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DNNs

● Play an important role in wide range of critical applications

● Lack of interpretability

● Numerical blackboxes : inability to test exhaustively

● Computationally Expensive : Outsourced



What are Backdoor Trojans 

● Backdoors are hidden patterns that have been trained into a DNN model that 

produce unexpected behavior, but are undetectable unless activated by some 

“trigger” input.

● Attack is simple, robust, highly effective, easy to realize

● In other Adversarial examples the attacker does not have full control over 

converting the physical scene into an effective adversarial digital input

● Vision Systems : input agnostic trigger

● Insertion can take place during Training Phase or the Tuning Phase

● 99% successful on the MNIST dataset



Challenges in Detection 

● Defender has no knowledge of Trigger
● Trigger features

○ Arbitrary shape and pattern
○ Located in any position 
○ Any Size

● Insertion can take place
○ During Training Phase
○ During Tuning Phase

● No way to validate anomalous training data
● Can be inconspicuous



Mathematically Representing DNNs 



Mathematically Representing Trojans



Is there an inherent weakness in trojan attacks with input-agnostic
triggers that is easily exploitable by the victim for

defence?



Consider an Example 

● A trojan is inserted in the MNIST dataset with trojan accuracy of 99.86%
● 600 poisoned samples out of 50000, clean input accuracy of 98.86%
● Trojan is input-agnostic



The STRIP Detection Example - 1



The STRIP Detection Example - 2



The STRIP Detection Example - 3



The STRong Intentional Perturbation



Detection System Algorithm



Threat Model 

● Capabilities of the Attacker

○ Full access to training dataset 

○ Full access to white-box to DNN model/architecture

○ Attacker can determine pattern, location and size of the trigger

● Capabilities of the Defender

○ Defender has held out a small collection of validation samples

○ Does not have access to trojaned data stamped with triggers



Metrics 

● FRR : False Rejection Rate 

Probability when benign input is regarded as trojan input by the STRIP 
Detection System

● FAR : False Acceptance Rate 

Probability when trojan input is regarded as benign input by the STRIP 
Detection System

Ideally, both the values should be 0%



Entropy 

Shannon Entropy 

The H is regarded as the entropy 
of one incoming input x. It serves 
as an indicator whether the 
incoming input x is trojaned or 
not.



Advantages and Limitations of STRIP

● Advantages
○ Plug and Play approach, Compatible with existing DNN
○ Independent of deployed DNN model architecture
○ Insensitive to the trigger-size employed 
○ Achieves 0% FAR and FRR in most tested cases

● Limitations
○ Lacking generalization currently
○ Ineffective on source-label specific triggers
○ Defender does not have access to trojan samples in real life



Neural Cleanse Detection (and Identification)

A Key Insight:

● From the Classification POV: Model aims to create partitions that separates 
latent space. 

● From Infected Model POV: Infected model has partition shortcut.

● From Backdoor Attack POV: Clean samples’ latent representation are correctly 
classified. Triggers acts as a perturbation to nudge the latent representation to 
target partition through the shortcut. 

Neural Cleanse Aims to reverse engineer this behavior



Neural Cleanse Detection (and Identification)

In human terms:
If a model is backdoored, it requires abnormally 
low value of perturbation (comparing to others) to 
transition a classification result from an arbitrary 
label to the target label



Neural Cleanse Detection (and Identification)

Step 1:

Given a Label, treated as the 
potential target.  

Optimize to find the “minimal” 
trigger to misclassify all 
samples from other labels into 
this target label. 

Step 2:

Repeat Step 1 for all Labels.

Collect all found “minimal” 
trigger.

Step 3:

Find the outliers of “minimal” 
triggers, the one that is 
abnormally minimal.

Note 1*: If a trigger is found in Step 3, it automatically satisfies the identification of trigger
Note 2*: Step 2 is obviously computational intensive, an algorithm was proposed to alleviate the issue



Neural Cleanse Detection (and Identification)

Represent a Trigger 

Formalize Optimization



Neural Cleanse Detection (and Identification)

● Anomaly Detection using Median Absolute Deviation

Eg.
Data: (1,1,2,2,4,6,9), Absolute Deviation: (1,1,0,0,2,4,7), Potential Outlier: 7



Neural Cleanse Detection (and Identification)

● An obvious problem: Computational efficiency

● Leading to Low Cost algorithm:

● The optimization mostly converge in the first few iterations, and fine 

tunes the found “minimal” trigger for the rest of the iterations. 

