BadEncoder: Backdoor Attacks to Pre-trained Encoders in Self-Supervised Learning

Yi Gao, Bofeng Chen, Zhicheng Guo, Danyu Sun

• Supervised Learning

Dog

- Self Supervised Learning
 - create labels from data itself. And train the model using those labels.

Contrastive Learning

SimCLR (Simple framework for Contrastive Learning)

• Method

Loss Function

 $\ell_{i,j} = -\log \frac{\exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k\neq i]} \exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$

1. Contrastive pre-training

pepper the

CLIP (Contrastive Language-Image Pre-training)

2. Create dataset classifier from label text

"A photo of dog"

CLIP Downstream tasks

AvatarCLIP •

CLIPDraw

"A drawing of a cat".

"Horse eating a cupcake".

"A 3D rendering of a temple".

"Family vacation to Walt Disney World". "Self".

Threat Model in Self Supervised Learning

Attacker's Goal:

Backdoored encoder \rightarrow Backdoored Downstream task model

- 1. Effectiveness goal
 - a. Targeted downstream task should maintain backdoor behavior
- 2. Utility goal
 - a. Untargeted downstream task should maintain normal behavior

Threat Model in Self Supervised Learning

Attacker's Role:

- Untrusted service provider who pre-trains models
- Malicious third-party who re-publishes backdoored encoders

Attacker's Knowledge:

- Clean pre-trained encoder
- Set of unlabeled images (*shadow set*)
- Set of labeled images for each of the target downstream task+target class pair (*reference inputs*)

Attacker Cannot Access:

Downstream classifier and its training process

shadow dataset backdoor triggers

ا 🛋

Fig. 1: Overview of BadEncoder.

BadEncoder Optimization

$$\min_{f'} L = L_0 + \lambda_1 \cdot L_1 + \lambda_2 \cdot L_2,$$

Efficiency goal:

$$L_{0} = -\frac{\sum_{i=1}^{t} \sum_{j=1}^{r_{i}} \sum_{\boldsymbol{x} \in \mathcal{D}_{s}} s(f'(\boldsymbol{x} \oplus \boldsymbol{e}_{i}), f'(\boldsymbol{x}_{ij}))}{|\mathcal{D}_{s}| \cdot \sum_{i=1}^{t} r_{i}},$$
$$L_{1} = -\frac{\sum_{i=1}^{t} \sum_{j=1}^{r_{i}} s(f'(\boldsymbol{x}_{ij}), f(\boldsymbol{x}_{ij}))}{\sum_{i=1}^{t} r_{i}},$$

Utility goal:

$$L_2 = -\frac{1}{|\mathcal{D}_s|} \cdot \sum_{\boldsymbol{x} \in \mathcal{D}_s} s(f'(\boldsymbol{x}), f(\boldsymbol{x})).$$

Mapping backdoored image to other image.

Make sure the other image's class does not change.

Non-backdoored image remains unaffected.

BadEncoder

Evaluation

Dataset

- 1. CIFAR10: natural image classification
- 2. STL10: natural image classification
- 3. GTSRB: traffic sign image classification
- 4. SVHN: street view house number image classification
- 5. Food101: food image classification

E.g. Pretrain with CIFAR10, test with STL10, GTSRB, and SVHN for downstream tasks

Metrics

- Clean Accuracy (CA)
 - Clean downstream classifier on clean test images
- Backdoored Accuracy (BA)
 - Backdoored downstream classifier on clean test images
- Attack Success Rate (ASR)
 - Fraction of backdoored images predicted as target class for a backdoored downstream classifier

Experiment results

TABLE I: BadEncoder	achieves	high	ASRs.
---------------------	----------	------	-------

Pre-training Dataset	Target Downs- tream Dataset	ASR-B (%)	ASR (%)
	GTSRB	2.79	98.64
CIFAR10	SVHN	37.53	99.14
	STL10	10.38	99.73
	GTSRB	1.67	95.04
STL10	SVHN	46.11	97.64
	CIFAR10	12.30	98.51

Fig. 4: The cumulative distribution functions (CDFs) of the cosine similarity scores between the feature vector of the reference input and those of the trigger-embedded inputs produced by the clean image encoder and backdoored image encoder.

TABLE II: Our BadEncoder maintains the accuracy ofthe downstream classifiers.

