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Conventional Paradigm: Centralized Learning

Google, Apple, Facebook Machine learning model
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Clients

Smartphone, loT devices, self-driving cars



e Server data breaches

* High communications cost

Challenges of Centralized Learning

* |ntolerable for resource-constrained clients

* Smartphone

loT

Over the past 10 years,
there have been 300 DATA
BREACHES involving the
theft of 100,000 OR

MORE RECORDS.
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Federated Learning

 Data stay locally on clients
* Clients train models locally
* Clients send models or updates to server

* Real-world deployment

Artificial intelligence / Machine learning

How Apple personalizes
= Siri without hoovering up

Gboard Q your data
The tech giant is using privacy-preserving machine learning to

improve its voice assistant while keeping your data on your phone.

by KarenHao December 11,2019




This Talk

What are the security issues of federated learning

How to build secure federated learning



Road Map

* Part I: Local model poisoning attacks to federated learning
* Part Il: Secure federated learning via trust bootstrapping

* Part lll: Provably secure federated learning
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Federated Learning Background
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Step I. Send global model to clients

Equivalent to send local model updates w; — w to server



Federated Learning is Vulnerable to Poisoning Attacks
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Malicious client

Fake or compromised genuine clients
Fake clients can be many
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Federated Learning is Vulnerable to Poisoning Attacks

Global model
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Local model
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poisoning attack @
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Federated Learning is Vulnerable to Poisoning Attacks

Global model

Local model

0 g %: Local model
poisoning attack @
Data poisoning attack @ @ @ @

Malicious client

Fake or compromised genuine clients
Fake clients can be many



Byzantine-robust Federated Learning as Defense

* Byzantine-robust aggregation rule
* Krum

* Trimmed mean
* Median

* Key idea

* Remove “outlier” local models

* Theoretical guarantee

* Various assumptions
* |ID data, smooth loss function, etc.
* Bound change of global model parameters caused by malicious clients



An Example: Median
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Our Work

Byzantine-robust federated learning is vulnerable
to local model poisoning attacks

Increase testing error rate of global model

Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhengiang Gong. “Local Model Poisoning Attacks to Byzantine-
Robust Federated Learning”. In USENIX Security Symposium, 2020



Threat Model

* Attacker’s goal
* High testing error rate

* Attacker’s capability:
e Access to malicious clients

* Fake clients
* Compromised genuine clients

* Send arbitrary local models

 Attacker’s knowledge:
* Full vs. Partial knowledge
* Data on all vs. malicious clients
* Aggregation rule
* Yesorno



Our ldea

No attack: global model changes
along some direction
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Our ldea

Deviate global model the most

towards inverse of the direction
e

Wprev ~ ‘. w

W,
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Formulate Optimization Problem

Global model before attack

Update direction \ Global model after attack

Poisoned local models on /

malicious clients Maximize deviation of global model
max sT(w—w') —

Wi wWe Global model aggregation

1 bef ttack
SUbJeCt to W = <:’q(wlr .y wc; WC+1) any Wn) efore attac

w = cfl(W'l, e W'C, Weiq, o) Wn) -~ Global model aggregation
after attack

Used in all or multiple iterations

Applicable to any aggregation rule
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Solving the Optimization Problem

* Full knowledge
* Wy, .o, We,Weiq, ..., Wy, are known
* Solve the optimization problem using them

* Partial knowledge
* Only wy, ..., w, are known
* Use them to estimate w

* Unknown aggregation rule
* Attacker assumes one



Experimental Setup

e 100 clients
e 20% malicious

* Datasets:
* MNIST
e Fashion-MNIST
* CH-MNIST
* Breast Cancer Wisconsin (Diagnostic)

* Non-IID data on clients
* Non-IID: not Independently and Identically Distributed
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Our Attack is Effective

NoAttack
0.11
0.06
0.06

Byzantine-robust methods

Gaussian
0.10
0.07
0.06

LabelFlip
0.10
0.07
0.16

Partial
0.75
0.14
0.28

Full
0.77
0.23
0.32
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Krum

Our Attack is Effective

No attack

Trimmed Mean | 0.06

Median

0.06

Gaussian
0.10
0.07
0.06

LabelFlip
0.10
0.07
0.16

Partial
0.75
0.14
0.28

Full
0.77
0.23
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Our Attack is Effective

Add Gaussian noise to local models

NoAttack LabelFlip | Partial
Krum 0.11 0.10 0.10 0.75

Trimmed Mean | 0.06 0.07 0.07 0.14
Median 0.06 0.06 0.16 0.28

Full
0.77
0.23
0.32
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Krum

Our Attack is Effective

NoAttack
0.11

Trimmed Mean | 0.06

Median

0.06

Flip labels of local training data

Gaussian
0.10
0.07
0.06

LabelFlip
0.10

0.07
0.16

Partial
0.75
0.14
0.28

Full
0.77
0.23
0.32
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Our Attack is Effective

Our attack, partial knowledge

NoAttack | Gaussian | LabelFlip Full
0.11 0.10 0.10 0. 0.77

Krum
Trimmed Mean | 0.06 0.07 0.07 0.14 0.23
Median 0.06 0.06 0.16 0.28 0.32
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Our Attack is Effective

Our attack, full knowledge

NoAttack | Gaussian | LabelFlip | Partial

Krum 0.11 0.10 0.10 0.75 0.77
Trimmed Mean | 0.06 0.07 0.07 0.14 0.23
Median 0.06 0.06 0.16 0.28 0.32

Our attacks can effectively increase testing error rates
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Impact of #Malicious Clients

1.0
0.8
o , - No attack
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Percentage of Compromised Worker Devices (%)

