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DNNs

e Play an important role in wide range of critical applications
e Lack of interpretability
e Numerical blackboxes : inability to test exhaustively

e Computationally Expensive : Outsourced



What are Backdoor Trojans

e Backdoors are hidden patterns that have been trained into a DNN model that
produce unexpected behavior, but are undetectable unless activated by some
“trigger” input.

e Attack is simple, robust, highly effective, easy to realize

e In other Adversarial examples the attacker does not have full control over
converting the physical scene into an effective adversarial digital input

e Vision Systems : input agnostic trigger

e Insertion can take place during Training Phase or the Tuning Phase

o 99% successful on the MNIST dataset



Challenges in Detection

e Defender has no knowledge of Trigger
e Trigger features
o Arbitrary shape and pattern
o Located in any position
o Any Size
e |nsertion can take place
o During Training Phase
o During Tuning Phase
e No way to validate anomalous training data

e Can be inconspicuous



Mathematically Representing DNNs

e A DNN is a parameterized function Fy that maps a n-dimensional input x € R" into one of
M classes.

e The y; is the probability of the input belonging to class (label) i.

e Aninput x is deemed as class i with the highest probability such that the output class label z is
argmaXxier;my Yi-

e Training Dataset : D,,4in = {xi,yi};_, of S inputs
Where, x € RY and corresponding ground-truth labels , z; € [1, M]

Cg S

© = argmin L(Fo-(x;),2).
o Z (For (x:), 21)

e Validation Dataset : D, ;4 = {xi,yi}y with V inputs



Mathematically Representing Trojans

e Given a benign input xi, the prediction $1 = Fg(xi) of the trojaned model has a very
high probability to be the same as the ground-truth label yi.
e Given a trojaned input xai = xi + xa , the predicted label will always be the class za

set by the attacker, regardless of what the specific input xi is.



Is there an inherent weakness in trojan attacks with input-agnostic
triggers that is easily exploitable by the victim for
defence?



Consider an Example

e A trojanis inserted in the MNIST dataset with trojan accuracy of 99.86%
e 600 poisoned samples out of 50000, clean input accuracy of 98.86%
e Trojan is input-agnostic
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Figure 2. Trojan attacks exhibit an input-agnostic behavior. The attacker
targeted class is 7.



The STRIP Detection Example - 1
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Figure 3. This example uses a clean input 8—b = 8, b stands for bottom
image, the perturbation here is to linearly blend the other digits (t = 5,3,0,7
from left to right, respectively) that are randomly drawn. Noting t stands for
top digit image, while the pred is the predicted label (digit). Predictions are
quite different for perturbed clean input 8.



The STRIP Detection Example - 2
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Figure 4. The same input digit 8 as in Fi g.but stamped with the square trojan
trigger is linearly blended the same drawn digits. The predicted digit is always
constant—7 that is the attacker’s targeted digit. Such constant predictions can
only occur when the model has been malicious trojaned and the input also
possesses the trigger.



The STRIP Detection Example - 3
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Figure 5. Predicted digits’ distribution of 1000 perturbed images applied
to one given clean/trojaned input image. Inputs of top three sub-figures are

trojan-free. Inputs of bottom sub-figures are trojaned. The attacker targeted
class is 7.



The STRong Intentional Perturbation
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Detection System Algorithm

Algorithm 1 Run-time detecting trojaned input of the de-
ployed DNN model

1: procedure detection (z, D;..t. Fo(), detection boundary )

2: trojanedFlag < No

3: forn=1:N do

4: randomly drawing the ny, 1mage, xt,. from Diest

5: produce the nyy, perturbed images xP™ by superimposing
incoming image x with zf,.

