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What is watermarking?

In daily life, a watermark is added to pictures,videos or documents to protect the
copyright.

In the context of machine learning, adding a watermark to the model is the act of
trying to embed copyright information into the model.



Why do we care about model watermarking?
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1. There are already platforms where people Eyjfialla | T4 7 1 13 | S Arknights) -
share practical models. People will
eventually realize that the models are

their properties and should be protected.

2. Machine Learning as a Service (MLaaS)

3. There are model stealing studys.



Model Stealing

Hidden
“ | Train Process > Model Redistribution
Hidden
- Train Process > el APl | Model extraction

Currently no watermarking method is

guaranteed to survive the model extraction.

Does copyright protect us from
model extraction anyway?



Current real world “SOTA”

e NovelAl model leak on Oct.6.2022

NovelAl &
@novelaiofficial

[Announcement: Proprietary Software & Source Code Leaks]

Greetings, NovelAl Community.
On 10/6/2022, we experienced an unauthorized breach in the company's

GitHub and secondary repositories.

The leak contained proprietary software and source code for the
services we provide.

7:34 PM - Oct 7,2022

What we learned from the story:
Never step between an otaku and its ability to generate a waifu or husbando.



What even is NovelAlI?

NovelAl is a monthly subscription service for Al-assisted : £ & ﬁ : ‘

authorship, storytelling, virtual companionship, or simply a

GPT powered sandbox for your imagination.

Our Artificial Intelligence algorithms create human-like writing based on your own, enabling anyone,

regardless of ability, to produce quality literature. We offer unprecedented levels of freedom with —
—_— ‘

our Natural Language Processing playground by using our own Al models, trained on real literature. — Ill I }I;
—_— —

The Al seamlessly adapts to your input, maintaining your perspective and style.
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Purchase (I Anlas

Here you can purchase additional Anlas for training your Al Modules and for Image Generation.
Subscription Anlas will be refilled according to your subscription every month.

Your Subscription Anlas: Your Paid Anlas:

0 0

2,000 W Anlas 5,000 W Anlas 10,000 W Anlas

$3.79 USD $6.49 USD $10.99 USD

~527 Anlas/USD ~770 Anlas/USD ~909 Anlas/USD
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What happened after the model leak

@ AUTOMATICT111 commented on Oct &, 2022 Owner

Everyone calm down. The code in the repo is written entirely by me. No copied code. This is an independent implementation to
support loading the weights from the leak.

g3 ¥ 90

o C43HB66N1201252 added  invalid and removed labels on Oct 8, 2022

lewis1190 commented on Oct 8, 2022

| guess the real confusion is coming from trying to figure out why people are defending anything being “stolen” from novelai,
whilst they're scraping Danbooru for training;: | highly doubt they received informed consent from every artist



Detour to moral and legal concerns

Attorney Kosuke Terauchi notes that, since a revision of the law in 2018, it is no longer illegal in Japan for machine learning models to scrape
copyrighted content from the internet to use as training data;meanwhile, in the United States where NovelAl is based, there is no specific
legal framework which regulates machine learning, and thus the fair use doctrine of US copyright law applies instead. Danbooru has posted
an official statement in regards to NovelAl's use of the site's content for Al training, expressing that Danbooru is not affiliated with NovelAl,
and does not endorse nor condone NovelAl's use of artists' artworks for machine learning.

While the copyright of the training data is not respected, should we respect the model’s copyright?


https://en.wikipedia.org/wiki/Fair_use
https://en.wikipedia.org/wiki/US_copyright_law

What are the requirements of a watermark?

Fidelity
accuracy.

Robustness

Reliability
watermark easily.

Integrity
model.

Capacity

copyright information.

Secrecy

Efficiency

A“:A:Ann\' [ g

-Adding of watermark doesn’t harm model

-The watermark should be hard to remove.

-The owner should be able to validate the

-The watermark shouldn’t appear in other’s

-The watermark should carry enough

-The watermark should be hard to detect.

