

Model Stealing Attacks

Minxue Tang

Xueying Wu

Yitu Wang

Duke

Contents

- Background
- Model Extraction Attacks with Natural Data
 - Standard Model Extraction Attack
 - Model Extraction Attack with self-supervised Learning
 - Model Extraction Attack with Active Learning
- Model Extraction Attacks with Synthetic Data
 - Model Extraction Attack with GAN
- Conclusion

Contents

Background

- Model Extraction Attacks with Natural Data
 - Standard Model Extraction Attack
 - Model Extraction Attack with self-supervised Learning
 - Model Extraction Attack with Active Learning
- Model Extraction Attacks with Synthetic Data
 - Model Extraction Attack with GAN

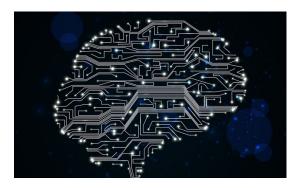
Conclusion

Background

- Machine-Learning-as-a-Service (MLasS) System
 - A confidential model is deployed for some paid service as a black box.
 - The confidential model is an asset of the model provider.
 - Data collection, model training and services deployment are expensive!
- Model Stealing (Extraction) Attacks
 - Aiming at stealing the parameters or functionality of the confidential model.
 - Model Extraction is usually done by querying the confidential model and learning from its response.
 - Avoid Subscription and paying after stealing, or uncover security vulnerabilities of the model.

Metrics

- Accuracy: How well the extracted model performs on a target test dataset
- Fidelity: How similarly the extracted model imitates the confidential model



Contents

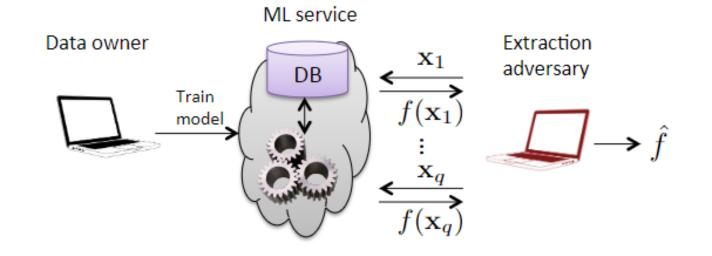
- Background
- Model Extraction Attacks with Natural Data
 - Standard Model Extraction Attack
 - Model Extraction Attack with self-supervised Learning
 - Model Extraction Attack with Active Learning
- Model Extraction Attacks with Synthetic Data
 - Model Extraction Attack with GAN
- Conclusion

Standard Model Extraction Attack^[1]

- Attack by Querying with Natural Data
- Metrics
- Test Error R_{test} : Fidelity on a target test set.

$$R_{test} = \mathbb{E}_{D_{test}} \left[d\left(f(x), \hat{f}(x) \right) \right]$$

• Uniform Error R_{unif} : Fidelity on uniformly random vectors. $R_{unif} = \mathbb{E}_U \left[d \left(f(x), \hat{f}(x) \right) \right]$



[1] Tramèr, Florian, et al. "Stealing machine learning models via prediction {APIs}." 25th USENIX security symposium (USENIX Security 16). 2016.

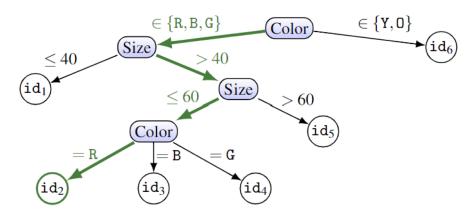
- Case 1: The confidential model is known, and the parameters of the model can be solved from the equations related to input-output pairs.
- Logistic Regression (LR)

$$w^T x + \beta = \sigma^{-1}(f(x))$$

- Softmax Multiclass LR
- One-vs-Rest Multiclass LR (OvR)
- Multilayer Perceptrons (MLP)
- Kernel LR

