
Empirical defenses against backdoor attacks
Presented by

Haoming Yang, Rucha Patil, Oded Schlesinger, Angikar Ghoshal

Index

1. Background

2. Detection STRIP

3. Detection in Neural Cleanse , Identification

4. Experiments on Detection, Identification

5. Mitigation

6. Mitigation Experiments

7. Limitation/Future Work

DNNs

● Play an important role in wide range of critical applications

● Lack of interpretability

● Numerical blackboxes : inability to test exhaustively

● Computationally Expensive : Outsourced

What are Backdoor Trojans

● Backdoors are hidden patterns that have been trained into a DNN model that

produce unexpected behavior, but are undetectable unless activated by some

“trigger” input.

● Attack is simple, robust, highly effective, easy to realize

● In other Adversarial examples the attacker does not have full control over

converting the physical scene into an effective adversarial digital input

● Vision Systems : input agnostic trigger

● Insertion can take place during Training Phase or the Tuning Phase

● 99% successful on the MNIST dataset

Challenges in Detection

● Defender has no knowledge of Trigger
● Trigger features

○ Arbitrary shape and pattern
○ Located in any position
○ Any Size

● Insertion can take place
○ During Training Phase
○ During Tuning Phase

● No way to validate anomalous training data
● Can be inconspicuous

Mathematically Representing DNNs

Mathematically Representing Trojans

Is there an inherent weakness in trojan attacks with input-agnostic
triggers that is easily exploitable by the victim for

defence?

Consider an Example

● A trojan is inserted in the MNIST dataset with trojan accuracy of 99.86%
● 600 poisoned samples out of 50000, clean input accuracy of 98.86%
● Trojan is input-agnostic

The STRIP Detection Example - 1

The STRIP Detection Example - 2

The STRIP Detection Example - 3

The STRong Intentional Perturbation

Detection System Algorithm

Threat Model

● Capabilities of the Attacker

○ Full access to training dataset

○ Full access to white-box to DNN model/architecture

○ Attacker can determine pattern, location and size of the trigger

● Capabilities of the Defender

○ Defender has held out a small collection of validation samples

○ Does not have access to trojaned data stamped with triggers

Metrics

● FRR : False Rejection Rate

Probability when benign input is regarded as trojan input by the STRIP
Detection System

● FAR : False Acceptance Rate

Probability when trojan input is regarded as benign input by the STRIP
Detection System

Ideally, both the values should be 0%

Entropy

Shannon Entropy

The H is regarded as the entropy
of one incoming input x. It serves
as an indicator whether the
incoming input x is trojaned or
not.

Advantages and Limitations of STRIP

● Advantages
○ Plug and Play approach, Compatible with existing DNN
○ Independent of deployed DNN model architecture
○ Insensitive to the trigger-size employed
○ Achieves 0% FAR and FRR in most tested cases

● Limitations
○ Lacking generalization currently
○ Ineffective on source-label specific triggers
○ Defender does not have access to trojan samples in real life

Neural Cleanse Detection (and Identification)

A Key Insight:

● From the Classification POV: Model aims to create partitions that separates
latent space.

● From Infected Model POV: Infected model has partition shortcut.

● From Backdoor Attack POV: Clean samples’ latent representation are correctly
classified. Triggers acts as a perturbation to nudge the latent representation to
target partition through the shortcut.

Neural Cleanse Aims to reverse engineer this behavior

Neural Cleanse Detection (and Identification)

In human terms:
If a model is backdoored, it requires abnormally
low value of perturbation (comparing to others) to
transition a classification result from an arbitrary
label to the target label

Neural Cleanse Detection (and Identification)

Step 1:

Given a Label, treated as the
potential target.

Optimize to find the “minimal”
trigger to misclassify all
samples from other labels into
this target label.

Step 2:

Repeat Step 1 for all Labels.

Collect all found “minimal”
trigger.

Step 3:

Find the outliers of “minimal”
triggers, the one that is
abnormally minimal.

