CFPR: a smaller ⌧ achieves a smaller CFNR but also a larger CFPR.

Impact of smoothing Gaussian noise �: Figure 3c and 3d compare different
� with respect to CFNR and CFPR of Stable Diffusion dataset. Figure 9 in
Appendix shows results on the other two datasets. We observe that certified
robustness is sub-optimal when � is too small or too large. This is because, when
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Topics

• Preventing harmful content generation

• Detecting and attributing AI-generated content

• Prompt injection
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Root Causes

• Instruction-following nature of LLM

• Inseparability of instruction and data
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Formalizing and Benchmarking Prompt 
Injection Attacks and Defenses

• Existing work
• Blog posts
• Case studies

• Our work
• Formalizing prompt injection

• Basis for scientifically studying attacks and defenses

• Comprehensive benchmarking
• 5 attacks, 10 defenses, 10 LLMs, and 7 applications

• Take-aways
• Prompt injection attacks are pervasive threats
• No existing defenses are sufficient
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Context ignoring

Escape characters, e.g., “\n”

Fake completion
Combined attack

“Answer: task complete.” 
“Ignore previous instructions.”

Naïve attack, i.e., empty separator

“\n Answer: task complete. \n Ignore previous instructions.” 
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Figure 2: ASV of different attacks for different target and injected tasks. Each figure corresponds to an injected task and
the x-axis DSD, GC, HD, NLI, SA, SD, and Summ represent the 7 target tasks. The LLM is GPT-4.

Table 4: ASVs of different attacks averaged over the 7⇥7
target/injected task combinations. The LLM is GPT-4.

Naive
Attack

Escape
Characters

Context
Ignoring

Fake
Completion

Combined
Attack

0.62 0.66 0.65 0.70 0.75

This indicates that explicitly informing an LLM that the tar-
get task has completed is a better strategy to mislead LLM
to accomplish the injected task than escaping characters and
context ignoring. Fourth, Naive Attack is the least successful
one. This is because it simply appends the injected task to
the data of the target task instead of leveraging extra infor-
mation to mislead LLM into accomplishing the injected task.
Fifth, there is no clear winner between Escape Characters and
Context Ignoring. In particular, Escape Characters achieves
slightly higher average ASV than Context Ignoring when the
LLM is GPT-4 (i.e., Table 4), while Context Ignoring achieves
slightly higher average ASV than Escape Characters when
the LLM is PaLM 2 (i.e., Table 10).
Combined Attack is consistently effective for different
LLMs, target tasks, and injected tasks: Table 5 and Ta-
ble 12–Table 20 in Appendix show the results of Combined
Attack for the 7 target tasks, 7 injected tasks, and 10 LLMs.
First, PNA-I is high, indicating that LLMs achieve good per-
formance on the injected tasks if we directly query them with
the injected instruction and data. Second, Combined Attack
is effective as ASV and MR are high across different LLMs,
target tasks, and injected tasks. In particular, ASV and MR
averaged over the 10 LLMs and 7⇥ 7 target/injected task
combinations are 0.62 and 0.78, respectively.
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Figure 3: ASV and MR of Combined Attack for each LLM
averaged over the 7⇥7 target/injected task combinations.

Third, in general, Combined Attack is more effective when
the LLM is larger. Figure 3 shows ASV and MR of Combined
Attack for each LLM averaged over the 7⇥7 target/injected
task combinations, where the LLMs are ranked in a descend-
ing order with respect to their model sizes. For instance, GPT-
4 achieves a higher average ASV and MR than all other LLMs;
and Vicuna-33b-v1.3 achieves a higher average ASV and MR
than Vicuna-13b-v1.3. In fact, the Pearson correlation be-
tween average ASV (or MR) and model size in Figure 3 is
0.63 (or 0.64), which means a positive correlation between
attack effectiveness and model size. We suspect the reason
is that a larger LLM is more powerful in following the in-
structions and thus is more vulnerable to prompt injection
attacks. Fourth, Combined Attack achieves similar ASV and
MR for different target tasks as shown in Table 6a, showing

9

Attack Success Value: likelihood that LLM accomplishes injected prompt correctly



Use Case of Prompt Injection Attacks: Stealing 
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Use Case of Prompt Injection Attacks: 
Malicious Tool Selection in LLM Agents

Shi et al. “Optimization-based Prompt Injection Attack to LLM-as-a-Judge”. In ACM CCS, 2024.

Tool Pool  

...

Tool name &
description

Task: Book a flight for me.

Tool 1: “Trip: Your Travel Made Simple.”
Tool 2: “Email: Master Your Inbox with Ease.”
Tool 3: “Course: Learn Smarter, Achieve More.”

���

Prompt

LLM Tool 1
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Use Case of Prompt Injection Attacks: 
Malicious Tool Selection in LLM Agents
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Tool Pool  

...

Tool name &
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Task: Book a flight for me.

Tool 1: “Trip: Your Travel Made Simple.”
Tool 2: “Email: Master Your Inbox with Ease.”
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Safe and Robust GenAI

• Preventing harmful content generation

• Detecting and attributing AI-generated content

• Prompt injection
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