6: end for

7: H < Fo(Dy) > D, 1s the
set of perturbed images consisting of {xPr ... ,aPN Y, H is the
entropy of incoming input x assessed by Eq|

8: if H < detection boundary then

0: trojanedFlag < Yes

10: end if

11: return trojanedFlag

12: end procedure




Threat Model

e Capabilities of the Attacker

o Full access to training dataset

o Full access to white-box to DNN model/architecture

o Attacker can determine pattern, location and size of the trigger
e Capabilities of the Defender

o Defender has held out a small collection of validation samples

o Does not have access to trojaned data stamped with triggers



Metrics

e FRR: False Rejection Rate

Probability when benign input is regarded as trojan input by the STRIP
Detection System

e FAR : False Acceptance Rate

Probability when trojan input is regarded as benign input by the STRIP
Detection System

|deally, both the values should be 0%



Entropy

Shannon Entropy i=M
The H is regarded as the entropy Hrn = — z; Yi X logy yi

of one incoming input x. It serves
as an indicator whether the
incoming input x is trojaned or

n=N
not. Hsum — Z H'n

Table 1

n=1
DETAILS OF MODEL ARCHITECTURE AND DATASET.
# of Image # of Model Total 1
Dataset labels size images architecture parameters H — >< H
MNIST | 10 | 28x28x1 | 60,000 | 2 Conv + 2 Dense | 80758 ,.\,T sum

. ; ) 8 Conv + 3 Pool + 3 Dropout . .
CIFAR10 10 32 x 32 x 3 | 60,000 | Flatten + 1 Dense 308,394

GTSRB 43 32 x32x3 | 51,839 ResNet20 [25] 276,587

The GTSRB image is resized to 32 x 32 x 3.




Advantages and Limitations of STRIP

e Advantages
o Plug and Play approach, Compatible with existing DNN
o Independent of deployed DNN model architecture
o Insensitive to the trigger-size employed
o Achieves 0% FAR and FRR in most tested cases
e Limitations
o Lacking generalization currently
o Ineffective on source-label specific triggers
o Defender does not have access to trojan samples in real life



Neural Cleanse Detection (and Identification)

A Key Insight:

e From the Classification POV: Model aims to create partitions that separates
latent space.

e From Infected Model POV: Infected model has partition shortcut.

e From Backdoor Attack POV: Clean samples’ latent representation are correctly
classified. Triggers acts as a perturbation to nudge the latent representation to
target partition through the shortcut.

Neural Cleanse Aims to reverse engineer this behavior



Neural Cleanse Detection (and Identification)
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Observation 1: Let IL represent the set of output label in the
DNN model. Consider a label L; € 1L and a target label L, €
L, © # t. If there exists a trigger (13) that induces classification
to Ly, then the minimum perturbation needed to transform all
inputs of L; (whose true label is L;) to be classified as Ly is
bounded by the size of the trigger: d;—; < |Ty|.

Observation 2: If a backdoor trigger T exists, then we have

vt < |Tt| << min Ov—si ¢))
RS

In human terms:

If a model is backdoored, it requires abnormally
low value of perturbation (comparing to others) to
transition a classification result from an arbitrary
label to the target label



Neural Cleanse Detection (and Identification)

Step 1: Step 2: Step 3:

Given a Label, treated as the Repeat Step 1 for all Labels. Find the outliers of “minimal”

potential target. triggers, the one that is
Collect all found “minimal’ abnormally minimal.

Optimize to find the “minimal” trigger.

trigger to misclassify all
samples from other labels into

this target label.

