
1

Secure Federated Learning

Neil Gong

Department of Electrical and Computer Engineering

Department of Computer Science (secondary appointment)

Duke University

This talk is available on YouTube: https://www.youtube.com/watch?v=LP4uqW18yA0

Conventional Paradigm: Centralized Learning

2

Google, Apple, Facebook

…

…

Machine learning model

Clients
Smartphone, IoT devices, self-driving cars

Challenges of Centralized Learning

• Server data breaches

• High communications cost
• Intolerable for resource-constrained clients

• Smartphone
• IoT

3

Federated Learning

• Data stay locally on clients
• Clients train models locally
• Clients send models or updates to server
• Real-world deployment

4

This Talk

What are the security issues of federated learning

5

How to build secure federated learning

Road Map

• Part I: Local model poisoning attacks to federated learning

• Part II: Secure federated learning via trust bootstrapping

• Part III: Provably secure federated learning

6

Road Map

• Part I: Local model poisoning attacks to federated learning

• Part II: Secure federated learning via trust bootstrapping

• Part III: Provably secure federated learning

7

Federated Learning Background

8

Step I. Send global model to clients

Step �. Train local
models and send
them to server

Step �. Aggregate local models

…

…

…

Global model w

Local model !"

Google’s FedAvg: w= $
%∑"'$

% !"

Equivalent to send local model updates !" − ! to server

!" = !" −) * +"
!" = !

Federated Learning is Vulnerable to Poisoning Attacks

9

…

…

… Local model

Global model

Federated Learning is Vulnerable to Poisoning Attacks

10

…

…

… Local model

Malicious client

Global model

Fake or compromised genuine clients
Fake clients can be many

Federated Learning is Vulnerable to Poisoning Attacks

11

…

…

… Local model

Malicious client

Data poisoning attack

Global model

Fake or compromised genuine clients
Fake clients can be many

Federated Learning is Vulnerable to Poisoning Attacks

12

…

…

… Local model

Malicious client

Data poisoning attack

Global model

Local model
poisoning attack

Fake or compromised genuine clients
Fake clients can be many

Federated Learning is Vulnerable to Poisoning Attacks

13

…

…

… Local model

Malicious client

Data poisoning attack

Global model

Local model
poisoning attack

Fake or compromised genuine clients
Fake clients can be many

Byzantine-robust Federated Learning as Defense

• Byzantine-robust aggregation rule
• Krum
• Trimmed mean
• Median

• Key idea
• Remove “outlier” local models

• Theoretical guarantee
• Various assumptions

• IID data, smooth loss function, etc.
• Bound change of global model parameters caused by malicious clients

14

An Example: Median

15

w11 w12 w1m…Client 1

w21 w22 w2m…Client 2 … …………

wn1 wn2 wnm…Client n

w1 w2 wm…Server

Our Work

16

Byzantine-robust federated learning is vulnerable
to local model poisoning attacks

Increase testing error rate of global model

Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. “Local Model Poisoning Attacks to Byzantine-
Robust Federated Learning”. In USENIX Security Symposium, 2020

Threat Model

• Attacker’s goal
• High testing error rate

• Attacker’s capability:
• Access to malicious clients

• Fake clients
• Compromised genuine clients

• Send arbitrary local models

• Attacker’s knowledge:
• Full vs. Partial knowledge

• Data on all vs. malicious clients
• Aggregation rule

• Yes or no

17

!

!"

Our Idea

!#$%&

!'
No attack: global model changes

along some direction

18

Our Idea

!"

!#$%&

!'
(

!

Deviate global model the most
towards inverse of the direction

!'!(

19

Formulate Optimization Problem

max
$%& ,…,$)&

*+($ −$′)

Subject to $ = 1 $2,… ,$3, $342, … ,$5

$′ = 1($2
6 , … ,$36 , $342, … ,$5)

Applicable to any aggregation rule

20

Poisoned local models on
malicious clients

Global model before attack

Global model after attackUpdate direction

Global model aggregation
before attack

Global model aggregation
after attack

Maximize deviation of global model

Used in all or multiple iterations

Solving the Optimization Problem

• Full knowledge
• !",… ,!%, !%&", … ,!' are known
• Solve the optimization problem using them

• Partial knowledge
• Only !",… ,!% are known
• Use them to estimate !