-The watermark shouldn’t affect the model
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Threat model for general watermark

Attacker’s knowledge

Model parameters
Existence of watermark
Watermarking algorithm
Training data

Watermark itself( trigger set)

aRrLbh-=

Attacker’s capability

1. Whatever it wants on the stolen model.
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Attackers’ objective

Detect Watermark

Suppress Watermark -
Forge Watermark By
Replace Watermark 1

Remove Watermark

-
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Watermarking methods

1.Hiding watermark in model weights

White box validation.

Vulnerable to finetune.

2.Using trigger set.(wWatermarking Deep Neural Networks by Backdooring)

Model doing two different tasks: normal training and trigger set training.(Over-parameterization)
Pros: Black box validation. Resistance to fine tuning. Hard to remove without knowledge of trigger set.
Cons: Can’t survive model extraction. Hard to survive knowledge distillation. Might be detected by backdoor detection methods.

Also for models capable of doing different tasks or serve as feature extractor(like BERT), the output layer might be swapped during training,
and the watermark will fail instantly.
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Why backdoor?

Fidelity -Adding of watermark doesn’t harm model accuracy.
Robustness -The watermark should be hard to remove.
Reliability -The owner should be able to validate the watermark
easily.

Integrity -The watermark shouldn’t appear in other’s model.
Capacity -The watermark should carry enough copyright information.
Secrecy -The watermark should be hard to detect.

Efficiency -The watermark shouldn’t affect the model efficiency

much.

14



Method of Watermarking DNN by Backdooring

The watermarking method proposed is based on A combination of Strong
Backdoors and Commitments.
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Strong backdoor

The SampleBackdoor should have the following properties

e Multiple Trigger Sets: even if SampleBackdoor can be used in arbitrary way, it's

almost impossible to have two intersected trigger set.

e Persistency: without knowledge of trigger set T, it’s hard to remove a backdoor

- -

D

l__' SampleBackdoor
oF

L Training
D

—

!

1
Classify
b =(T,TL)
" M
| Backdoor
M
Classify
T

Backdoor should be:
_ 1)Hard to remove
M(T) 2)Unique

7

M(T)

* Oracle f: truthfully answers calls to the ground-truth function f
*T: trigger set; TL: labeling function, when T is fixed, TL is implicitly defined
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Commitments : two requirements and two algorithms

Two requirements of commitments between sender and receiver:

e Hiding(without the sender’s help, the receiver cannot open the vault)
e Binding(sender cannot exchange the locked secret once it has been given away)

Two algorithms:

e Com(x,r) on input of a value x € S and a bitstring
r € {0, 1}" outputs a bitstring c. (x1) > ¢ x
e Open(cy,x,r) for a given x € S,r € {0,1}", ¢, €
{0,1}* outputs O or 1.

Compare r with c_x
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Commitments: constraint of two algorithms

. Existence of correspondence
For correctness, it must hold that Vx € S, X P

7
[ Pr [Open(cy,x,r) =1 | ¢y ¢ Com(x,r)] = 1. ‘ J

re{0,1}"

We call the commitment scheme (Com,Open) binding
if, for every PPT algorithm A Uniqueness of correspondenc

/ ¢y < Com(x,r)A )(

Pr| Open(cy,X,7) =1 (£,7) « Alcy.x,r)N | < é€(n)

(x,r) # (X,F)

where €(n) is negligible in n and the probability is taken

\oveerS,rE {0,1}". / 18




Combine backdoor with commitments

(mk), vk

Verify

KeyGen
d L:nk

—_—

M

Mark

Figure 3: A schematic illustration of watermarking a

neural network.

0/1
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Combine backdoor with commitments: Mk and Vk

Mk: “the secret marking key”( used as the embedded watermark)

{t_i,TL_i}i€[n] ) {’ Lm\

Vk: “the public verification key”(used as the detector of watermark) bitstringse {0,1}*n

vk = {c}" .} ¥y
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Combine backdoor with commitments: 3 algorithms

KeyGen() :
I. Run (7,7;) = b SampleBackdoor(Of) where
T — {,(l) _____ n)} and 7; = {T _____ T(’”} >  Generate backdoor b

Mk:randomly generate

2. S: M1 ranc i O ,ii,i"l ul ”
2. Sample 2n random strings r, +—{0,1}" and bitertngs 1t foc o to and 1L

generate 2n commitments {(“ ‘L" icn] where " fornTLs
( ) G) Dy (D) (i) (i) Vk: use Com to generate
« Com(t',r;""), ¢, = Com(T ", r;"). corresponding bistrings ct
and cL