Note 1*: If a trigger is found in Step 3, it automatically satisfies the identification of trigger
Note 2*: Step 2 is obviously computational intensive, an algorithm was proposed to alleviate the issue



Neural Cleanse Detection (and Identification)

Represent a Trigger
Alx,m,A) =z’

T'ije=(1—mMij) Tije+mi; Aije
Formalize Optimization

mig Uy, f(A(x,m, A)))+ - /m| for ze€ X




Neural Cleanse Detection (and Identification)
e Anomaly Detection using Median Absolute Deviation
MAD = median(|X; — X])
X = median(X)

Eg.
Data: (1,1,2,2,4,6,9), Absolute Deviation: (1,1,0,0,2,4,7), Potential Outlier: 7



Neural Cleanse Detection (and Identification)

e An obvious problem: Computational efficiency

e Leading to Low Cost algorithm:

e The optimization mostly converge in the first few iterations, and fine
tunes the found “minimal” trigger for the rest of the iterations.

e Stop Early -> Narrow down the potential target -> Fine Tune



Detection Experiments (STRIP)

Figure 7. Besides the square trigger shown in Fig. 2. Other triggers (top)
identified in [16], [17] are also tested. Bottom are their corresponding trojaned
samples.
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Figure 8. Entropy distribution of benign and trojaned inputs. The trojaned

input shows a small entropy, which can be winnowed given a proper detection
boundary (threshold). Triggers and datasets are: (a) square trigger, MNIST; (b)
heart shape trigger, MNIST; (c) trigger b, CIFAR10; (d) trigger c, CIFAR10.



Detection Experiments (STRIP)

FAR AND FRR OF STRIP TROJAN DETECTION SYSTEM.

Dataset Trigger N Mean Smpd?rd FRR Detection FAR
type variation boundary
3% 0.058 0.75%
square,
MNIST Fig. 2 100 | 0.196 0.074 2% 0.046 1.1%
’ 1%" 0.026 1.85%
trigger a 2% 0.055 0%
MNIST Fig. 7 (33 100 | 0.189 0.071 1% 0.0235 0%
’ 0.5% 0.0057 1.5%
trigger b 2% 0.36 0%
CIFAR10 Fig. 7 (b3 100 | 0.97 0.30 1% 0.28 0%
’ 0.5% 0.20 0%
igger ¢ 2% 0.46 0%
CIFAR10 Fig. 7 (CS 100 | 1.11 0.31 1% 0.38 0%
’ 0.5% 0.30 0%
trigger b 2% 0.133 0%
GTSRB Fig. 7 (bS 100 | 0.53 0.19 1% 0.081 0%
’ 0.5% 0.034 0%

! When FRR is set to be 0.05%, the detection boundary value
becomes a negative value. Therefore, the FRR given FAR of
0.05% does not make sense, which is not evaluated.

Note: In appendix B of STRIP, the
author also mentioned that
detection capability improves with
depth of neural networks



Detection Experiments (Neural Cleanse)
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Detection Experiments (Neural Cleanse)
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Detection Experiments (Neural Cleanse)

Neural Activation Similarity

Average Neuron Activation
Model

Clean Tmages Adv. Image§ w/ Ac!v.. Imagqs w/

Reversed Trigger | Original Trigger

MNIST 1.19 4.20 4.74
GTSRB 42.86 270.11 304.05
YouTube Face 137.21 1003.56 1172.29
PubFig 5.38 19.28 25.88
Trojan Square 2.14 8.10 17.11
Trojan Watermark 1.20 6.93 13.97




Mitigation of Backdoors

Two techniques:

e Creating a filter for adversarial input that identifies and rejects any
input with the trigger, giving us time to patch the model

e Patching the DNN, making it nonresponsive against the detected

backdoor triggers
o Neuron Pruning

o Unlearning



Filter for Detecting Adversarial Inputs

Idea:
Neuron activations are a better way to capture similarity between original and reverse-

engineered triggers.

Technique:
Given some input, the filter identifies potential adversarial inputs as those with activation

profiles higher than a certain threshold. The activation threshold can be calibrated using tests
on clean inputs.

Evaluation:

High filtering performance for all four BadNets models, with < 1.63% FNR at an FPR of 5%.
TrojanAttack models are more difficult to filter out (likely due to the differences in neuron
activations between reversed trigger and original trigger). FNR is much higher for FPR < 5%,
but we obtain a reasonable 4.3% and 28.5% FNR at an FPR of 5%.