Pre-training	Target Downs-	Downstream	$C \wedge (01)$	DA (07)
Dataset	tream Dataset	Dataset	CA (70)	DA (%)
21		GTSRB	81.84	82.27
	GTSRB	SVHN	58.50	68.93
		STL10	76.14	75.94
		GTSRB	81.84	82.19
CIFAR10	SVHN	SVHN	58.50	69.32
		STL10	76.14	75.66
		GTSRB	81.84	82.55
	STL10	SVHN	58.50	68.68
		STL10	76.14	76.18
		GTSRB	76.12	76.63
	GTSRB	SVHN	55.35	63.85
		CIFAR10	86.77	86.63
		GTSRB	76.12	75.45
STL10	SVHN	SVHN	55.35	65.59
		CIFAR10	86.77	86.23
		GTSRB	76.12	76.47
	CIFAR10	SVHN	55.35	64.37
	CIFAR10	86.77	86.55	

Utility goal

Efficiency goal

Impact of Shadow Dataset

The impact of the shadow dataset size on BadEncoder

Impact of Shadow Dataset

The impact of the shadow dataset **distribution** on BadEncoder

Case 1: a subset of the pre-training dataset

Case 2: the same distribution as the pre-training dataset but does not overlap with it

Case 3: a different distribution with the pre-training dataset

Results:

- High attack success rates
- preserves accuracy of the downstream classifiers in all the three cases
- shadow dataset does not need to be from the pre-training dataset nor follow its distribution

TABLE IV: The impact of the shadow dataset's distribution on BadEncoder.

tream Dataset	Shadow Dataset	CA (%)	BA (%)	ASR (%)
	A subset of pre-training dataset		81.21	98.19
GTSRB	Same distribution	81.84	81.12	97.52
	Different distributions		82.21	93.27
	A subset of pre-training dataset		62.32	98.30
SVHN	Same distribution	58.50	62.07	98.06
	Different distributions		60.40	84.80
	A subset of pre-training dataset		75.90	99.55
STL10	Same distribution	76.14	75.70	99.43
	Different distributions		75.99	98.15

Impact of Trigger Size

Results:

- High attack success rates when the trigger size is no smaller than some threshold
- BadEncoder with different trigger sizes do not sacrifice the utility of the pre-trained image encoder

Case Study - 1 Attacking Image Encoder Pre-trained on ImageNet

Experimental setup:

Target class: "truck" (STL10), "priority sign"(GTSRB), "digit one" (SVHN) Setting: $\lambda 1 = 1$ and $\lambda 2 = 1$;

Shadow dataset: sample 1% of the training images of ImageNet;

Trigger: 50*50 white square at bottom right corner

Fine-tune the pre-trained image encoder for 200 epochs with learning rate 10-4

Batch size 16 to inject the backdoor

Fig. 10: The reference inputs for attacking the image encoder pre-trained on ImageNet by Google, which are used in Table VIII.

Case Study - 1 Attacking Image Encoder Pre-trained on ImageNet

Experimental results:

TABLE VIII: BadEncoder achieves high attack success rates and maintains the accuracy of the downstream classifiers when attacking the image encoder pre-trained on ImageNet by Google [4].

Target Downs- tream Dataset	CA (%)	BA (%)	ASR-B (%)	ASR (%)
GTSRB	76.53	78.42	5.47	98.93
STL10	95.66	95.68	10.24	99.99
SVHN	72.55	73.77	32.28	99.93

Case Study - 2 Attacking CLIP

Experimental setup:

• Multi-shot classifier

Same as case study 1

• zero-shot classifier:

Target class: "truck" (STL10), "stop sign"(GTSRB), "digit one" (SVHN) Context sentences: "A photo of a {class name}" (STL10,SVHN); "A traffic sign photo of a {class name}" (GTSRB)

Case Study - 2 Attacking CLIP

Experimental results:

TABLE IX: BadEncoder achieves high attack success rates and maintains the accuracy of the downstream classifiers when attacking CLIP [7].

Target Downs- tream Dataset	CA (%)	BA (%)	ASR-B (%)	ASR (%)
GTSRB	82.36	82.14	5.37	99.33
STL10	97.09	96.69	10.00	99.81
SVHN	70.60	70.27	20.79	99.99

(a) Multi-shot classifiers

(b) Zero-shot classifiers

Target Downs- tream Dataset	CA (%)	BA (%)	ASR-B (%)	ASR (%)
GTSRB	29.83	29.84	1.96	99.82
STL10	94.60	92.80	10.08	99.96
SVHN	11.73	11.16	53.55	100.00

Defense Neural Cleanse

Backdoor Attack Illustration

• Trigger from Reverse Engineering

(L1 norm = 25) (L1 norm = 22.79)

- Backdoor Detection
 - 1. Reverse engineer a trigger for each class.
 - Measure L1 norm of each trigger to determine whether it is a backdoor trigger.
 - Optimization Formula

 $\begin{array}{ll} \min_{\boldsymbol{m},\boldsymbol{\Delta}} & \ell(y_t, f(A(\boldsymbol{x},\boldsymbol{m},\boldsymbol{\Delta}))) + \lambda \cdot |\boldsymbol{m}| \\ \text{for} & \boldsymbol{x} \in \boldsymbol{X} \end{array}$

Defense Neural Cleanse

- Mitigation of Backdoors
- 1. Filter for detecting adversarial inputs: average neuron activations of the top 1% of neurons in the second to last layer.
- 2. Patching DNN via neural pruning: Disable neurons affected by backdoor attack.
- 3. Patching DNN via unlearning: Use the reversed trigger to train DNN, and let the model to decide, through training, which weights (not neurons) are problematic and should be updated.