Note 1*: If a trigger is found in Step 3, it automatically satisfies the identification of trigger
Note 2*: Step 2 is obviously computational intensive, an algorithm was proposed to alleviate the issue

Neural Cleanse Detection (and Identification)

Represent a Trigger

Formalize Optimization

Neural Cleanse Detection (and Identification)

● Anomaly Detection using Median Absolute Deviation

Eg.
Data: (1,1,2,2,4,6,9), Absolute Deviation: (1,1,0,0,2,4,7), Potential Outlier: 7

Neural Cleanse Detection (and Identification)

● An obvious problem: Computational efficiency

● Leading to Low Cost algorithm:

● The optimization mostly converge in the first few iterations, and fine

tunes the found “minimal” trigger for the rest of the iterations.

● Stop Early -> Narrow down the potential target -> Fine Tune

Detection Experiments (STRIP)

Detection Experiments (STRIP)

Note: In appendix B of STRIP, the
author also mentioned that
detection capability improves with
depth of neural networks

Detection Experiments (Neural Cleanse)

Detection Experiments (Neural Cleanse)

Detection Experiments (Neural Cleanse)

Neural Activation Similarity

Mitigation of Backdoors

Two techniques:

● Creating a filter for adversarial input that identifies and rejects any

input with the trigger, giving us time to patch the model

● Patching the DNN, making it nonresponsive against the detected

backdoor triggers
○ Neuron Pruning

○ Unlearning

Filter for Detecting Adversarial Inputs

● Idea:
Neuron activations are a better way to capture similarity between original and reverse-
engineered triggers.

● Technique:
Given some input, the filter identifies potential adversarial inputs as those with activation
profiles higher than a certain threshold. The activation threshold can be calibrated using tests
on clean inputs.

● Evaluation:
High filtering performance for all four BadNets models, with < 1.63% FNR at an FPR of 5%.
TrojanAttack models are more difficult to filter out (likely due to the differences in neuron
activations between reversed trigger and original trigger). FNR is much higher for FPR < 5%,
but we obtain a reasonable 4.3% and 28.5% FNR at an FPR of 5%.

Patching via DNN Pruning

● Idea:
Use the reversed trigger to help identify backdoor related components in DNN, e.g., neurons,
and remove them.

● Technique:
Target the second to last layer, and prune neurons by order of highest rank first (i.e.
prioritizing those that show biggest activation gap between clean and adversarial inputs). To
minimize impact on classification accuracy of clean inputs, stop pruning when the pruned
model is no longer responsive to the reversed trigger.

● Observation:
For GTSRB, attack success rate of the reversed trigger follows a similar trend as the original
trigger, and thus serves as a good signal to approximate defense effectiveness to the original
trigger. Pruning 30% of neurons reduces classification accuracy by 5% but attack success
rate goes to almost 0%. (massive redundancy!)

Patching via DNN Pruning
Evaluation:

● For YouTube Face, classification accuracy drops from 97.55% to 81.4% when attack success rate drops to 1.6%.
(Only 160 neurons in second to last layer, so clean neurons get pruned too). Pruning at the last convolution layer
produces the best results.

● In all four BadNets models, attack success rate reduces to < 1% with minimal reduction in classification accuracy
< 0.8%. Meanwhile, at most 8% of neurons are pruned.

● For Trojan models, when pruning 30% neurons, attack success rate using reverse-engineered trigger drops to
10.1%, but success using the original trigger remains high, at 87.3%. This discrepancy is due to the dissimilarity in
neuron activations between reversed trigger and the original trigger.

Patching DNNs via Unlearning

● Idea:

Use the reversed trigger to train the infected DNN to recognize correct labels
even when the trigger is present.

● Technique:

Fine-tune the model for only 1 epoch, using an updated training dataset. To
create this new training set, we take a 10% sample of the original training
data (clean, with no triggers), and add 7% (or full training data if training data
is very limited), and add the reversed trigger to 20% of this sample without
modifying labels.

Patching DNNs via Unlearning

Results:

● In all models, attack success rate is reduced to < 6.70%, without significantly
sacrificing classification accuracy.

● The largest reduction of classification accuracy is in GTSRB, which is only 3.6%.
● For some models, especially Trojan Attack models, there is an increase in

classification accuracy after patching.
● When injecting the backdoor, the Trojan Attack models suffer degradation in

classification accuracy. Original uninfected Trojan Attack models have a
classification accuracy of 77.2% which is now improved when the backdoor is
patched.