Patching via DNN Pruning

Idea:
Use the reversed trigger to help identify backdoor related components in DNN, e.g., neurons,

and remove them.

Technique:
Target the second to last layer, and prune neurons by order of highest rank first (i.e.

prioritizing those that show biggest activation gap between clean and adversarial inputs). To
minimize impact on classification accuracy of clean inputs, stop pruning when the pruned
model is no longer responsive to the reversed trigger.

Observation:

For GTSRB, attack success rate of the reversed trigger follows a similar trend as the original
trigger, and thus serves as a good signal to approximate defense effectiveness to the original
trigger. Pruning 30% of neurons reduces classification accuracy by 5% but attack success
rate goes to almost 0%. (massive redundancy!)



Patching via DNN Pruning

Evaluation:

e For YouTube Face, classification accuracy drops from 97.55% to 81.4% when attack success rate drops to 1.6%.
(Only 160 neurons in second to last layer, so clean neurons get pruned too). Pruning at the last convolution layer
produces the best results.

e In all four BadNets models, attack success rate reduces to < 1% with minimal reduction in classification accuracy
< 0.8%. Meanwhile, at most 8% of neurons are pruned.

e For Trojan models, when pruning 30% neurons, attack success rate using reverse-engineered trigger drops to
10.1%, but success using the original trigger remains high, at 87.3%. This discrepancy is due to the dissimilarity in

neuron activations between reversed trigger and the original trigger.
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Patching DNNs via Unlearning

e |dea:

Use the reversed trigger to train the infected DNN to recognize correct labels
even when the trigger is present.

e Technique:

Fine-tune the model for only 1 epoch, using an updated training dataset. To
create this new training set, we take a 10% sample of the original training
data (clean, with no triggers), and add 7% (or full training data if training data
is very limited), and add the reversed trigger to 20% of this sample without
modifying labels.



Patching DNNs via Unlearning

Results:

e In all models, attack success rate is reduced to < 6.70%, without significantly
sacrificing classification accuracy.

e The largest reduction of classification accuracy is in GTSRB, which is only 3.6%.

e For some models, especially Trojan Attack models, there is an increase in
classification accuracy after patching.

e \When injecting the backdoor, the Trojan Attack models suffer degradation in
classification accuracy. Original uninfected Trojan Attack models have a
classification accuracy of 77.2% which is now improved when the backdoor is
patched.



Patching DNNs via Unlearning

Comparisons:

e Training against the same training sample, but applying the original trigger instead of

the reverse-engineered trigger

Unlearning using the original trigger achieves slightly lower attacker success rate with similar
classification accuracy. So unlearning with our reversed trigger is a good approximation for

unlearning using the original.
e Unlearning using only clean training data (no additional triggers)

Unlearning is ineffective for all BadNets models (attack success rate still high) but highly

effective for Trojan Attacks.



BadNets V Trojan Attacks

e Trojan Attack models, with their highly targeted re-tuning of specific neurons, are much more
sensitive to unlearning. A clean input that helps reset a few key neurons disables the attack.

e In contrast, BadNets injects backdoors by updating all layers using a poisoned dataset, and
requires significantly more work to retrain and mitigate the backdoor.

e Even though unlearning has a higher computational cost compared to neuron pruning, it is
still one to two orders of magnitude smaller than retraining the model from scratch.

TABLE IV. Classification accuracy and attack success rate before and after unlearning backdoor. Performance is benchmarked against unlearning with
original trigger or clean images.