● Stop Early -> Narrow down the potential target -> Fine Tune



Detection Experiments (STRIP)



Detection Experiments (STRIP)

Note: In appendix B of STRIP, the 
author also mentioned that 
detection capability improves with 
depth of neural networks



Detection Experiments (Neural Cleanse)



Detection Experiments (Neural Cleanse)



Detection Experiments (Neural Cleanse)

Neural Activation Similarity



Mitigation of Backdoors

Two techniques:

● Creating a filter for adversarial input that identifies and rejects any 

input with the trigger, giving us time to patch the model

● Patching the DNN, making it nonresponsive against the detected 

backdoor triggers
○ Neuron Pruning

○ Unlearning



Filter for Detecting Adversarial Inputs

● Idea: 
Neuron activations are a better way to capture similarity between original and reverse-
engineered triggers. 

● Technique: 
Given some input, the filter identifies potential adversarial inputs as those with activation 
profiles higher than a certain threshold. The activation threshold can be calibrated using tests 
on clean inputs.

● Evaluation: 
High filtering performance for all four BadNets models, with < 1.63% FNR at an FPR of 5%. 
TrojanAttack models are more difficult to filter out (likely due to the differences in neuron 
activations between reversed trigger and original trigger). FNR is much higher for FPR < 5%, 
but we obtain a reasonable 4.3% and 28.5% FNR at an FPR of 5%.



Patching via DNN Pruning

● Idea: 
Use the reversed trigger to help identify backdoor related components in DNN, e.g., neurons, 
and remove them.

● Technique:
Target the second to last layer, and prune neurons by order of highest rank first (i.e. 
prioritizing those that show biggest activation gap between clean and adversarial inputs). To 
minimize impact on classification accuracy of clean inputs, stop pruning when the pruned 
model is no longer responsive to the reversed trigger.

● Observation:
For GTSRB, attack success rate of the reversed trigger follows a similar trend as the original 
trigger, and thus serves as a good signal to approximate defense effectiveness to the original 
trigger. Pruning 30% of neurons reduces classification accuracy by 5% but attack success 
rate goes to almost 0%. (massive redundancy!)



Patching via DNN Pruning
Evaluation:

● For YouTube Face, classification accuracy drops from 97.55% to 81.4% when attack success rate drops to 1.6%. 
(Only 160 neurons in second to last layer, so clean neurons get pruned too). Pruning at the last convolution layer 
produces the best results.

● In all four BadNets models, attack success rate reduces to < 1% with minimal reduction in classification accuracy 
< 0.8%. Meanwhile, at most 8% of neurons are pruned.

● For Trojan models, when pruning 30% neurons, attack success rate using reverse-engineered trigger drops to 
10.1%, but success using the original trigger remains high, at 87.3%. This discrepancy is due to the dissimilarity in 
neuron activations between reversed trigger and the original trigger.



Patching DNNs via Unlearning

● Idea:

Use the reversed trigger to train the infected DNN to recognize correct labels 
even when the trigger is present. 

● Technique:

Fine-tune the model for only 1 epoch, using an updated training dataset. To 
create this new training set, we take a 10% sample of the original training 
data (clean, with no triggers), and add 7% (or full training data if training data 
is very limited), and add the reversed trigger to 20% of this sample without 
modifying labels.



Patching DNNs via Unlearning

Results:

● In all models, attack success rate is reduced to < 6.70%, without significantly 
sacrificing classification accuracy. 

● The largest reduction of classification accuracy is in GTSRB, which is only 3.6%.
● For some models, especially Trojan Attack models, there is an increase in 

classification accuracy after patching. 
● When injecting the backdoor, the Trojan Attack models suffer degradation in 

classification accuracy. Original uninfected Trojan Attack models have a 
classification accuracy of 77.2% which is now improved when the backdoor is 
patched.