Patching DNNs via Unlearning

Comparisons:

● Training against the same training sample, but applying the original trigger instead of
the reverse-engineered trigger

Unlearning using the original trigger achieves slightly lower attacker success rate with similar
classification accuracy. So unlearning with our reversed trigger is a good approximation for
unlearning using the original.

● Unlearning using only clean training data (no additional triggers)

Unlearning is ineffective for all BadNets models (attack success rate still high) but highly
effective for Trojan Attacks.

BadNets V Trojan Attacks

● Trojan Attack models, with their highly targeted re-tuning of specific neurons, are much more
sensitive to unlearning. A clean input that helps reset a few key neurons disables the attack.

● In contrast, BadNets injects backdoors by updating all layers using a poisoned dataset, and
requires significantly more work to retrain and mitigate the backdoor.

● Even though unlearning has a higher computational cost compared to neuron pruning, it is
still one to two orders of magnitude smaller than retraining the model from scratch.

Robustness against Advanced Backdoors

• Study more advanced variants of backdoor attacks and evaluate their
impact on their proposed techniques.

• Further investigate and evaluate the performance over several types
of advanced backdoor attacks, among them:

• Different Trigger Shapes

• Larger Triggers

• Multiple Infected Labels with Separate Triggers

• Single Infected Label with Multiple Triggers

Different trigger shapes

• As observed (Trojan square and watermark), triggers with more complicated

patterns make it harder for the optimization process to converge correctly.

• How would other triggers (of the same size) affect the convergence of the

optimization function used for detection?

Different trigger shapes

• As observed (Trojan square and watermark), triggers with more complicated

patterns make it harder for the optimization process to converge correctly.

• How would other triggers (of the same size) affect the convergence of the

optimization function used for detection?
• Neural Cleanse authors perform simple tests by:

• noisy squares
• different trigger shapes

• On MNIST, GTSRB, YouTube Face, PubFig, the proposed techniques still

works.

Larger Triggers

• Larger triggers are likely to produce larger reverse engineered

triggers. Are they easier or more difficult to detect?

• Experiments to evaluate the trigger size effect, increasing the size of

trigger from 4×4 (1.6% of the image) to 16×16 (25%) on GTSRB

dataset.

Larger Triggers

Larger Triggers

• Setting the transparency of a Hello Kitty image to

70% over an entire CIFAR10 input image.

• The evaluated minimal entropy of clean images is

0.0035 and the maximal entropy of trojan images

is 0.0024.

• STRIP managed to detect the backdoor attack.

Multiple Infected Labels with Separate Triggers

• Inserting multiple, independent backdoors into a single model, each

infecting another label.

• Evaluating the maximum number of infected labels the proposed

defense is able detect effectively.

• Reduces the change required to get to different target labels - might

cause outliers to be harder to detect.

Multiple Infected Labels with Separate Triggers

• Generating unique triggers with exclusive color patterns for different

target labels.

• Evaluating the defense methods against them in GTSRB.

Multiple Infected Labels with Separate Triggers

Multiple Infected Labels with Separate Triggers

• Similar results in other datasets:

• 3 labels (30%) for MNIST

• 375 labels (29.2%) for YouTube Face

• 24 labels (36.9%) for PubFig

Single Infected Label with Multiple Triggers

• Consider various triggers that induce misclassification to the same

infected label.

• Since the identification task is formulated as an optimization problem,

it will converge into one trigger.

• Neural Cleanse authors inject 9 white square triggers of the original

size for a single GTSRB label.

Single Infected Label with Multiple Triggers

Single Infected Label with Multiple Triggers

• Similar results in other datasets:

• <1% for MNIST

• <5% for YouTube Face

• <4% for PubFig

• In contrast, according to the STRIP authors’ evaluation with

CIFAR10, where each trigger is a small digit (size is not mentioned),

they achieve perfect detection with no false rejection at all.

Limitations and Future Work

• Both:

• Source-label specific triggers

• Neural Cleanse:

• Relies on outlier detection, vulnerable to numerous targeted labels

• The neuron pruning approach performance depends on choosing the right

layer which requires expertise

• Other types of data (graphs, audio etc.).