Task

Before Patching

Patching w/ Reversed Trigger

Patching w/ Original Trigger

Patching w/ Clean Images

Classification | Attack Success | Classification | Attack Success | Classification | Attack Success | Classification | Attack Success
Accuracy Rate Accuracy Rate Accuracy Rate Accuracy Rate
MNIST 98.54% 99.90% 97.69% 0.57% 97.77% 0.29% 97.38% 93.37%
GTSRB 96.51% 97.40% 92.91% 0.14% 90.06% 0.19% 92.02% 95.69%
YouTube Face 97.50% 97.20% 97.90% 6.70% 97.90% 0.0% 97.80% 95.10%
PubFig 95.69% 97.03% 97.38% 6.09% 97.38% 1.41% 97.69% 93.30%
Trojan Square 70.80% 99.90% 79.20% 3.70% 79.60% 0.0% 79.50% 10.91%
Trojan Watermark 71.40% 97.60% 78.80% 0.00% 79.60% 0.00% 79.50% 0.00%




Robustness against Advanced Backdoors

» Study more advanced variants of backdoor attacks and evaluate their
impact on their proposed techniques.

 Further investigate and evaluate the performance over several types
of advanced backdoor attacks, among them:

« Different Trigger Shapes

 Larger Triggers

» Multiple Infected Labels with Separate Triggers
« Single Infected Label with Multiple Triggers



Different trigger shapes

» As observed (Trojan square and watermark), triggers with more complicated
patterns make it harder for the optimization process to converge correctly.
« How would other triggers (of the same size) affect the convergence of the

optimization function used for detection?



Different trigger shapes

» As observed (Trojan square and watermark), triggers with more complicated
patterns make it harder for the optimization process to converge correctly.
« How would other triggers (of the same size) affect the convergence of the

optimization function used for detection?

* Neural Cleanse authors perform simple tests by:
* noisy squares
* different trigger shapes

« On MNIST, GTSRB, YouTube Face, PubFig, the proposed techniques still

works.



Larger Triggers

 Larger triggers are likely to produce larger reverse engineered

triggers. Are they easier or more difficult to detect?

» Experiments to evaluate the trigger size effect, increasing the size of
trigger from 4x4 (1.6% of the image) to 16x16 (25%) on GTSRB

dataset.



Larger Triggers
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Larger Triggers

« Setting the transparency of a Hello Kitty image to

70% over an entire CIFAR10 input image.

» The evaluated minimal entropy of clean images is
0.0035 and the maximal entropy of trojan images
is 0.0024.

« STRIP managed to detect the backdoor attack.




Multiple Infected Labels with Separate Triggers

* Inserting multiple, independent backdoors into a single model, each

infecting another label.

 Evaluating the maximum number of infected labels the proposed

defense is able detect effectively.

» Reduces the change required to get to different target labels - might

cause outliers to be harder to detect.



Multiple Infected Labels with Separate Triggers

» Generating unique triggers with exclusive color patterns for different

target labels.

 Evaluating the defense methods against them in GTSRB.



Multiple Infected Labels with Separate Triggers
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fected (results averaged over 10 rounds).



Multiple Infected Labels with Separate Triggers

 Similar results in other datasets:
* 3 labels (30%) for MNIST
» 375 labels (29.2%) for YouTube Face
24 labels (36.9%) for PubFig



Single Infected Label with Multiple Triggers

» Consider various triggers that induce misclassification to the same

infected label.

« Since the identification task is formulated as an optimization problem,

it will converge into one trigger.

* Neural Cleanse authors inject 9 white square triggers of the original

size for a single GTSRB label.



Single Infected Label with Multiple Triggers
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Single Infected Label with Multiple Triggers

* Similar results in other datasets:
e <19% for MNIST
» <5% for YouTube Face

» <4% for PubFig

* In contrast, according to the STRIP authors’ evaluation with
CIFAR10, where each trigger is a small digit (size is not mentioned),

they achieve perfect detection with no false rejection at all.



Limitations and Future Work

* Both:

» Source-label specific triggers

* Neural Cleanse:
 Relies on outlier detection, vulnerable to numerous targeted labels
» The neuron pruning approach performance depends on choosing the right

layer which requires expertise

« Other types of data (graphs, audio etc.).