• Unknown aggregation rule
• Attacker assumes one

21

Experimental Setup

• 100 clients
• 20% malicious

• Datasets:
• MNIST
• Fashion-MNIST
• CH-MNIST
• Breast Cancer Wisconsin (Diagnostic)

• Non-IID data on clients
• Non-IID: not Independently and Identically Distributed

22

Experimental Setup

• 100 clients
• 20% malicious

• Datasets:
• MNIST
• Fashion-MNIST
• CH-MNIST
• Breast Cancer Wisconsin (Diagnostic)

• Non-IID data on clients
• Non-IID: not Independently and Identically Distributed

23

Our Attack is Effective

NoAttack Gaussian LabelFlip Partial Full
Krum 0.11 0.10 0.10 0.75 0.77

Trimmed Mean 0.06 0.07 0.07 0.14 0.23
Median 0.06 0.06 0.16 0.28 0.32

24

Byzantine-robust methods

Our Attack is Effective

NoAttack Gaussian LabelFlip Partial Full
Krum 0.11 0.10 0.10 0.75 0.77

Trimmed Mean 0.06 0.07 0.07 0.14 0.23
Median 0.06 0.06 0.16 0.28 0.32

No attack

25

Our Attack is Effective

NoAttack Gaussian LabelFlip Partial Full
Krum 0.11 0.10 0.10 0.75 0.77

Trimmed Mean 0.06 0.07 0.07 0.14 0.23
Median 0.06 0.06 0.16 0.28 0.32

Add Gaussian noise to local models

26

Our Attack is Effective

NoAttack Gaussian LabelFlip Partial Full
Krum 0.11 0.10 0.10 0.75 0.77

Trimmed Mean 0.06 0.07 0.07 0.14 0.23
Median 0.06 0.06 0.16 0.28 0.32

Flip labels of local training data

27

Our Attack is Effective

NoAttack Gaussian LabelFlip Partial Full
Krum 0.11 0.10 0.10 0.75 0.77
Trimmed Mean 0.06 0.07 0.07 0.14 0.23
Median 0.06 0.06 0.16 0.28 0.32

Our attack, partial knowledge

28

Our Attack is Effective

NoAttack Gaussian LabelFlip Partial Full
Krum 0.11 0.10 0.10 0.75 0.77
Trimmed Mean 0.06 0.07 0.07 0.14 0.23
Median 0.06 0.06 0.16 0.28 0.32

Our attacks can effectively increase testing error rates

Our attack, full knowledge

29

Impact of #Malicious Clients

30

Krum

Our attacks are more effective with more
malicious clients

Impact of Degree of Non-IID

31

Our attacks are more effective when clients’
data are more Non-IID

Our Attacks Transfer between Aggregation Rules

32

Krum Trimmed mean Median

No attack 0.14 0.12 0.13

Krum attack 0.70 0.15 0.18

Trimmed mean attack 0.14 0.25 0.20

Comparing with Data Poisoning Attacks

NoAttack DataPoisoning Partial Full

Krum 0.23 0.24 0.85 0.89
Trimmed Mean 0.12 0.12 0.27 0.32

Median 0.13 0.13 0.19 0.21

Data poisoning attacks are ineffective for Byzantine-robust methods

33

Our attacks are effective

No attack
State-of-the-art

data poisoning attack Our attack

Summary

• Proposed a general framework to attack federated learning

• Existing Byzantine-robust federated learning is vulnerable to local
model poisoning attacks

34

Road Map

• Part I: Local model poisoning attacks to federated learning

• Part II: Secure federated learning via trust bootstrapping

• Part III: Provably secure federated learning

35

Root Cause of Insecurity

36

No root trust

Every client could be malicious

Our FLTrust: Bootstrapping Trust

• Server collects a small, clean training dataset

• Server maintains a server model
• Like how a client maintains a local model

• Use server model to bootstrap trust
• Assign trust scores to clients

37

Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. “FLTrust: Byzantine-robust Federated Learning
via Trust Bootstrapping”. In ISOC Network and Distributed System Security Symposium (NDSS), 2021.