Unknowns	Queries	$1-R_{\text{test}}$	$1 - R_{\text{unif}}$	Time (s)
520	265	99.96%	99.75%	2.6
550	530	100.00%	100.00%	3.1
530	265	99.98%	99.98%	2.8
	530	100.00%	100.00%	3.5
2,225	1,112	98.17%	94.32%	155
	2,225	98.68%	97.23%	168
	4,450	99.89%	99.82%	195
	11,125	99.96%	99.99%	89
	530 530	$\begin{array}{c} & & & & \\ & 530 & & \\ \hline 530 & & 265 \\ \hline 530 & & \\ \hline 530 & & \\ 2,225 & & \\ 2,225 & & \\ 4,450 \end{array}$	$\begin{array}{c ccccc} 530 & 265 & 99.96\% \\ 530 & 100.00\% \\ \hline 530 & 265 & 99.98\% \\ 530 & 100.00\% \\ \hline 530 & 100.00\% \\ \hline 2,225 & 98.17\% \\ 2,225 & 98.68\% \\ 4,450 & 99.89\% \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- Case 2: The confidential model is known, but the output cannot be written as a continuous function.
- Decision Tree
- Path-finding Attack
- Require to know the ID of the returned leaf
- Step 1: Find the constraints that input must satisfy to reach a specific leaf.
- Step 2: Create new input to explore other paths in the tree.



Model	Leaves	Unique IDs	Depth	$1-R_{\text{test}}$	$1 - R_{\text{unif}}$	Queries
IRS Tax Patterns	318	318	8	100.00%	100.00%	101,057
Steak Survey	193	28	17	92.45%	86.40%	3,652
GSS Survey	159	113	8	99.98%	99.61%	7,434
Email Importance	109	55	17	99.13%	99.90%	12,888
Email Spam	219	78	29	87.20%	100.00%	42,324
German Credit	26	25	11	100.00%	100.00%	1,722
Medical Cover	49	49	11	100.00%	100.00%	5,966
Bitcoin Price	155	155	9	100.00%	100.00%	31,956

- Case 3: The model is unknown (black-box), or only parts of outputs (e.g., only top-1 labels) are returned to the user. The attacker can retrain a model to imitate the functionality of the confidential model.
- Key idea: Find samples close to the decision boundary
 - Lowd-Meek Attack: Use Linear search to find the samples close to the boundary of a linear model. $w^T x + \beta \approx 0$
 - Uniform Queries: Uniformly random samples
 - Line-Search Retraining: Generalize Lowd-Meek Attack to non-linear model.
 - Adaptive Retraining: Repeat sampling along the boundary of \hat{f} , training to get new \hat{f} .

• Retraining Results

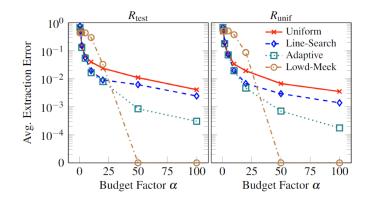
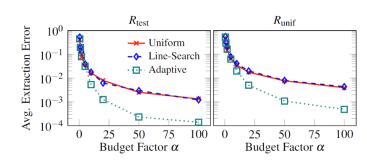
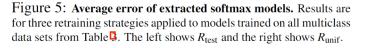


Figure 4: Average error of extracted linear models. Results are for different extraction strategies applied to models trained on all binary data sets from Table^[3]. The left shows R_{test} and the right shows R_{unif} .





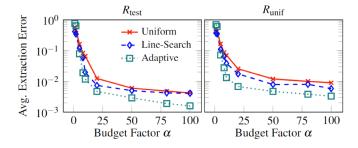


Figure 6: Average error of extracted RBF kernel SVMs Results are for three retraining strategies applied to models trained on all binary data sets from Table^[3]. The left shows R_{test} and the right shows R_{unif} .

- Extracting Larger models (Neural Networks)
- It becomes more difficult to find the decision boundary of a complex model like NN.
- Marginal improvement is reported by using adaptive retraining

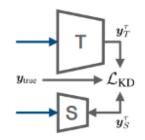
Knockoff nets: Model Extraction Attack with AL^[2]

- Active Learning (AL):
 - Reducing label effort while gathering data to train a model
 - Reinforcement learning approach
- Extracting the victim model via a knowledge-distillation (KD)-like method
- Generating a transfer set for the adversary model.
- Querying a set of input images to the blackbox model to obtain predictions.
- Training a "knockoff" with queried image-prediction pairs.

• Comparison to KD:

- Lacks knowledge to the victim model's training dataset.
- Lacks knowledge to the victim model's architecture.
- Lacks knowledge to the victim model's logits and true labels.

[2] Orekondy T, Schiele B, Fritz M. Knockoff nets: Stealing functionality of black-box models[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 4954-4963.