3. Set mk + (b { D ;” '?M)' vk + {(“' .'(1".'}}1’6[!1] >
and return (mk.vk_)

Return mk(watermark) and
vk(detector)
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Combine backdoor with commitments: 3 algorithms

Mark(M,mk) : g Do the backdoor using mk and
return the watermarked model

I. Let mk = (b, {.r,[":'.rg}.},-e-,,]).

2. Compute and output M < Backdoor((/ b, M).
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Combine backdoor with commitments: 3 algorithms

Verify(mk,vk,M) :

. Let mk = (b,{r,“ “]}16[11]) vk = {C:('”J'g]}ie{n]'

For b= (T,7p) test if Vi) € T: 17" £ f(¢1). If
not, then output 0.

2. Forall i € [n] check that Open(c,”,t® ")) = 1 and
Dpen(c I ,T( ) = 1. Otherwise output 0.
3. Forall i € [n] test that Classify(r') M) = TL“). If

this is true for all but €/T| elements from T then
output 1, else output 0.

—_—

—

Check the functionality
of trigger set

Check the Commitments

Check if the watermarked
model works well in trigger
set with g-accurate( at least
a (1-¢)-fraction of T will be
classified correctly.) 23



Combine backdoor with commitments

Generate mk and vk (m k) vk Detect watermark
b

KeyGen
Y Lm k
M

Mark

0/1
Verify —*

—_—

M

Do watermarking

Figure 3: A schematic illustration of watermarking a
neural network.



Method of Certified Watermarks via Randomized Smoothing

Key idea: bound the worst-case decrease in trigger set accuracy(attackers tend to
do to remove watermark), given that the model parameters do not shift too far

Algorithm 1 Embed Certifiable Watermark
Required: training samples X, trigger set samples
Xirigger, learning rate 7, maximum noise level e, replay
count k, noise sample count £
for epoch=1,...,Ndo
for B C X do
90 < E(wy)eB[Vol(z,y,0)]
0—60—T1go
for B C éfm'gger do » Use randomized smoothing in trigger set
do =
[fori=110kdo - > Replay k times
0 1€
for j=1totdo

G ~ N(0,0°1) . .
90 < 90 + Bt yenlVol(x,y, 0 + G)] Add Gaussian noise

| g0 go/(kt) |
0+ 0—7gp 25




Experiment

1. Approaches are used in the experiment setting:
(1) Pretrained: A model that was trained without a trigger set, and
continues training the model together with a selected trigger set.

(1) FromScratch: The second approach trains the model from scratch along
with the trigger set.
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Functionality-Preserving

Table 1 summarizes the test set and trigger-
set classification accuracy on CIFAR-10
and CIFAR-100, for three

different models; (1) a model with no
watermark (No-WM); (i1) a model that was
trained with the trigger set from scratch
(FROMSCRATCH); and (ii1) a pre-trained
model that was trained with the trigger set
after convergence on the original training
data set (PRETRAINED).

Model Test-set acc. | Trigger-set
acc.

CIFAR-10

No-WM 03.42 7.0

FROMSCRATCH | 93.81 100.0

PRETRAINED 93.65 100.0
CIFAR-100

No-WM 74.01 1.0

FROMSCRATCH | 73.67 100.0

PRETRAINED 73.62 100.0

Table 1: Classification accuracy for CIFAR-10 and

CIFAR-100 datasets on the test set and trigger set.
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Unremovability

Fine-tuning experiments: keep or improve the performance of the model on the test set by carefully training it. Fine-tuning
seems to be the most probable type of attack since it is frequently used and requires less computational resources and
training data.

Four different variations of fine-tuning procedures:

Fine-Tune Last Layer (FTLL): Update the parameters of the last layer only. In this setting we freeze the parameters in all the layers
except in the output layer. One can think of this setting as if the model outputs a new representation of the input features and we fine-
tune only the output layer.