Revisiting Federated Learning Background

38

Step I. Send global model to clients

Step �. Train local
models and send
their updates to
server

Step �. Aggregate local model
updates and update global model

…

…

…

Server model update
Global model w

Local model !"

Local model updates !", !$
ReLU-clipped cosine similarity based trust score (TS)

Normalizing the magnitudes of local model updates

Aggregation

%"

!$

!"

%$

!& '!"

'!$

%"

!$

!"

%$

!&

!&

Our Aggregation Rule

server model update !&

! = 1
*+" + *+$

(*+" . '!" + *+$. '!$)

'!" =
!&
!"

. !"

'!$ =
!&
!$

. !$

⟨!",!&⟩
!" . !&
⟨!$,!&⟩
!$. !&

*+" = ReLU 6" = 6"

*+$ = ReLU 6$ = 0

6" = cos %" =

6$ = cos %$ =

; = ; − = . !

Theoretical Analysis

40

Under certain assumptions, for an arbitrary number of malicious
clients, the difference between the global model learnt by FLTrust

and the optimal global model under no attacks is bounded

Empirical Results

41

TABLE III: The testing error rates of different FL methods
under different attacks and the attack success rates of the
Scaling attacks. The results for the Scaling attacks are in the
form of “testing error rate / attack success rate”.

(a) CNN global model, MNIST-0.1
FedAvg Krum Trim-mean Median FLTrust

No attack 0.04 0.10 0.06 0.06 0.04
Label flipping attack 0.06 0.10 0.05 0.05 0.04

Krum attack 0.10 0.90 0.07 0.07 0.04
Trim attack 0.16 0.10 0.13 0.13 0.04

Scaling attack 0.02 / 1.00 0.10 / 0.00 0.05 / 0.01 0.05 / 0.01 0.03 / 0.00

(b) CNN global model, MNIST-0.5
FedAvg Krum Trim-mean Median FLTrust

No attack 0.04 0.10 0.06 0.06 0.05
Label flipping attack 0.06 0.10 0.06 0.06 0.05

Krum attack 0.10 0.91 0.14 0.15 0.05
Trim attack 0.28 0.10 0.23 0.43 0.06

Scaling attack 0.02 / 1.00 0.09 / 0.01 0.06 / 0.02 0.06 / 0.01 0.05 / 0.00

(c) CNN global model, Fashion-MNIST
FedAvg Krum Trim-mean Median FLTrust

No attack 0.10 0.16 0.14 0.14 0.11
Label flipping attack 0.14 0.15 0.26 0.21 0.11

Krum attack 0.13 0.90 0.18 0.23 0.12
Trim attack 0.90 0.16 0.24 0.27 0.14

Scaling attack 0.90 / 1.00 0.16 / 0.03 0.17 / 0.85 0.16 / 0.05 0.11 / 0.02

(d) ResNet20 global model, CIFAR-10
FedAvg Krum Trim-mean Median FLTrust

No attack 0.16 0.51 0.20 0.19 0.19
Label flipping attack 0.20 0.52 0.24 0.25 0.19

Krum attack 0.21 0.91 0.28 0.29 0.19
Trim attack 0.90 0.49 0.83 0.80 0.20

Scaling attack 0.69 / 1.00 0.49 / 0.23 0.17 / 0.96 0.19 / 0.96 0.15 / 0.01

(e) CNN-rand global model, Movie
FedAvg Krum Trim-mean Median FLTrust

No attack 0.26 0.43 0.34 0.35 0.26
Label flipping attack 0.32 0.46 0.37 0.38 0.29