Knowledge Distillation (KD)

 $\mathcal{L}_{CE}(\boldsymbol{y}, \hat{\boldsymbol{y}}) = -\sum_{k} p(y_k) \cdot \log p(\hat{y_k})$

11

Transfer set construction

- \circ Random strategy: randomly sample images to query Fv. $x \stackrel{
 m iid}{\sim} P_A(X)$
- Adaptive strategy: incorporate a feedback signal resulting from each image queried to the blackbox.

 $oldsymbol{x}_t \sim \mathbb{P}_{\pi}(\{oldsymbol{x}_i,oldsymbol{y}_i\}_{i=1}^{t-1})$

 $\pi_t(z) = \frac{e^{H_t(z)}}{\sum_{z'} H_t(z')}$

• Learning the sampling policy:

Penalizes the sampler from keeping sampling the same node

$$H_{t+1}(z_t) = H_t(z_t) + \alpha(r_t - \bar{r}_t)(1 - \pi_t(z_t)) \quad \text{an} \\ H_{t+1}(z') = H_t(z') + \alpha(r_t - \bar{r}_t)\pi_t(z') \quad \forall z' \neq z'$$

Prevents the reward from sticking in the same value

[2] Orekondy T, Schiele B, Fritz M. Knockoff nets: Stealing functionality of black-box models[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 4954-4963.

- Transfer set construction
 - Rewards:
 - Certainty measure: to encourage images where the victim is confident.

 $R^{\text{cert}}(y_t) = P(y_{t,k_1}|x_t) - P(y_{t,k_2}|x_t)$

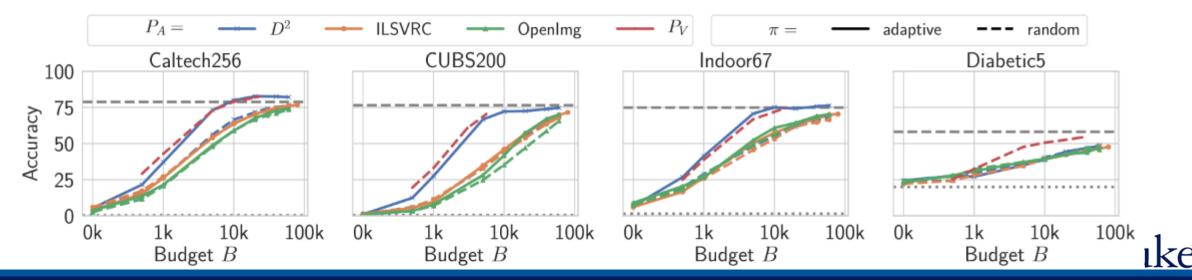
• Diversity reward: to prevent the degenerate case of image exploitation over a single label.

$$R^{\text{div}}(\boldsymbol{y}_{1:t}) = \sum_{k} \max(0, \bar{\boldsymbol{y}}_{t,k} - \bar{\boldsymbol{y}}_{t-\Delta,k})$$

• Loss: To encourage images where the knockoff prediction doesn't imitate the victim prediction. $R^{\mathcal{L}}(y_t, \hat{y}_t) = \mathcal{L}(y_t, \hat{y}_t)$

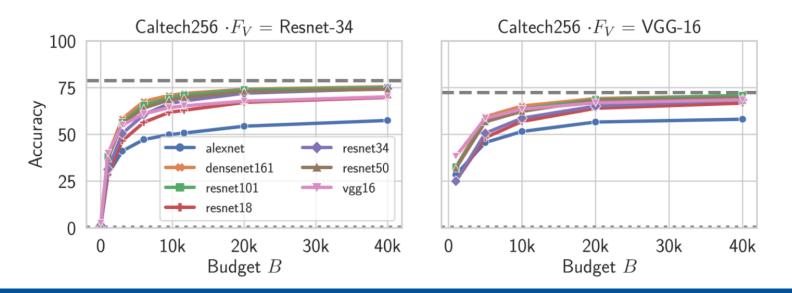
[2] Orekondy T, Schiele B, Fritz M. Knockoff nets: Stealing functionality of black-box models[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 4954-4963.

- Experimental results
- Accuracy vs budget:
 - Higher accuracy is achieved when more images are sampled for the adversary.
- Comparison between the sampling strategies:
 - Adaptive strategy generally performs better than random strategy
 - If the adversary is trained on the same dataset as the victim, the highest accuracy is achieved.