Fine-Tune All Layers (FTAL): Update all the layers of the model.
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Re-Train Last Layers (RTLL): Initialize the parameters of the output layer with random weights and only update them. In this
setting, we freeze the parameters in all the layers except for the output layer. The motivation behind this approach is to
investigate the robustness of the watermarked model under noisy conditions. This can alternatively be seen as changing the
model to classify for a different set of output labels.

Re-Train All Layers (RTAL): Initialize the parameters of the output layer with random weights and update the parameters in
all the layers of the network.
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Figure presents the results for both the PRETRAINED and FROMSCRATCH models over the test set and trigger set, after
applying these four different finetuning techniques.

100 " ' " i ’
E 80
g eo
E 40 B From Scratch(Test set)
= O Pre Trained(Test set)
] 20 [ From Scratch(Trigger set)
Classification accuracy on the test set and ° e R A
trigger set for CIFAR-10 (top) and CIFAR-100 o 0 T B T B
. . . - . E BO
(bottom) using different fine-tuning techniques. g o
For example, in the bottom right bars we can S .0
see that the PRE-TRAINED model (green) £ 20 —|
suffers a dramatic decrease in o I |
No Fine-Tuning FTLL FTAL RTLL RTAL

the results comparing the baseline (bottom left)
using the RTAL technique.



Ownership Piracy

—

L=J
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Figure summarizes the results on the test set, TSNEw and
TS-ORIG. We report results for both the FTAL and RTAL
methods together with the baseline results of no fine tuning
at all (we did not report here the results of FTLL and RTLL
since those can be considered as the easy cases in our
setting). The red bars refer to the model with no fine tuning,
the yellow bars refer to the FTAL method and the blue bars
refer to RTAL. The results suggest that the original trigger
set, TSORIG, is still embedded in the model (as is
demonstrated in the right columns) and that the accuracy of
classifying it even improves after fine-tuning. This may imply
that the model embeds the trigger set in a way that is close
to the training data distribution. However, in the new trigger
set, TS-NEw, we see a significant drop in the accuracy.

Notice, we can consider embedding TS-NEw as embedding

[==]
=]
o

[=a)
=]
T

e
=]
T

3 No-Tuning
[ FTAL
I RTAL

CIFAR-10 Accuracy
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a watermark using the PRETRAINED approach. Hence, this S TS New T5-0rig
accuracy drop of TSNEw is not surprising and goes in hand
with the results we observed in the last figure.



Transfer Learning

In transfer learning we would like to use knowledge gained while solving one problem and apply it to a different
problem. For example, we use a trained model on one dataset (source dataset) and fine-tune it on a new dataset
(target dataset). For that purpose, we fine-tuned the FROMSCRATCH model (which was trained on either CIFAR-10

or CIFAR-100), for another 20 epochs using the labeled part of the STL-10 dataset.

Table summarizes the classification accuracy on Test set acc. | Trigger set acc.

the test set of STL-10 and the trigger set after =

transferring from CIFAR-10 and CIFAR-100. CIFAR10 - STLI0 §1.87 120
CIFAR100 - STL10 11.3 62.0
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ImageNet - Large Scale Visual Recognition Dataset

Table summarizes the results for the functionality preserving tests. We can see
from Table that both models, with and without watermark, achieve roughly the

same accuracy in terms of Prec@1 and Prec@5, while the model without the
watermark attains 0% on the trigger set and the watermarked model attain 100%

on the same set.

Prec@] | Prec@5
Test Set
NoO-WM 66.64 87.11
FROMSCRATCH 66.51 87.21
Trigger Set
NO-WM 0.0 0.0
FROMSCRATCH 100.0 100.0
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In Table, we report the results of transfer learning from ImageNet to ImageNet,
those can be considered as FTAL, and from ImageNet to CIFAR-10, can be
considered as RTAL or transfer learning.

Prec@] | Prec@5

Test Set
ImageNet — ImageNet 66.62 87.22
ImageNet — CIFAR-10 | 90.53 99.77

Trigger Set
ImageNet — ImageNet 100.0 100.0
ImageNet — CIFAR-10 24.0 52.0




Experiment of Watermarking DNN by Backdooring

Appropriate Radius to Certify(A trade off between a sufficient threat model
and a necessary threat model.)