Krum attack 0.27 0.58 0.35 0.38 0.26
Trim attack 0.50 0.46 0.51 0.49 0.26

Scaling attack 0.51 / 1.00 0.46 / 0.52 0.37 / 0.64 0.39 / 0.53 0.24 / 0.25

(f) LR global model, HCR
FedAvg Krum Trim-mean Median FLTrust

No attack 0.23 0.30 0.25 0.25 0.25
Label flipping attack 0.35 0.31 0.27 0.26 0.25

Krum attack 0.24 0.43 0.26 0.26 0.25
Trim attack 0.90 0.31 0.42 0.33 0.25

Scaling attack 0.24 / 0.85 0.30 / 0.01 0.24 / 0.46 0.25 / 0.37 0.24 / 0.02

aggregating them as the global model update, while FLTrust
considers all of them with the help of the root dataset.

Second, our FLTrust achieves the robustness goal, while
existing FL methods do not. Specifically, the testing error rates
of FLTrust under the evaluated attacks are at most 0.04 higher
than those of FedAvg under no attacks on the six datasets. On
the contrary, every existing Byzantine-robust FL method has
much higher testing error rates, especially under the untargeted
attack that is optimized for the method. For instance, on
MNIST-0.5, Krum attack increases the testing error rate of
Krum from 0.10 to 0.91, while Trim attack increases the
testing error rates of Trim-mean and Median from 0.06 to
0.23 and 0.43, respectively. We note that FedAvg may have
lower testing error rates than the existing Byzantine-robust
FL methods under the evaluated untargeted attacks. This is
because these untargeted attacks are not optimized for FedAvg.
Previous work [9] has shown that FedAvg can be arbitrarily
manipulated by a single malicious client.

Fig. 3: The training error rates vs. the number of iterations for
FLTrust under different attacks and FedAvg without attacks on
MNIST-0.5.

Moreover, for the Scaling attack, FLTrust substantially
reduces its attack success rates. Specifically, the attack success
rates for FLTrust are at most 0.02 except on Movie. On
Movie, the attack success rate is close to the testing error rate
of FLTrust. This is because Movie is a binary classification
task and the attack success rate is roughly the testing error
rate even without the Scaling attack. On the contrary, the
attack success rates for FedAvg are always high on the six
datasets, and they are also high for the existing Byzantine-
robust FL methods on multiple datasets, indicating that existing
FL methods are not robust against the Scaling attack. One
interesting observation is that the Scaling attack may decrease
the testing error rates in some cases. We suspect the reason may
be that the data augmentation in the Scaling attack positively
impacts the aggregation of the local model updates.

Third, FLTrust achieves the efficiency goal. Specifically,
in each iteration, FLTrust does not incur extra overhead to
the clients; and compared to FedAvg, the extra computation
incurred to the server by FLTrust includes computing a server
model update, computing the trust scores, and normalizing the
local model updates, which are negligible for the powerful
server. Moreover, Figure 3 shows the training error rates versus
the global iteration number for FLTrust under different attacks
and FedAvg under no attack on MNIST-0.5. Our results show
that FLTrust converges as fast as FedAvg, which means that
FLTrust also does not incur extra communications cost for
the clients (each iteration of FL requires communications
between clients and server), compared to FedAvg under no
attacks. We note that Krum, Trim-mean, and Median do not
incur extra overhead to the clients. However, Krum incurs
significant computational overhead to the server when there
are a large number of clients. This is because Krum requires
calculating pairwise distance between local model updates in
each iteration.

Comparing different variants of FLTrust: FLTrust has three
key features: a root dataset, using ReLU to clip the cosine
similarity scores, and normalizing each local model update.
Depending on how each feature is used, we consider the
following five variants of FLTrust:

• FLTrust-Server. In this variant, the server only uses
the root dataset to train the global model. Therefore,
there is no communications between the clients and
the server during the training process.