• Experimental results

- Adversary's model architecture:
 - When the adversary has the same architecture as the victim, the highest accuracy can be achieved.
 - Higher performance is achieved when adversary models have higher model complexity.



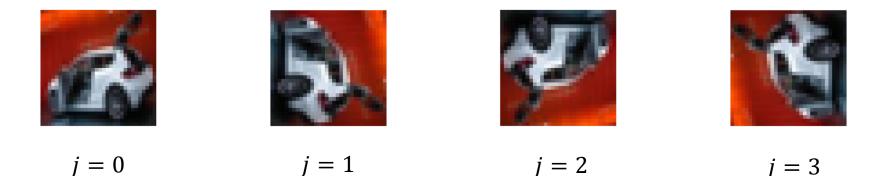
Model Extraction Attack with SSL^[3]

• Self-supervised learning does not require labels!

$$L = L_{supervised} + L_{SSL}$$

• SSL Method 1: Rotation Loss

$$L_{R}(X; f_{\theta}) = \frac{1}{4N} \sum_{i=0}^{N} \sum_{j=1}^{r} H(f_{\theta}(R_{j}(x_{i})), j)$$



[3] Jagielski, Matthew, et al. "High accuracy and high fidelity extraction of neural networks." *Proceedings of the 29th USENIX Conference on Security Symposium*. 2020.

Model Extraction Attack with SSL

Model Extraction with Rotation Loss

Architecture	Data Fraction	ImageNet	WSL	WSL-5	ImageNet + Rot	WSL + Rot	WSL-5 + Rot
Resnet_v2_50	10%	(81.86/82.95)	(82.71/84.18)	(82.97/84.52)	(82.27/84.14)	(82.76/84.73)	(82.84/84.59)
Resnet_v2_200	10%	(83.50/84.96)	(84.81/86.36)	(85.00/86.67)	(85.10/86.29)	(86.17/88.16)	(86.11/87.54)
Resnet_v2_50	100%	(92.45/93.93)	(93.00/94.64)	(93.12/94.87)	N/A	N/A	N/A
Resnet_v2_200	100%	(93.70/95.11)	(94.26/96.24)	(94.21/95.85)	N/A	N/A	N/A

• SSL Method 2: MixMatch^[3]

- A combination of Techniques
- "Guessed" Labels
- Regularization
- Image Augmentations

Dataset	Algorithm	250 Queries	1000 Queries	4000 Queries
SVHN	FS	(79.25/79.48)	(89.47/89.87)	(94.25/94.71)
SVHN	MM	(95.82/96.38)	(96.87/97.45)	(97.07/97.61)
CIFAR10	FS	(53.35/53.61)	(73.47/73.96)	(86.51/87.37)
CIFAR10	MM	(87.98/88.79)	(90.63/91.39)	(93.29/93.99)

[3] Berthelot, David, et al. "Mixmatch: A holistic approach to semi-supervised learning." Advances in neural information processing systems 32 (2019).

Contents

- Background
- Model Extraction Attacks with Natural Data
 - Standard Model Extraction Attack
 - Model Extraction Attack with self-supervised Learning
 - Model Extraction Attack with Active Learning
- Model Extraction Attacks with Synthetic Data
 - Model Extraction Attack with GAN

Conclusion

Preliminary

- Knowledge distillation
 - Goal
 - Compress, i.e., transfer the knowledge of a (larger) teacher model to a (smaller) student model
 - Methods
 - Non-data-free knowledge distillation
 - Leveraging a surrogate dataset with a similar feature space or distribution
 - Data-free knowledge distillation
 - Relying on training a generative model to synthesize the queries that the student makes to the teacher

How Important is the Surrogate Dataset?

- The distribution of the surrogate dataset should be <u>close</u> to that of the victim's training dataset.
 - Similarity in feature space, marginal/class-conditional probability distribution of inputs

	Victim	CIFAR10	CIFAR100	SVHN	MNIST	SVHN_{skew}	Random
CIFAR10	95.5%	95.2%	93.5%	66.6%	37.2%	-	10.0%
SVHN	96.2%	96.0%	-	96.3%	89.5%	96.1%	84.1%

• Conclusion

- The success of distillation-based model extraction largely depend on the complexity of the task that the victim model aims to solve
- Similarity to source domain appears to be critical for extracting ML models that solve complex tasks

Data-Free Model Extraction^[4]

• Goal:

- Train a student model to match the predictions of the victim on its private target domain
- Find the student model's parameters that minimize the probability of errors between the student and victim predictions

