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Course overview

• Part 1: Security and privacy for machine learning
• Security and privacy issues of ML
• Secure and privacy-preserving ML
• Beyond accuracy and efficiency of ML

• Part 2: Machine learning for security and privacy
• ML to enhance security
• Misuse of ML

• Course webpage: 
http://people.duke.edu/~zg70/courses/AML/AdversarialML.html
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Goal of this class

• State-of-the-art literature on adversarial machine learning

• Get prepared to apply and research adversarial machine learning



Class format
• Read papers

• Write comments and send to adversarialmlduke@gmail.com
• Deadline: Sunday and Tuesday 11:59pm
• Send your comments to all papers in a single email thread
• Comment

• One paragraph of summary of each assigned paper
• Three or more strengths
• Three or more weaknesses

• Lead a lecture
• Forming a group of at most 4 students
• A group sends three preferred dates to adversarialmlduke@gmail.com by 11:59pm, 01/25

• Participate in class
• One class project

• Can be a group of at most 4 students
• Your research project can be class project
• 02/01: project proposal due.
• 03/15: milestone report due.
• 04/17, 04/19: project presentation.
• 04/30: final project report due.

mailto:adversarialmlduke@gmail.com


Lead a lecture

• Why lead a lecture
• Understanding a topic better after teaching others about it

• Like how I give a lecture
• May read multiple papers on the selected topic
• E.g., each group member leads discussion on one paper

• 75 mins for a lecture!
• Use whiteboard/blackboard if possible
• Be interactive



An example class project

• Problem: how to find adversarial examples in the whitebox setting

• Solutiuon: optimization-based method
• E.g., start from the Carlini and Wagner method (to be discussed in the next 

lecture) as a baseline
• Design a new method, e.g., enhance the Carlini and Wagner method via 

exploring new loss functions or use a different method to solve the 
formulated optimization problem

• Proposal abstract: one paragraph to describe the problem and 
potential solution. 



Project report template

• Abstract
• Introduction
• Related work (can also be moved to be after empirical evaluation)
• Problem definition
• Method
• Theoretical evaluation (if any)
• Empirical evaluation
• Conclusion



Grading policy

• 50% project 

• 25% reading assignment 

• 10% class participation 

• 15% class presentation



Machine Learning Pipeline
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Security of Machine Learning

• Integrity
• Training phase
• Deployment phase

• Confidentiality
• Training/testing data
• Model parameters
• Hyperparameters
• Algorithms

11



Integrity of Machine Learning
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Attack Goal: Misclassification

• Untargeted
• Arbitrary misclassification

• Targeted
• Attacker-chosen misclassification
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Poisoning Attacks – Attack Training Phase

• Compromise training phase to poison the learnt model
• Poisoned model misclassifies testing inputs as attacker desires

• Data poisoning
• Modify training data to poison the model

• Algorithm poisoning
• Modify algorithm to poison the model
• E.g., when ML library is from untrusted third party

• Model poisoning
• Directly modify parameters of the model
• E.g., model is from third party or model training is distributed (federated learning)
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An Example of Data Poisoning Attack
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Evasion Attacks – Attack Deployment Phase
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Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.
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Defenses to Protect Integrity

• Empirically secure defenses
• Secure against specific, known attacks
• Vulnerable to advanced, adaptive attacks

• Provably secure defenses 
• Secure against arbitrary attacks satisfying certain constraints
• Often sacrifice accuracy when no attacks

• Still open challenges
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Defenses against Evasion Attacks

• Adversarial training (empirically secure defense)
• Key idea: use adversarial examples with correct labels to augment training 

data

• Randomized smoothing (provably secure defense)
• Key idea: add random noise to a testing input to overwhelm adversarial 

perturbation (if any) before classifying it
• Predicted label is unaffected by arbitrary adversarial perturbation whose L_p

norm is bounded
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Confidentiality of Machine 
Learning
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Attacks to Confidentiality of Machine 
Learning

• Model stealing
• Reconstruct a model’s exact parameters or learn a functionality-equivalent 

surrogate one via querying the model
• Hyperparameter stealing 
• Reconstruct hyperparameters used to train a model

• Membership inference
• Infer whether a given input is in a given model’s training data

• Training data reconstruction 
• Reconstruct training data of a given model
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Summary

• Course overview