• FLTrust-withServer. In this variant, the server com-
putes the weighted average of the clients’ local model

9

MNIST

Server’s training dataset: 100 examples sampled from MNIST

Our FLTrust is robust against poisoning attacks

State-of-the-art method in non-adversarial settings

100 clients, 20 malicious

Adaptive Attack

42

max
$%& ,…,$)&

*+($ −$′)

Subject to $ = 1 $2,… ,$3, $342, … ,$5

$′ = 1($2
6 , … ,$36 , $342, … ,$5)

Applicable to any aggregation rule

Our FLTrust is Robust against Adaptive Attack

43

Summary

• The server can enhance security of federated learning via collecting a
small, clean training dataset to bootstrap trust

44

Road Map

• Part I: Local model poisoning attacks to federated learning

• Part II: Secure federated learning via trust bootstrapping

• Part III: Provably secure federated learning

45

Limitations of Byzantine-robust Federated Learning

• Bound change in global model parameters caused by malicious clients
• Under assumptions

• IID data on clients
• Smooth loss function
• …

• Limitations
• Assumptions do not hold
• Not bound testing error rate or accuracy

46

Our Provably Secure Federated Learning

• Guarantee a lower bound of testing accuracy

• Only assumption
• Bounded #malicious clients

47

Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. “Provably Secure Federated Learning against
Malicious Clients”. In AAAI, 2021.

Defining Provable Security

48

h(C, x) for any C’, #malicious clients ≤m*

m*: certified security level for x

C, xh(C’, x)

Label predicted for x when the global model is trained on C

=C’

A set of benign clients Testing input

A federated learning algorithm is provably secure if its
predicted label for a testing input is not affected by a

bounded number of malicious clients

Our Ensemble Federated Learning: the First
Provably Secure Method

• Training
• ' clients

• Select (clients randomly and train a global model
• Use any federated learning method, e.g., FedAvg

• Repeat to train) global models

• Testing
• Majority vote of the) global models to predict label of x

49

Provable Security: Intuition

50

!′
Majority

Vote
!

Training Phase Testing Phase

$%

$&
$'

!

!

C% C& C' C) C*

$% $& $'

Provable Security

51

Given C and x, we can derive the certified security level m* for x

Our derived certified security level is tight

Evaluation Metric: Certified Accuracy @ m

• Fraction of testing inputs whose
• Labels are correctly predicted
• Certified security levels are at least m

• A lower bound of testing accuracy
• #malicious clients ≤ m
• No matter what attacks are used!

52

FedAvg vs. Ensemble FedAvg

53

MNIST dataset, 1,000 clients

� �� �� �� �� �� �� ��
1XPEHU�RI�PDOLFLRXV�FOLHQWV�m

���

���

���

���

���

���
&
HU
WLI
LH
G�
DF
FX
UD
F\
�#

�m

)HG$YJ
(QVHPEOH�)HG$YJ

>0.85

Impact of Number of Global Models N

54

A moderate number of global models are enough

� �� �� �� �� �� �� ��
1XPEHU�RI�PDOLFLRXV�FOLHQWV�m

���

���

���

���

���

���
&
HU
WLI
LH
G�
DF
FX
UD
F\
�#

�m

N= ���
N= ���
N= ����

Summary

• Ensemble federated learning is provably secure against bounded
number of malicious clients

• Achieve certified accuracy
• A lower bound of testing accuracy

• No matter what attacks are used

55

Conclusion

• Part I: Local model poisoning attacks to federated learning
• “Local Model Poisoning Attacks to Byzantine-Robust Federated Learning”. In

Usenix Security Symposium, 2020.

• Part II: Secure federated learning via trust bootstrapping
• “FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping”. In

NDSS, 2021.

• Part III: Provably secure federated learning
• “Provably Secure Federated Learning against Malicious Clients”. In AAAI,

2021.

56

Xiaoyu Cao
Jinyuan Jia

Minghong Fang
Jia Liu

Acknowledgements