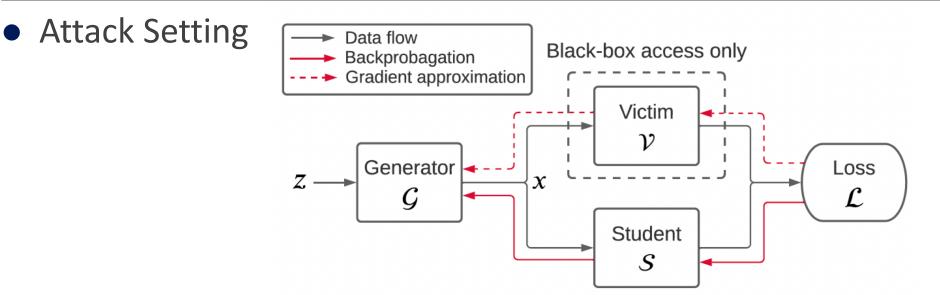
$$\underset{\theta_S}{\operatorname{arg\,min}} \ \mathcal{P}_{x \sim \mathcal{D}_{\mathcal{V}}} \left(\operatorname{arg\,max}_{i} \mathcal{V}_{i}(x) \neq \operatorname{arg\,max}_{i} \mathcal{S}_{i}(x) \right)$$

- Minimize the student's error on a synthesized dataset
- The error is minimized by optimizing a loss function which measures disagreement between the victim and student

$$\underset{\theta_S}{\operatorname{arg\,min}} \mathbb{E}_{x \sim \mathcal{D}_S} \left[\mathcal{L}(\mathcal{V}(x), \mathcal{S}(x)) \right]$$

[4] Truong, Jean-Baptiste, et al. "Data-free model extraction." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021.

Data-Free Model Extraction



- Generator: synthesizes training data points x generate difficult examples for the student
- Students: learns the behavior of the victim model on x match the victim's predictions
- Loss function: measures the divergence between victim and student model

Data-Free Model Extraction: Loss Function

• $L_1 - norm \log s$

$$\mathcal{L}_{\ell_1}(x) = \sum_{i=1}^K |v_i - s_i|$$

 \circ where v_i and s_i are the logits of the victim and student models

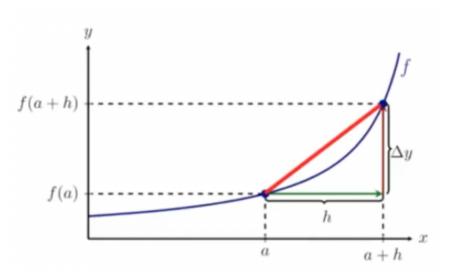
- Advantage: no vanishing gradients at convergence (compared to KL divergence loss)
- **Disadvantage:** requires access to the victim model's logits

Data-Free Model Extraction: Gradient Approximation

• Forward differences

$$\nabla_{\text{FWD}} f(x) = \frac{1}{m} \sum_{i=1}^{m} d \frac{f(x + \epsilon \mathbf{u}_i) - f(x)}{\epsilon} \mathbf{u}_i$$

- u_i : random direction
- *m*: number of random directions
- *d*: dimensionality of the space
- ϵ : a real number



Data-Free Model Extraction: Results

Dataset (budget)	Victim accuracy	DFME	DFME-KL
CIFAR10 (20M)	95.5%	88.1% (0.92×)	76.7% (0.80×)
SVHN (2M)	96.2%	95.2% (0.99×)	84.7% (0.88×)

- Successful model extraction
 - Over 0.92x the victim model accuracy
- Drawback
 - Query budget is quite high (2M and 20M queries)

Not an issue when attacking on-device ML systems where the number of queries is unrestricted.

Contents

- Background
- Model Extraction Attacks with Natural Data
 - Standard Model Extraction Attack
 - Model Extraction Attack with self-supervised Learning
 - Model Extraction Attack with Active Learning
- Model Extraction Attacks with Synthetic Data
 - Model Extraction Attack with GAN

• Conclusion

Conclusion

- The more information about the confidential model is released, the easier to extract the model (Utility-Privacy Trade-off).
- The simpler the confidential model, the easier to extract the model.
- Active Learning and Self-supervised Learning makes model extraction attack even easier with high sampling efficiency.
- Even without natural data, synthetic data can be used to attack.
- Model Extraction Attack is a realistic threat!