Certified Neural Network Watermarks with Randomized Smoothing

Attack Radius 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Worst Case Accuracy 85.8% 82.5% 80.5% 762% 67.1% 56.1% 32.0% 18.4% 8.4%

Table 1. Attack Radius vs Worst Case Accuracy of the Model. It becomes meaningless to defend against a threat model with a radius
larger than 1.8 because these models are indistinguishable from any randomly initialized model.
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Experiment of Watermarking DNN by Backdooring

Watermark Certificate Evaluation

Certified Neural Network Watermarks with Randomized Smoothing

{5 Radius (¢)

Dataset ‘Watermark 0.2 0.4 0.6 0.8 1 1.2
MNIST Embedded content  100% 95% 47% 3% 0% 0%
MNIST Noise 100% 91% 7% 0% 0% 0%
MNIST Unrelated 100% 94% 45% 4% 0% 0%
CIFAR-10 Embedded content 100% 100% 100% 9% 51% 5%
CIFAR-10 Noise 100% 100% 100% 100% 47% 0%
CIFAR-10 Unrelated 100% 100% 100% 97% 35% 0%
Table 2. Certified trigger set accuracy at different radius
Certified Watermark Accuracy
{5 radius (¢)
Noise Level (0) Test Accuracy 0.2 0.4 0.6 0.8 1 1.2 1.4
86.00% 100.00% 100.00% 100.00% 93.00% 51.00% 5.00% 0.00%
84.56% 100.00% 100.00% 100.00% 97.00% 63.00% 13.00% 0.00%
84.18% 100.00% 100.00% 100.00% 100.00% 98.00% 74.00% 24.00%

Table 3. Trade-off between certified trigger set accuracy and noise level (o) for CIFAR-10
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Experiment of Watermarking DNN by Backdooring

Watermark Certificate Evaluation

Certified Neural Network Watermarks with Randomized Smoothing

Attack T Finetuni Distillation  Distillation Finetunin Distillation  Distillation

ack 1ype inetuning Hard Label Soft Label fnetuning Hard Label  Soft Label
Learning Rate 0.0001 0.0001 0.0001 0.001 0.001 0.001
MNIST 2.67 2.39 1.56 19.39 17.58 20.35
CIFAR-10 2.85 2.41 2.06 19.93 19.40 19.29

Table 4. ¢ distance change in the first epoch
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Experiment of Watermarking DNN by Backdooring

Empirical Watermark Persistence Evaluation

Baseline Black-box  White-box

Dataset Attack Ir Watermark  Watermark  Watermark
MNIST Finetuning 0.0001 4531% 59.38% 100.00%
MNIST Finetuning 0.001 50.00% 54.70% 100.00%
MNIST Hard-Label Distillation 0.001 42.19% 50.00% 100.00%
MNIST Soft-Label Distillation 0.001 96.88% 100.00% 100.00%
CIFAR-10  Finetuning 0.0001 17.20% 9.40% 100.00%
CIFAR-10  Finetuning 0.001 14.06% 10.94% 100.00%
CIFAR-10  Hard-Label Distillation 0.001 29.69% 81.25% 100.00%
CIFAR-10  Soft-Label Distillation 0.001 81.25% 100.00% 100.00%
CIFAR-100 Finetuning 0.0001 18.75% 23.44% 100.00%
CIFAR-100 Finetuning 0.001 0.00% 0.00% 0.00%
CIFAR-100 Hard-Label Distillation 0.001 7.81% 12.5% 5.00%
CIFAR-100 Soft-Label Distillation 0.001 96.88% 96.88% 98.44%
MNIST Hard-Label Distillation + Reg 0.1 40.63% 32.81% 0.00%
CIFAR-10  Hard-Label Distillation + Reg 0.1 8.00% 27.00% 0.00%
CIFAR-100 Hard-Label Distillation + Reg 0.1 0.00% 0.00% 0.00%

Table 5. Trigger set accuracy after 50 epochs of removal attacks. We note that this is only a snapshot of the trigger set accuracy. During
training, trigger set accuracies could sometimes fluctuate significantly (see figures in Appendix). We use watermarks from (Zhang et al.,
2018) as the baseline watermark.
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