• Experimental Results

Task	Before Patching		Patching w/ R	Reversed Trigger
IdSK	Classification	Attack Success	Classification	Attack Success
	Accuracy	Rate	Accuracy	Rate
MNIST	98.54%	99.90%	97.69%	0.57%
GTSRB	96.51%	97.40%	92.91%	0.14%
YouTube Face	97.50%	97.20%	97.90%	6.70%
PubFig	95.69%	97.03%	97.38%	6.09%
Trojan Square	70.80%	99.90%	79.20%	3.70%
Trojan Watermark	71.40%	97.60%	78.80%	0.00%

Defense MNTD

Defense PatchGuard

Workflow of PatchGuard

By aggregating local features we get global features of images, however, some local features might be corrupted by triggers so we need to filter those corrupted features.

Defense PatchGuard

• Feature Aggregation

Figure 2: Two equivalent ways of computing the global logits vector (top: used in conventional CNNs; bottom: used in our defense).

Robust Masking

Algorithm 1 Robust masking

Input: Image x , label space \mathcal{Y} , feature extractor \mathcal{F} of model
\mathcal{M} , clipping bound $[c_l, c_h]$, the set of sliding windows
\mathcal{W} , and detection threshold $T \in [0,1]$. Default setting:
$c_l = 0, c_h = \infty, T = 0.$
Output: Robust prediction <i>y</i> [*]
1: procedure ROBUSTMASKING
2: for each $\bar{y} \in \mathcal{Y}$ do
3: $\mathbf{u}_{\bar{y}} \leftarrow \mathcal{F}(\mathbf{x}, \bar{y}) $ \triangleright Local feature for class \bar{y}
4: $\hat{\mathbf{u}}_{\bar{y}} \leftarrow \text{CLIP}(\mathbf{u}_{\bar{y}}, c_l, c_h) \triangleright \text{Clipped local features}$
5: $\mathbf{w}_{\bar{y}}^* \leftarrow \text{DETECT}(\hat{\mathbf{u}}_{\bar{y}}, T, \mathcal{W}) \triangleright \text{Detected window}$
6: $s_{\bar{y}} \leftarrow SUM(\hat{\mathbf{u}}_{\bar{y}} \odot (1 - \mathbf{w}_{\bar{y}}^*)) \triangleright Applying the mask$
7: end for
8: $y^* \leftarrow \arg \max_{\bar{y} \in \mathcal{Y}}(s_{\bar{y}})$
9: return y^*
10: end procedure
11: procedure DETECT($\hat{\mathbf{u}}_{\bar{y}}, T, W$)
12: $\mathbf{w}_{\bar{y}}^* \leftarrow \arg \max_{\mathbf{w} \in \mathcal{W}} \operatorname{SUM}(\mathbf{w} \odot \hat{\mathbf{u}}_{\bar{y}}) \qquad \triangleright \operatorname{Detection}$
13: $b \leftarrow \text{SUM}(\mathbf{w}_{\bar{y}}^* \odot \hat{\mathbf{u}}_{\bar{y}}) / \text{SUM}(\hat{\mathbf{u}}_{\bar{y}}) > \text{Normalization}$
14: if $b \leq T$ then
15: $\mathbf{w}_{\bar{y}}^* \leftarrow 0$ \triangleright An empty mask returned
16: end if
17: return $\mathbf{w}_{\overline{y}}^*$
18: end procedure

Defense Performance Against BadEncoder

Neural Cleanse

Target Downstream Dataset	Anomaly Index
GTSRB	1.940
SVHN	1.340
STL10	1.251

Backdoored Encoders Detection Accuracy with 50 meta-classifiers: 0.52

Target Downstream Dataset	Certified Accuracy (%)	ASR (%)
GTSRB	0	56.34
SVHN	0	59.89
STL10	0	46.46

• MNTD

PatchGuard

Conclusion

 BadEncoder backdoor attack can compromise self-supervised pretrained encoders without affecting clean accuracy.

 Existing defenses fail to mitigate attacks in this paper and ASR remains high even when defenses are present.

Future work

• Generalizing backdoor attack to self-supervised learning in other domains, e.g., natural language processing and graph.

• Developing new defenses to defend against backdoor attacks.

• Studying how to pre-train an encoder such that the downstream classifiers built based on the encoder are more robust against conventional backdoor attacks that compromise the training of downstream classifiers