Patching DNNs via Unlearning

Comparisons:

● Training against the same training sample, but applying the original trigger instead of 
the reverse-engineered trigger

Unlearning using the original trigger achieves slightly lower attacker success rate with similar 
classification accuracy. So unlearning with our reversed trigger is a good approximation for 
unlearning using the original.

● Unlearning using only clean training data (no additional triggers)

Unlearning is ineffective for all BadNets models (attack success rate still high) but highly 
effective for Trojan Attacks.



BadNets V Trojan Attacks

● Trojan Attack models, with their highly targeted re-tuning of specific neurons, are much more 
sensitive to unlearning. A clean input that helps reset a few key neurons disables the attack.

● In contrast, BadNets injects backdoors by updating all layers using a poisoned dataset, and 
requires significantly more work to retrain and mitigate the backdoor.

● Even though unlearning has a higher computational cost compared to neuron pruning, it is 
still one to two orders of magnitude smaller than retraining the model from scratch.  



Robustness against Advanced Backdoors

• Study more advanced variants of backdoor attacks and evaluate their 
impact on their proposed techniques.

• Further investigate and evaluate the performance over several types 
of advanced backdoor attacks, among them:

• Different Trigger Shapes

• Larger Triggers

• Multiple Infected Labels with Separate Triggers

• Single Infected Label with Multiple Triggers



Different trigger shapes

• As observed (Trojan square and watermark), triggers with more complicated 

patterns make it harder for the optimization process to converge correctly.

• How would other triggers (of the same size) affect the convergence of the 

optimization function used for detection?



Different trigger shapes

• As observed (Trojan square and watermark), triggers with more complicated 

patterns make it harder for the optimization process to converge correctly.

• How would other triggers (of the same size) affect the convergence of the 

optimization function used for detection?
• Neural Cleanse authors perform simple tests by:

• noisy squares
• different trigger shapes

• On MNIST, GTSRB, YouTube Face, PubFig, the proposed techniques still 

works.



Larger Triggers

• Larger triggers are likely to produce larger reverse engineered 

triggers. Are they easier or more difficult to detect?

• Experiments to evaluate the trigger size effect, increasing the size of 

trigger from 4×4 (1.6% of the image) to 16×16 (25%) on GTSRB 

dataset.



Larger Triggers



Larger Triggers

• Setting the transparency of a Hello Kitty image to 

70% over an entire CIFAR10 input image.

• The evaluated minimal entropy of clean images is 

0.0035 and the maximal entropy of trojan images 

is 0.0024.

• STRIP managed to detect the backdoor attack.



Multiple Infected Labels with Separate Triggers

• Inserting multiple, independent backdoors into a single model, each 

infecting another label.

• Evaluating the maximum number of infected labels the proposed 

defense is able detect effectively.

• Reduces the change required to get to different target labels - might 

cause outliers to be harder to detect.



Multiple Infected Labels with Separate Triggers

• Generating unique triggers with exclusive color patterns for different 

target labels.

• Evaluating the defense methods against them in GTSRB.



Multiple Infected Labels with Separate Triggers



Multiple Infected Labels with Separate Triggers

• Similar results in other datasets:

• 3 labels (30%) for MNIST

• 375 labels (29.2%) for YouTube Face

• 24 labels (36.9%) for PubFig



Single Infected Label with Multiple Triggers

• Consider various triggers that induce misclassification to the same 

infected label.

• Since the identification task is formulated as an optimization problem, 

it will converge into one trigger.

• Neural Cleanse authors inject 9 white square triggers of the original 

size for a single GTSRB label.



Single Infected Label with Multiple Triggers



Single Infected Label with Multiple Triggers

• Similar results in other datasets:

• <1% for MNIST

• <5% for YouTube Face

• <4% for PubFig

• In contrast, according to the STRIP authors’ evaluation with 

CIFAR10, where each trigger is a small digit (size is not mentioned), 

they achieve perfect detection with no false rejection at all.



Limitations and Future Work

• Both:

• Source-label specific triggers

• Neural Cleanse:

• Relies on outlier detection, vulnerable to numerous targeted labels

• The neuron pruning approach performance depends on choosing the right 

layer which requires expertise

• Other types of data (graphs, audio etc.).