Our attacks are more effective with more
malicious clients
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Error Rate

Impact of Degree of Non-IID

1.0
-->- No attack
0.81 ~®- Gaussian
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Degree of Non-IID

Our attacks are more effective when clients’
data are more Non-IID
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Our Attacks Transfer between Aggregation Rules

1 1 1

Krum Trimmed mean Median
—_— No attack 0.14 0.12 0.13
—_— Krum attack 0.70 0.15 0.18

P Trimmed mean attack 0.14 0.25 0.20
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Comparing with Data Poisoning Attacks

State-of-the-art Our attack
No attack data poisoning attack urattac

VAN

NoAttack DataPoisoning | Partial Full
Krum 0.23 0.24 0.85 0.89
Trimmed Mean 0.12 0.12 0.27 0.32
Median 0.13 0.13 0.19 0.21

Data poisoning attacks are ineffective for Byzantine-robust methods

Our attacks are effective
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Summary

* Proposed a general framework to attack federated learning

* Existing Byzantine-robust federated learning is vulnerable to local
model poisoning attacks



Road Map

* Part I: Local model poisoning attacks to federated learning
* Part ll: Secure federated learning via trust bootstrapping

* Part lll: Provably secure federated learning



Root Cause of Insecurity

No root trust

Every client could be malicious



Our FLTrust: Bootstrapping Trust

* Server collects a small, clean training dataset

* Server maintains a server model
* Like how a client maintains a local model

* Use server model to bootstrap trust
* Assign trust scores to clients

Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqgiang Gong. “FLTrust: Byzantine-robust Federated Learning
via Trust Bootstrapping”. In ISOC Network and Distributed System Security Symposium (NDSS), 2021.



Revisiting Federated Learning Background

Step II. Train local g %

models and send
their updates to

|
=

Server model update

Global model w

Step III. Aggregate local model
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updates and update global model g %

Local model w;

-
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Step I. Send global model to clients
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4 )

Local model updates g4, g»

server model update g

g1

g2

Our Aggregation Rule

\

( ReLU-clipped cosine similarity based trust score (TS)
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Theoretical Analysis

Under certain assumptions, for an arbitrary number of malicious
clients, the difference between the global model learnt by FLTrust
and the optimal global model under no attacks is bounded



Server’s training dataset: 100 examples sampled from MNIST

Empirical Results

MNIST

100 clients, 20 malicious

State-of-the-art method in non-adversarial settings

/

EedAvg | Krum |Trim-mean| Median F}Lﬁl\[
No attack ( 0.04 ) 0.10 0.06 0.06 0.05
Label flipping attack | 666~ 0.10 0.06 0.06 0.05
Krum attack 0.10 0.91 0.14 0.15 | 0.05
Trim attack 0.28 0.10 0.23 0.43 \O 06/

Our FLTrust is robust against poisoning attacks




Adaptive Attack

max s’ (w—w")
W’

Subject to wW=AWq ... W, Weiq, oo, Wp)

I _ ’ ’
w = dq(wl' o We, Weyq, ""Wn)

Applicable to any aggregation rule



Our FLTrust is Robust against Adaptive Attack
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Summary

* The server can enhance security of federated learning via collecting a
small, clean training dataset to bootstrap trust



Road Map

* Part I: Local model poisoning attacks to federated learning
* Part Il: Secure federated learning via trust bootstrapping

* Part lll: Provably secure federated learning



Limitations of Byzantine-robust Federated Learning

* Bound change in global model parameters caused by malicious clients

e Under assumptions
* |ID data on clients
* Smooth loss function

* Limitations
e Assumptions do not hold
* Not bound testing error rate or accuracy



Our Provably Secure Federated Learning

* Guarantee a lower bound of testing accuracy

* Only assumption
* Bounded #malicious clients

Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqgiang Gong. “Provably Secure Federated Learning against
Malicious Clients”. In AAAI, 2021.



Defining Provable Security

Label predicted for x when the global model is trained on C

/

h(C’, x) = h(C,x) forany C’, #malicious clients < m*

A set of benign clients  Testing input

A federated learning algorithm is provably secure if its
predicted label for a testing input is not affected by a
bounded number of malicious clients

m*: certified security level for x

48



Our Ensemble Federated Learning: the First
Provably Secure Method

* Training
* n clients

* Select k clients randomly and train a global model
* Use any federated learning method, e.g., FedAvg

* Repeat to train N global models

* Testing
* Majority vote of the N global models to predict label of x



Provable Security: Intuition

- i foge. v (O
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Training Phase Testing Phase
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Provable Security

Given C and x, we can derive the certified security level m* for x

Our derived certified security level is tight



Evaluation Metric: Certified Accuracy @ m

* Fraction of testing inputs whose
* Labels are correctly predicted
 Certified security levels are at least m

* A lower bound of testing accuracy

e #malicious clients < m
* No matter what attacks are used!



FedAvg vs. Ensemble FedAvg
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MNIST dataset, 1,000 clients
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Impact of Number of Global Models N
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A moderate number of global models are enough
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Summary

* Ensemble federated learning is provably secure against bounded
number of malicious clients

* Achieve certified accuracy

* A lower bound of testing accuracy
* No matter what attacks are used



Conclusion

* Part I: Local model poisoning attacks to federated learning
* “Local Model Poisoning Attacks to Byzantine-Robust Federated Learning”. In
Usenix Security Symposium, 2020.
* Part Il: Secure federated learning via trust bootstrapping

e “FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping”. In
NDSS, 2021.

* Part lll: Provably secure federated learning

* “Provably Secure Federated Learning against Malicious Clients”. In AAAI,
2021.
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